@article{Sunna2010, author = {Sunna, Anwar}, title = {Modular organisation and functional analysis of dissected modular beta-mannanase CsMan26 from Caldicellulosiruptor Rt8B.4}, issn = {0175-7598}, doi = {10.1007/s00253-009-2242-y}, year = {2010}, abstract = {CsMan26 from Caldicellulosiruptor strain Rt8.B4 is a modular beta-mannanase consisting of two N-terminal family 27 carbohydrate-binding modules (CBMs), followed by a family 35 CBM and a family 26 glycoside hydrolase catalytic module (mannanase). A functional dissection of the full-length CsMan26 and a comprehensive characterisation of the truncated derivatives were undertaken to evaluate the role of the CBMs. Limited proteolysis was used to define biochemically the boundaries of the different structural modules in CsMan26. The full-length CsMan26 and three truncated derivatives were produced in Escherichia coli, purified and characterised. The systematic removal of the CBMs resulted in a decrease in the optimal temperature for activity and in the overall thermostability of the derivatives. Kinetic experiments indicated that the presence of the mannan-specific family 27 CBMs increased the affinity of the enzyme towards the soluble galactomannan substrate but this was accompanied by lower catalytic efficiency. The full-length CsMan26 and its truncated derivatives were unable to hydrolyse mannooligosaccharides with degree of polymerisation (DP) of three or less. The major difference in the hydrolysis pattern of larger mannooligosaccharides (DP > 3) by the derivatives was determined by their abilities to further hydrolyse the intermediate sugar mannotetraose.}, language = {en} } @article{GibbsReevesSunnaetal.2004, author = {Gibbs, Moreland D. and Reeves, Rosalind A. and Sunna, Anwar and Bergquist, Peter L.}, title = {A yeast intron as a translational terminator in a plasmid shuttle vector}, issn = {1567-1356}, year = {2004}, abstract = {Plasmid shuttle vectors that contain both prokaryotic (Escherichia coli) and eukaryotic origins of replication are routinely used in molecular biology since E coli is generally the organism of choice for manipulation of recombinant DNA. Initial transformation of the shuttle vector into E coli allows production of microgram quantities of DNA suitable for transformation of low-transformationefficiency hosts. A shuttle/expression vector for the yeast Kluyveromyces lactis, pCWK1, allows recombinant protein fused to the killer toxin signal sequence to be secreted to the medium. The heterologous genes are transcribed under the control of the K lactis LAC4 promoter, which is tightly regulated in K lactis. However, in E coli the LAC4 promoter functions constitutively, and as a result, uncontrolled transcription and translation of genes that are toxic in E coli can result in cell death, and subsequent failure to recover intact E. coli transformants. We have constructed and tested a modified shuttle vector that contains a K lactis ribosomal intron that acts as a translational terminator in E coli, preventing or reducing the expression of recombinant proteins and avoiding toxicity. When transcribed in K lactis, the intron is spliced from the mRNA allowing the translation of intact full- length, active recombinant gene product. (C) 2003 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved}, language = {en} } @article{SunnaBergquist2003, author = {Sunna, Anwar and Bergquist, Peter L.}, title = {A gene encoding a novel extremely thermostable 1,4-beta-xylanase isolated directly from an environmental DNA sample}, year = {2003}, abstract = {Small-subunit (SSU) rRNA genes (rDNA) were amplified by PCR from a hot pool environmental DNA sample using Bacteria- or Archaea-specific rDNA primers. Unique rDNA types were identified by restriction fragment length polymorphism (RFLP) analysis and representative sequences were determined. Family 10 glycoside hydrolase consensus PCR primers were used to explore the occurrence and diversity of xylanase genes in the hot pool environmental DNA sample. Partial sequences for three different xylanases were obtained and genomic walking PCR (GWPCR), in combination with nested primer pairs, was used to obtained a unique 1,741-bp nucleotide sequence. Analysis of this sequence identified a putative XynA protein encoded by the xynA open reading frame. The single module novel xylanase shared sequence similarity to the family 10 glycoside hydrolases. The purified recombinant enzyme, XynA expressed in E. coli exhibited optimum activity at 100 degrees C and pH 6.0, and was extremely thermostable at 90 degrees C. The enzyme showed high specificity toward different xylans and xylooligosaccharides.}, language = {en} }