@article{RœllyZass2020, author = {Rœlly, Sylvie and Zass, Alexander}, title = {Marked Gibbs point processes with unbounded interaction}, series = {Journal of statistical physics}, volume = {179}, journal = {Journal of statistical physics}, number = {4}, publisher = {Springer}, address = {New York}, issn = {0022-4715}, doi = {10.1007/s10955-020-02559-3}, pages = {972 -- 996}, year = {2020}, abstract = {We construct marked Gibbs point processes in R-d under quite general assumptions. Firstly, we allow for interaction functionals that may be unbounded and whose range is not assumed to be uniformly bounded. Indeed, our typical interaction admits an a.s. finite but random range. Secondly, the random marks-attached to the locations in R-d-belong to a general normed space G. They are not bounded, but their law should admit a super-exponential moment. The approach used here relies on the so-called entropy method and large-deviation tools in order to prove tightness of a family of finite-volume Gibbs point processes. An application to infinite-dimensional interacting diffusions is also presented.}, language = {en} } @article{HoudebertZass2022, author = {Houdebert, Pierre and Zass, Alexander}, title = {An explicit Dobrushin uniqueness region for Gibbs point processes with repulsive interactions}, series = {Journal of applied probability / Applied Probability Trust}, volume = {59}, journal = {Journal of applied probability / Applied Probability Trust}, number = {2}, publisher = {Cambridge Univ. Press}, address = {Cambridge}, issn = {0021-9002}, doi = {10.1017/jpr.2021.70}, pages = {541 -- 555}, year = {2022}, abstract = {We present a uniqueness result for Gibbs point processes with interactions that come from a non-negative pair potential; in particular, we provide an explicit uniqueness region in terms of activity z and inverse temperature beta. The technique used relies on applying to the continuous setting the classical Dobrushin criterion. We also present a comparison to the two other uniqueness methods of cluster expansion and disagreement percolation, which can also be applied for this type of interaction.}, language = {en} } @article{Zass2020, author = {Zass, Alexander}, title = {A Gibbs point process of diffusions: Existence and uniqueness}, series = {Lectures in pure and applied mathematics}, journal = {Lectures in pure and applied mathematics}, number = {6}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-485-2}, issn = {2199-4951}, doi = {10.25932/publishup-47195}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-471951}, pages = {13 -- 22}, year = {2020}, language = {en} }