@article{CioniBekkiGirardietal.2016, author = {Cioni, Maria-Rosa L. and Bekki, Kenji and Girardi, Leo and de Grijs, Richard and Irwin, Mike J. and Ivanov, Valentin D. and Marconi, Marcella and Oliveira, Joana M. and Piatti, Andres E. and Ripepi, Vincenzo and van Loon, Jacco Th.}, title = {XVII. Proper motions of the Small Magellanic Cloud and the Milky Way globular cluster 47 Tucanae}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {586}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201527004}, pages = {67 -- 75}, year = {2016}, abstract = {Aims. In this study we use multi-epoch near-infrared observations from the VISTA survey of the Magellanic Cloud system (VMC) to measure the proper motions of different stellar populations in a tile of 1.5 deg2 in size in the direction of the Galactic globular cluster 47 Tuc. We obtain the proper motion of the cluster itself, of the Small Magellanic Cloud (SMC), and of the field Milky Way stars. Methods. Stars of the three main stellar components are selected according to their spatial distributions and their distributions in colour\&\#8722;magnitude diagrams. Their average coordinate displacement is computed from the difference between multiple Ks-band observations for stars as faint as Ks = 19 mag. Proper motions are derived from the slope of the best-fitting line among ten VMC epochs over a time baseline of ~1 yr. Background galaxies are used to calibrate the absolute astrometric reference frame. Results. The resulting absolute proper motion of 47 Tuc is (\&\#956;\&\#945;cos(\&\#948;), \&\#956;\&\#948;) = (+7.26 ± 0.03, \&\#8722;1.25 ± 0.03) mas yr-1. This measurement refers to about 35 000 sources distributed between 10\&\#8242; and 60\&\#8242; from the cluster centre. For the SMC we obtain (\&\#956;\&\#945;cos(\&\#948;), \&\#956;\&\#948;) = (+1.16 ± 0.07, \&\#8722;0.81 ± 0.07) mas yr-1 from about 5250 red clump and red giant branch stars. The absolute proper motion of the Milky Way population in the line of sight (l = 305.9, b = \&\#8722;44.9) of this VISTA tile is (\&\#956;\&\#945;cos(\&\#948;), \&\#956;\&\#948;) = (+10.22 ± 0.14, \&\#8722;1.27 ± 0.12) mas yr-1 and has been calculated from about 4000 sources. Systematic uncertainties associated with the astrometric reference system are 0.18 mas yr-1. Thanks to the proper motion we detect 47 Tuc stars beyond its tidal radius.}, language = {en} } @article{SchmidtCioniNiederhoferetal.2022, author = {Schmidt, Thomas and Cioni, Maria-Rosa L. and Niederhofer, Florian and Bekki, Kenji and Bell, Cameron P. M. and de Grijs, Richard and El Youssoufi, Dalal and Ivanov, Valentin D. and Oliveira, Joana M. and Ripepi, Vincenzo and van Loon, Jacco Th.}, title = {The VMC survey: XLV. Proper motion of the outer LMC and the impact of the SMC}, series = {Astronomy and astrophysics}, volume = {663}, journal = {Astronomy and astrophysics}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/202142148}, pages = {21}, year = {2022}, abstract = {Context. The Large Magellanic Cloud (LMC) is the most luminous satellite galaxy of the Milky Way and, owing to its companion, the Small Magellanic Cloud (SMC), represents an excellent laboratory to study the interaction of dwarf galaxies. Aims. The aim of this study is to investigate the kinematics of the outer regions of the LMC by using stellar proper motions to understand the impact of interactions, for example with the SMC about 250 Myr ago. Methods. We calculate proper motions using multi-epoch K s -band images from the VISTA survey of the Magellanic Cloud system (VMC). Observations span a time baseline of 2-5 yr. We combine the VMC data with data from the Gaia Early Data Release 3 and introduce a new method to distinguish between Magellanic and Milky Way stars based on a machine learning algorithm. This new technique enables a larger and cleaner sample selection of fainter sources as it reaches below the red clump of the LMC. Results. We investigate the impact of the SMC on the rotational field of the LMC and find hints of stripped SMC debris. The southeastern region of the LMC shows a slow rotational speed compared to the overall rotation. N-body simulations suggest that this could be caused by a fraction of stripped SMC stars located in that particular region that move opposite to the expected rotation.}, language = {en} } @article{SundeGrijsSubramanianetal.2017, author = {Sun, Ning-Chen and de Grijs, Richard and Subramanian, Smitha and Bekki, Kenji and Bell, Cameron P. M. and Cioni, Maria-Rosa L. and Ivanov, Valentin D. and Marconi, Marcella and Oliveira, Joana M. and Piatti, Andres E. and Ripepi, Vincenzo and Rubele, Stefano and Tatton, Ben L. and van Loon, Jacco Th.