@article{SchnitzlerReckendorfPinzoneetal.2018, author = {Schnitzler, Joseph G. and Reckendorf, Anja and Pinzone, Marianna and Autenrieth, Marijke and Tiedemann, Ralph and Covaci, Adrian and Malarvannan, Govindan and Ruser, Andreas and Das, Krishna and Siebert, Ursula}, title = {Supporting evidence for PCB pollution threatening global killer whale population}, series = {Aquatic Toxicology}, volume = {206}, journal = {Aquatic Toxicology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0166-445X}, doi = {10.1016/j.aquatox.2018.11.008}, pages = {102 -- 104}, year = {2018}, abstract = {A recent Science report predicted the global killer whale population to collapse due to PCB pollution. Here we present empirical evidence, which supports and extends the reports' statement. In 2016, a neonate male killer whale stranded on the German island of Sylt. Neonatal attributes indicated an age of at least 3 days. The stomach contained ∼20 mL milk residue and no pathologies explaining the cause of death could be detected. Blubber samples presenting low lipid concentrations were analysed for persistent organic pollutants. Skin samples were collected for genotyping of the mitochondrial control region. The blubber PCB concentrations were very high [SPCBs, 225 mg/kg lipid weight (lw)], largely exceeding the PCB toxicity thresholds reported for the onset of immunosuppression [9 mg/kg lw ∑PCB] and for severe reproductive impairment [41 mg/kg lw ∑PCB] reported for marine mammals. Additionally, this individual showed equally high concentrations in p,p'-DDE [226 mg/kg lw], PBDEs [5 mg/kg lw] and liver mercury levels [1.1 μg/g dry weight dw]. These results suggest a high placental transfer of pollutants from mother to foetus. Consequently, blubber and plasma PCB concentrations and calf mortality rates are both high in primiparous females. With such high pollutant levels, this neonate had poor prerequisites for survival. The neonate belonged to Ecotype I (generalist feeder) and carried the mitochondrial haplotype 35 present in about 16\% of the North Atlantic killer whale from or close to the North Sea. The relevance of this data becomes apparent in the UK West Coast Community, the UK's only residentorca population, which is currently composed of only eight individuals (each four males and females) and no calves have been reported over the last 19 years.Despite worldwide regulations, PCBs persist in the environment and remain a severe concern for killer whale populations, placing calves at high risk due to the mother-offspring PCB-transfer resulting in a high toxicological burden of the neonates.}, language = {en} } @article{LahTrenseBenkeetal.2016, author = {Lah, Ljerka and Trense, Daronja and Benke, Harald and Berggren, Per and Gunnlaugsson, Porvaldur and Lockyer, Christina and {\"O}zt{\"u}rk, Ayaka and {\"O}zt{\"u}rk, Bayram and Pawliczka, Iwona and Roos, Anna and Siebert, Ursula and Skora, Krzysztof and Vikingsson, Gisli and Tiedemann, Ralph}, title = {Spatially Explicit Analysis of Genome-Wide SNPs Detects Subtle Population Structure in a Mobile Marine Mammal, the Harbor Porpoise}, series = {PLoS one}, volume = {11}, journal = {PLoS one}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0162792}, pages = {23}, year = {2016}, abstract = {The population structure of the highly mobile marine mammal, the harbor porpoise (Phocoena phocoena), in the Atlantic shelf waters follows a pattern of significant isolation-by-distance. The population structure of harbor porpoises from the Baltic Sea, which is connected with the North Sea through a series of basins separated by shallow underwater ridges, however, is more complex. Here, we investigated the population differentiation of harbor porpoises in European Seas with a special focus on the Baltic Sea and adjacent waters, using a population genomics approach. We used 2872 single nucleotide polymor-phisms (SNPs), derived from double digest restriction-site associated DNA sequencing (ddRAD-seq), as well as 13 microsatellite loci and mitochondrial haplotypes for the same set of individuals. Spatial principal components analysis (sPCA), and Bayesian clustering on a subset of SNPs suggest three main groupings at the level of all studied regions: the Black Sea, the North Atlantic, and the Baltic Sea. Furthermore, we observed a distinct separation of the North Sea harbor porpoises from the Baltic Sea populations, and identified splits between porpoise populations within the Baltic Sea. We observed a notable distinction between the Belt Sea and the Inner Baltic Sea sub-regions. Improved delineation of harbor porpoise population assignments for the Baltic based on genomic evidence is important for conservation management of this endangered cetacean in threatened habitats, particularly in the Baltic Sea proper. In addition, we show that SNPs outperform microsatellite markers and demonstrate the utility of RAD-tags from a relatively small, opportunistically sampled cetacean sample set for population diversity and divergence analysis.