@article{WichuraBousquetOberhaenslietal.2010, author = {Wichura, Henry and Bousquet, Romain and Oberh{\"a}nsli, Roland and Strecker, Manfred and Trauth, Martin H.}, title = {Evidence for middleUocene uplift of the East African Plateau}, issn = {0091-7613}, doi = {10.1130/G31022.1}, year = {2010}, abstract = {Cenozoic uplift of the East African Plateau has been associated with fundamental climatic and environmental changes in East Africa and adjacent regions. While this influence is widely accepted, the timing and the magnitude of plateau uplift have remained unclear. This uncertainty stems from the lack of datable, geomorphically meaningful reference horizons that could record surface uplift. Here, we document the existence of significant relief along the East African Plateau prior to rifting, as inferred from modeling the emplacement history of one of the longest terrestrial lava flows, the similar to 300-km-long Yatta phonolite flow in Kenya. This 13.5 Ma lava flow originated on the present-day eastern Kenya Rift flank, and utilized a riverbed that once routed runoff from the eastern rim of the plateau. Combining an empirical viscosity model with subsequent cooling and using the Yatta lava flow geometry and underlying paleotopography (slope angle), we found that the prerift slope was at least 0.2 degrees, suggesting that the lava flow originated at a minimum elevation of 1400 m. Hence, high paleotopography in the Kenya Rift region must have existed by at least 13.5 Ma. We infer from this that middle Miocene uplift occurred, which coincides with the two-step expansion of grasslands, as well as important radiation and speciation events in tropical Africa.}, language = {en} } @article{DuesterhoeftBousquetWichuraetal.2012, author = {D{\"u}sterh{\"o}ft, Erik and Bousquet, Romain and Wichura, Henry and Oberh{\"a}nsli, Roland}, title = {Anorogenic plateau formation The importance of density changes in the lithosphere}, series = {Journal of geophysical research : Solid earth}, volume = {117}, journal = {Journal of geophysical research : Solid earth}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9313}, doi = {10.1029/2011JB009007}, pages = {13}, year = {2012}, abstract = {Away from active plate boundaries the relationships between spatiotemporal variations in density and geothermal gradient are important for understanding the evolution of topography in continental interiors. In this context the classic concept of the continental lithosphere as comprising three static layers of different densities (upper crust, lower crust, and upper mantle) is not adequate to assess long-term changes in topography and relief in regions associated with pronounced thermal anomalies in the mantle. We have therefore developed a one-dimensional model, which is based on thermodynamic equilibrium assemblage computations and deliberately excludes the effects of melting processes like intrusion or extrusions. Our model calculates the "metamorphic density" of rocks as a function of pressure, temperature, and chemical composition. It not only provides a useful tool for quantifying the influence of petrologic characteristics on density, but also allows the modeled "metamorphic" density to be adjusted to variable geothermal gradients and applied to different geodynamic environments. We have used this model to simulate a scenario in which the lithosphere-asthenosphere boundary is subjected to continuous heating over a long period of time (130 Ma), and demonstrate how an anorogenic plateau with an elevation of 1400 m can be formed solely as a result of heat transfer within the continental lithosphere. Our results show that, beside dynamic topography (of asthenospheric origin), density changes within the lithosphere have an important impact on the evolution of anorogenic plateaus.}, language = {en} } @article{WichuraJacobsLinetal.2015, author = {Wichura, Henry and Jacobs, Louis L. and Lin, Andrew and Polcyn, Michael J. and Manthi, Fredrick K. and Winkler, Dale A. and Strecker, Manfred and Clemens, Matthew}, title = {A 17-My-old whale constrains onset of uplift and climate change in east Africa}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {112}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {13}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1421502112}, pages = {3910 -- 3915}, year = {2015}, abstract = {Timing and magnitude of surface uplift are key to understanding the impact of crustal deformation and topographic growth on atmospheric circulation, environmental conditions, and surface processes. Uplift of the East African Plateau is linked to mantle processes, but paleoaltimetry data are too scarce to constrain plateau evolution and subsequent vertical motions associated with rifting. Here, we assess the paleotopographic implications of a beaked whale fossil (Ziphiidae) from the Turkana region of Kenya found 740 km inland from the present-day coastline of the Indian Ocean at an elevation of 620 m. The specimen is similar to 17 My old and represents the oldest derived beaked whale known, consistent with molecular estimates of the emergence of modern straptoothed whales (Mesoplodon). The whale traveled from the Indian Ocean inland along an eastward-directed drainage system controlled by the Cretaceous Anza Graben and was stranded slightly above sea level. Surface uplift from near sea level coincides with paleoclimatic change from a humid environment to highly variable and much drier conditions, which altered biotic communities and drove evolution in east Africa, including that of primates.}, language = {en} }