}, title = {The VMC Survey. XXII. Hierarchical Star Formation in the 30 Doradus-N158-N159-N160 Star-forming Complex}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {849}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aa911e}, pages = {16}, year = {2017}, abstract = {Star formation is a hierarchical process, forming young stellar structures of star clusters, associations, and complexes over a wide range of scales. The star-forming complex in the bar region of the Large Magellanic Cloud is investigated with upper main-sequence stars observed by the VISTA Survey of the Magellanic Clouds. The upper main-sequence stars exhibit highly nonuniform distributions. Young stellar structures inside the complex are identified from the stellar density map as density enhancements of different significance levels. We find that these structures are hierarchically organized such that larger, lower-density structures contain one or several smaller, higher-density ones. They follow power-law size and mass distributions, as well as a lognormal surface density distribution. All these results support a scenario of hierarchical star formation regulated by turbulence. The temporal evolution of young stellar structures is explored by using subsamples of upper main-sequence stars with different magnitude and age ranges. While the youngest subsample, with a median age of log(tau/yr) = 7.2, contains the most substructure, progressively older ones are less and less substructured. The oldest subsample, with a median age of log(tau/yr) = 8.0, is almost indistinguishable from a uniform distribution on spatial scales of 30-300. pc, suggesting that the young stellar structures are completely dispersed on a timescale of similar to 100. Myr. These results are consistent with the characteristics of the 30. Doradus complex and the entire Large Magellanic Cloud, suggesting no significant environmental effects. We further point out that the fractal dimension may be method dependent for stellar samples with significant age spreads.}, language = {en} } @article{SubramanianRubeleSunetal.2017, author = {Subramanian, Smitha and Rubele, Stefano and Sun, Ning-Chen and Girardi, Leo and de Grijs, Richard and van Loon, Jacco Th. and Cioni, Maria-Rosa L. and Piatti, Andres E. and Bekki, Kenji and Emerson, Jim and Ivanov, Valentin D. and Kerber, Leandro and Marconi, Marcella and Ripepi, Vincenzo and Tatton, Benjamin L.}, title = {The VMC Survey - XXIV. Signatures of tidally stripped stellar populations from the inner Small Magellanic Cloud}, series = {Monthly notices of the Royal Astronomical Society}, volume = {467}, journal = {Monthly notices of the Royal Astronomical Society}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stx205}, pages = {2980 -- 2995}, year = {2017}, language = {en} } @article{MillerCionideGrijsetal.2022, author = {Miller, Amy E. and Cioni, Maria-Rosa L. and de Grijs, Richard and Sun, Ning-Chen and Bell, Cameron P. M. and Choudhury, Samyaday and Ivanov, Valentin D. and Marconi, Marcella and Oliveira, Joana M. and Petr-Gotzens, Monika and Ripepi, Vincenzo and van Loon, Jacco Th.}, title = {The VMC survey - XLVII. Turbulence-controlled hierarchical star formation in the large magellanic cloud}, series = {Monthly notices of the Royal Astronomical Society}, volume = {512}, journal = {Monthly notices of the Royal Astronomical Society}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stac508}, pages = {1196 -- 1213}, year = {2022}, abstract = {We perform a statistical clustering analysis of upper main-sequence stars in the Large Magellanic Cloud (LMC) using data from the Visible and Infrared Survey Telescope for Astronomy survey of the Magellanic Clouds. We map over 2500 young stellar structures at 15 significance levels across similar to 120 square degrees centred on the LMC. The structures have sizes ranging from a few parsecs to over 1 kpc. We find that the young structures follow power-law size and mass distributions. From the perimeter-area relation, we derive a perimeter-area dimension of 1.44 +/- 0.20. From the mass-size relation and the size distribution, we derive two-dimensional fractal dimensions of 1.50 +/- 0.10 and 1.61 +/- 0.20, respectively. We find that the surface density distribution is well represented by a lognormal distribution. We apply the Larson relation to estimate the velocity dispersions and crossing times of these structures. Our results indicate that the fractal nature of the young stellar structures has been inherited from the gas clouds from which they form and that this architecture is generated by supersonic turbulence. Our results also suggest that star formation in the LMC is scale-free from 10 to 700 pc.}, language = {en} } @article{vanLoonBaileyTattonetal.2013, author = {van Loon, Jacco Th. and Bailey, M. and Tatton, B. L. and Apellaniz, Jesus Maiz and Crowther, P. A. and de Koter, A. and Evans, C. J. and Henault-Brunet, V. and Howarth, I. D. and Richter, Philipp and Sana, Hugues and Simon D{\´i}az, Sergio and Taylor, W. and Walborn, N. R.}, title = {The VLT-FLAMES tarantula survey IX. - the interstellar medium seen through diffuse interstellar bands and neutral sodium}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {550}, journal = {Astronomy and astrophysics : an international weekly journal}, number = {9}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201220210}, pages = {21}, year = {2013}, abstract = {Context. The Tarantula Nebula (a.k.a. 30 Dor) is a spectacular star-forming region in the Large Magellanic Cloud (LMC), seen through gas in the Galactic disc and halo. Diffuse interstellar bands (DIBs) offer a unique probe of the diffuse, cool-warm gas in these regions. Aims. The aim is to use DIBs as diagnostics of the local interstellar conditions, whilst at the same time deriving properties of the yet-unknown carriers of these enigmatic spectral features. Methods. Spectra of over 800 early-type stars from the