}, language = {en} } @article{LahTrenseBenkeetal.2016, author = {Lah, Ljerka and Trense, Daronja and Benke, Harald and Berggren, Per and Gunnlaugsson, Þorvaldur and Lockyer, Christina and {\"O}zt{\"u}rk, Ayaka and {\"O}zt{\"u}rk, Bayram and Pawliczka, Iwona and Roos, Anna and Siebert, Ursula and Sk{\´o}ra, Krzysztof and V{\´i}kingsson, G{\´i}sli and Tiedemann, Ralph}, title = {Spatially Explicit Analysis of Genome-Wide SNPs Detects Subtle Population Structure in a Mobile Marine Mammal, the Harbor Porpoise}, series = {PLoS one}, volume = {11}, journal = {PLoS one}, number = {10}, publisher = {PLoS}, address = {Lawrence, Kan.}, issn = {1932-6203}, doi = {10.1371/journal.pone.0162792}, pages = {23 Seiten}, year = {2016}, abstract = {The population structure of the highly mobile marine mammal, the harbor porpoise (Phocoena phocoena), in the Atlantic shelf waters follows a pattern of significant isolation-by-distance. The population structure of harbor porpoises from the Baltic Sea, which is connected with the North Sea through a series of basins separated by shallow underwater ridges, however, is more complex. Here, we investigated the population differentiation of harbor porpoises in European Seas with a special focus on the Baltic Sea and adjacent waters, using a population genomics approach. We used 2872 single nucleotide polymorphisms (SNPs), derived from double digest restriction-site associated DNA sequencing (ddRAD-seq), as well as 13 microsatellite loci and mitochondrial haplotypes for the same set of individuals. Spatial principal components analysis (sPCA), and Bayesian clustering on a subset of SNPs suggest three main groupings at the level of all studied regions: the Black Sea, the North Atlantic, and the Baltic Sea. Furthermore, we observed a distinct separation of the North Sea harbor porpoises from the Baltic Sea populations, and identified splits between porpoise populations within the Baltic Sea. We observed a notable distinction between the Belt Sea and the Inner Baltic Sea sub-regions. Improved delineation of harbor porpoise population assignments for the Baltic based on genomic evidence is important for conservation management of this endangered cetacean in threatened habitats, particularly in the Baltic Sea proper. In addition, we show that SNPs outperform microsatellite markers and demonstrate the utility of RAD-tags from a relatively small, opportunistically sampled cetacean sample set for population diversity and divergence analysis.}, language = {en} } @article{WiemannAndersenBerggrenetal.2010, author = {Wiemann, Annika and Andersen, Liselotte W. and Berggren, Per and Siebert, Ursula and Benke, Harald and Teilmann, Jonay and Lockyer, Christina and Pawliczka, Iwona and Skora, Krysztof and Roos, Aanna and Lyrholm, Thomas and Paulus, Kirsten B. and Ketmaier, Valerio}, title = {Mitochondrial Control Region and microsatellite analyses on harbour porpoise (Phocoena phocoena) unravel population differentiation in the Baltic Sea and adjacent waters}, issn = {1566-0621}, doi = {10.1007/s10592-009-0023-x}, year = {2010}, abstract = {The population status of the harbour porpoise (Phocoena phocoena) in the Baltic area has been a continuous matter of debate. Here we present the by far most comprehensive genetic population structure assessment to date for this region, both with regard to geographic coverage and sample size: 497 porpoise samples from North Sea, Skagerrak, Kattegat, Belt Sea, and Inner Baltic Sea were sequenced at the mitochondrial Control Region and 305 of these specimens were typed at 15 polymorphic microsatellite loci. Samples were stratified according to sample type (stranding vs. by- caught), sex, and season (breeding vs. non-breeding season). Our data provide ample evidence for a population split between the Skagerrak and the Belt Sea, with a transition zone in the Kattegat area. Among other measures, this was particularly visible in significant frequency shifts of the most abundant mitochondrial haplotypes. A particular haplotype almost absent in the North Sea was the most abundant in Belt Sea and Inner Baltic Sea. Microsatellites yielded a similar pattern (i.e., turnover in occurrence of clusters identified by STRUCTURE). Moreover, a highly significant association between microsatellite assignment and unlinked mitochondrial haplotypes further indicates a split between North Sea and Baltic porpoises. For the Inner Baltic Sea, we consistently recovered a small, but significant separation from the Belt Sea population. Despite recent arguments that separation should exceed a predefined threshold before populations shall be managed separately, we argue in favour of precautionary acknowledging the Inner Baltic porpoises as a separate management unit, which should receive particular attention, as it is threatened by various factors, in particular local fishery measures.