@article{PrestelMoeller2016, author = {Prestel, Andreas and M{\"o}ller, Heiko Michael}, title = {Spatio-temporal control of cellular uptake achieved by photoswitchable cell-penetrating peptides}, series = {Chemical communications}, volume = {52}, journal = {Chemical communications}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1359-7345}, doi = {10.1039/c5cc06848g}, pages = {701 -- 704}, year = {2016}, abstract = {The selective uptake of compounds into specific cells of interest is a major objective in cell biology and drug delivery. By incorporation of a novel, thermostable azobenzene moiety we generated peptides that can be switched optically between an inactive state and an active, cell-penetrating state with excellent spatio-temporal control.}, language = {en} } @article{PrestelMoeller2015, author = {Prestel, Andreas and M{\"o}ller, Heiko Michael}, title = {Spatio-temporal control of cellular uptake achieved by photoswitchable cell-penetrating peptides}, series = {Chemical communications : ChemComm}, journal = {Chemical communications : ChemComm}, number = {52}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1364-548X}, doi = {10.1039/C5CC06848G}, pages = {701 -- 704}, year = {2015}, abstract = {The selective uptake of compounds into specific cells of interest is a major objective in cell biology and drug delivery. By incorporation of a novel, thermostable azobenzene moiety we generated peptides that can be switched optically between an inactive state and an active, cell-penetrating state with excellent spatio-temporal control.}, language = {en} } @article{KastlBraunPresteletal.2015, author = {Kastl, Johanna and Braun, Joachim and Prestel, Andreas and M{\"o}ller, Heiko Michael and Huhn, Thomas and Mayer, Thomas U.}, title = {Mad2 Inhibitor-1 (M2I-1): A Small Molecule Protein-Protein Interaction Inhibitor Targeting the Mitotic Spindle Assembly Checkpoint}, series = {ACS chemical biology}, volume = {10}, journal = {ACS chemical biology}, number = {7}, publisher = {American Chemical Society}, address = {Washington}, issn = {1554-8929}, doi = {10.1021/acschembio.5b00121}, pages = {1661 -- 1666}, year = {2015}, abstract = {The genetic integrity of each organism depends on the faithful segregation of its genome during mitosis. To meet this challenge, a cellular surveillance mechanism, termed the spindle assembly checkpoint (SAC), evolved that monitors the correct attachment of chromosomes and blocks progression through mitosis if corrections are needed. While the central role of the SAC for genome integrity is well established, its functional dissection has been hampered by the limited availability of appropriate small molecule inhibitors. Using a fluorescence polarization-based screen, we identify Mad2 inhibitor-1 (M2I-1), the first small molecule inhibitor targeting the binding of Mad2 to Cdc20, an essential protein-protein interaction (PPI) within the SAC. Based on computational and biochemical analyses, we propose that M2I-1 disturbs conformational dynamics of Mad2 critical for complex formation with Cdc20. Cellular studies revealed that M2I-1 weakens the SAC response, indicating that the compound might be active in cells. Thus, our study identifies the SAC specific complex formation between Mad2 and Cdc20 as a protein-protein interaction that can be targeted by small molecules.}, language = {en} } @article{HolertYuecelJagmannetal.2016, author = {Holert, Johannes and Y{\"u}cel, Onur and Jagmann, Nina and Prestel, Andreas and M{\"o}ller, Heiko Michael and Philipp, Bodo}, title = {Identification of bypass reactions leading to the formation of one central steroid degradation intermediate in metabolism of different bile salts in Pseudomonas sp strain Chol1}, series = {Environmental microbiology}, volume = {18}, journal = {Environmental microbiology}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1462-2912}, doi = {10.1111/1462-2920.13192}, pages = {3373 -- 3389}, year = {2016}, language = {en} }