Very Large Telescope Flames Tarantula Survey (VFTS) were analysed. Maps were created, separately, for the Galactic and LMC absorption in the DIBs at 4428 and 6614 angstrom and - in a smaller region near the central cluster R 136 - neutral sodium (the Na ID doublet); we also measured the DIBs at 5780 and 5797 angstrom. Results. The maps show strong 4428 and 6614 angstrom DIBs in the quiescent cloud complex to the south of 30 Dor but weak absorption in the harsher environments to the north (bubbles) and near the OB associations. The Na maps show at least five kinematic components in the LMC and a shell-like structure surrounding R 136, and small-scale structure in the Milky Way. The strengths of the 4428, 5780, 5797 and 6614 angstrom DIBs are correlated, also with Na absorption and visual extinction. The strong 4428 angstrom DIB is present already at low Na column density but the 6614, 5780 and 5797 angstrom DIBs start to be detectable at subsequently larger Na column densities. Conclusions. The carriers of the 4428, 6614, 5780 and 5797 angstrom DIBs are increasingly prone to removal from irradiated gas. The relative strength of the 5780 and 5797 angstrom DIBs clearly confirm the Tarantula Nebula as well as Galactic high-latitude gas to represent a harsh radiation environment. The resilience of the 4428 angstrom DIB suggests its carrier is large, compact and neutral. Structure is detected in the distribution of cool-warm gas on scales between one and > 100 pc in the LMC and as little as 0.01 pc in the Sun's vicinity. Stellar winds from the central cluster R 136 have created an expanding shell; some infalling gas is also detected, reminiscent of a galactic "fountain".}, language = {en} } @article{IvanovCioniBekkietal.2016, author = {Ivanov, Valentin D. and Cioni, Maria-Rosa L. and Bekki, Kenji and de Grijs, Richard and Emerson, Jim and Gibson, Brad K. and Kamath, Devika and van Loon, Jacco Th. and Piatti, Andres E. and For, Bi-Qing}, title = {New quasars behind the Magellanic Clouds. Spectroscopic confirmation of near-infrared selected candidates}, series = {Current biology}, volume = {588}, journal = {Current biology}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201527398}, pages = {12}, year = {2016}, abstract = {Context. Quasi-stellar objects (quasars) located behind nearby galaxies provide an excellent absolute reference system for astrometric studies, but they are difficult to identify because of fore-and background contamination. Deep wide-field, high angular resolution surveys spanning the entire area of nearby galaxies are needed to obtain a complete census of such quasars. Aims. We embarked on a program to expand the quasar reference system behind the Large and the Small Magellanic Clouds, the Magellanic Bridge, and the Magellanic Stream that connects the Clouds with the Milky Way. Methods. Hundreds of quasar candidates were selected based on their near-infrared colors and variability properties from the ongoing public ESO VISTA Magellanic Clouds survey. A subset of 49 objects was followed up with optical spectroscopy. Results. We confirmed the quasar nature of 37 objects (34 new identifications): four are low redshift objects, three are probably stars, and the remaining three lack prominent spectral features for a secure classification. The bona fide quasars, identified from their broad emisison lines, are located as follows: 10 behind the LMC, 13 behind the SMC, and 14 behind the Bridge. The quasars span a redshift range from z similar to 0.5 to z similar to 4.1. Conclusions. Upon completion the VMC survey is expected to yield a total of similar to 1500 quasars with Y < 19.32 mag, J < 19.09 mag, and K-s < 18.04 mag.}, language = {en} } @article{EvansvanLoonHainichetal.2015, author = {Evans, Chris J. and van Loon, Jacco Th. and Hainich, Rainer and Bailey, M.}, title = {2dF-AAOmega spectroscopy of massive stars in the Magellanic Clouds The north-eastern region of the Large Magellanic Cloud}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {584}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201525882}, pages = {19}, year = {2015}, abstract = {We present spectral classifications from optical spectroscopy of 263 massive stars in the north-eastern region of the Large Magellanic Cloud. The observed two-degree field includes the massive 30 Doradus star-forming region, the environs of SN1987A, and a number of star-forming complexes to the south of 30 Dor. These are the first classifications for the majority (203) of the stars and include eleven double-lined spectroscopic binaries. The sample also includes the first examples of early OC-type spectra (AA Omega 30 Dor 248 and 280), distinguished by the weakness of their nitrogen spectra and by C IV lambda 4658 emission. We propose that these stars have relatively unprocessed CNO abundances compared to morphologically normal O-type stars, indicative of an earlier evolutionary phase. From analysis of observations obtained on two consecutive nights, we present radial-velocity estimates for 233 stars, finding one apparent single-lined binary and nine (>3 sigma) outliers compared to the systemic velocity; the latter objects could be runaway stars or large-amplitude binary systems and further spectroscopy is required to investigate their nature.}, language = {en} }