}, language = {en} } @article{SchnitzlerPinzoneAutenriethetal.2018, author = {Schnitzler, Joseph G. and Pinzone, Marianna and Autenrieth, Marijke and van Neer, Abbo and IJsseldijk, Lonneke L. and Barber, Jonathan L. and Deaville, Rob and Jepson, Paul and Brownlow, Andrew and Schaffeld, Tobias and Thome, Jean-Pierre and Tiedemann, Ralph and Das, Krishna and Siebert, Ursula}, title = {Inter-individual differences in contamination profiles as tracer of social group association in stranded sperm whales}, series = {Scientific reports}, volume = {8}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-018-29186-z}, pages = {11}, year = {2018}, abstract = {Ecological and physiological factors lead to different contamination patterns in individual marine mammals. The objective of the present study was to assess whether variations in contamination profiles are indicative of social structures of young male sperm whales as they might reflect a variation in feeding preferences and/or in utilized feeding grounds. We used a total of 61 variables associated with organic compounds and trace element concentrations measured in muscle, liver, kidney and blubber gained from 24 sperm whales that stranded in the North Sea in January and February 2016. Combining contaminant and genetic data, there is evidence for at least two cohorts with different origin among these stranded sperm whales; one from the Canary Island region and one from the northern part of the Atlantic. While genetic data unravel relatedness and kinship, contamination data integrate over areas, where animals occured during their lifetime. Especially in long-lived animals with a large migratory potential, as sperm whales, contamination data may carry highly relevant information about aggregation through time and space.}, language = {en} } @article{GrossClausWohlseinetal.2020, author = {Gross, Stephanie and Claus, Philip and Wohlsein, Peter and Kesselring, Tina and Lakemeyer, Jan and Reckendorf, Anja and Roller, Marco and Tiedemann, Ralph and Siebert, Ursula}, title = {Indication of lethal interactions between a solitary bottlenose dolphin (Tursiops truncatus) and harbor porpoises (Phocoena phocoena) in the German Baltic Sea}, series = {BMC zoology}, volume = {5}, journal = {BMC zoology}, number = {1}, publisher = {BMC}, address = {London}, issn = {2056-3132}, doi = {10.1186/s40850-020-00061-7}, pages = {9}, year = {2020}, abstract = {Background Aggressive interactions between bottlenose dolphins (Tursiops truncatus) and harbor porpoises (Phocoena phocoena) have been reported in different parts of the world since the late 1990s. In the Baltic Sea, harbor porpoises are the only native cetacean species, while bottlenose dolphins may appear there temporarily. In the fall of 2016, a solitary male photo-identified bottlenose dolphin stayed in the German Baltic Sea of Schleswig-Holstein for 3 months. During that time, the necropsies of the stranded harbor porpoises revealed types of trauma of varying degrees in six animals, which is unusual in this area. The purpose of this study was to determine if the appearance of the bottlenose dolphin could be linked to the trauma of the harbor porpoise carcasses. Results Pathological findings in these animals included subcutaneous, thoracic and abdominal hemorrhages, multiple, mainly bilateral, rib fractures, and one instance of lung laceration. These findings correspond with the previously reported dolphin-caused injuries in other regions. Moreover, public sighting reports showed a spatial and temporal correlation between the appearance of the dolphin and the stranding of fatally injured harbor porpoises. Conclusion Despite the fact that no attack has been witnessed in German waters to date, our findings indicate the first record of lethal interactions between a bottlenose dolphin and harbor porpoises in the German Baltic Sea. Furthermore, to our knowledge, this is the first report of porpoise aggression by a socially isolated bottlenose dolphin.}, language = {en} }