@article{OesterheltSchmaelzlinSchmittetal.2007, author = {Oesterhelt, Christine and Schm{\"a}lzlin, Elmar and Schmitt, J{\"u}rgen M. and Lokstein, Heiko}, title = {Regulation of photosynthesis in the unicellular acidophilic red alga Galdieria sulphuraria}, doi = {10.1111/j.1365-313X.2007.03159.x}, year = {2007}, abstract = {Extremophilic organisms are gaining increasing interest because of their unique metabolic capacities and great biotechnological potential. The unicellular acidophilic and mesothermophilic red alga Galdieria sulphuraria (074G) can grow autotrophically in light as well as heterotrophically in the dark. In this paper, the effects of externally added glucose on primary and secondary photosynthetic reactions are assessed to elucidate mixotrophic capacities of the alga. Photosynthetic O-2 evolution was quantified in an open system with a constant Supply Of CO2 to avoid rapid volatilization of dissolved inorganic carbon at low pH levels. In the presence of glucose, O-2 evolution was repressed even in illuminated cells. Ratios of variable to maximum chlorophyll fluorescence (F-v/F-m) and 77 Kfluorescence spectra indicated a reduced photochemical efficiency of photosystem II. The results were corroborated by strongly reduced levels of the photosystem 11 reaction centre protein D1. The downregulation of primary photosynthetic reactions was accompanied by reduced levels of the Calvin Cycle enzyme ribu lose-1,5-bisphosphate carboxylaselfoxygenase (Rubisco). Both effects depended on functional sugar uptake and are thus initiated by intracellular rather than extracellular glucose. Following glucose depletion, photosynthetic O-2 evolution of illuminated cells commenced after 15 h and Rubisco levels again reached the levels of autotrophic cells. It is concluded that true mixotrophy, involving electron transport across both photosystems, does not occur in G. sulphuraria 074G, and that heterotrophic growth is favoured over autotrophic growth if sufficient organic carbon is available.}, language = {en} } @article{WeberOesterheltGrossetal.2004, author = {Weber, Andreas P. M. and Oesterhelt, Christine and Gross, Wolfgang and Br{\"a}utigam, Andrea and Imboden, Lori and Krassovskaya, Inga and Linka, Nicole and Truchina, Julia and Schneidereit, J{\"o}rg and Voll, Lars and Zimmermann, Marc and Jamai, Aziz and Riekhof, Wayne and Yu, Bin and Garavito, Michael R. and Benning, Christoph}, title = {EST-analysis of the thermo-acidophilic red microalga Galdieria sulphuraria reveals potential for lipid A biosynthesis and unveils the pathway of carbon export from rhodoplasts}, year = {2004}, abstract = {When we think of extremophiles, organisms adapted to extreme environments, prokaryotes come to mind first. However, the unicellular red micro-alga Galdieria sulphuraria (Cyanidiales) is a eukaryote that can represent up to 90\% of the biomass in extreme habitats such as hot sulfur springs with pH values of 0-4 and temperatures of up to 56 degreesC. This red alga thrives autotrophically as well as heterotrophically on more than 50 different carbon sources, including a number of rare sugars and sugar alcohols. This biochemical versatility suggests a large repertoire of metabolic enzymes, rivaled by few organisms and a potentially rich source of thermo-stable enzymes for biotechnology. The temperatures under which this organism carries out photosynthesis are at the high end of the range for this process, making G. sulphuraria a valuable model for physical studies on the photosynthetic apparatus. In addition, the gene sequences of this living fossil reveal much about the evolution of modern eukaryotes. Finally, the alga tolerates high concentrations of toxic metal ions such as cadmium, mercury, aluminum, and nickel, suggesting potential application in bioremediation. To begin to explore the unique biology of G. sulphuraria, 5270 expressed sequence tags from two different cDNA libraries have been sequenced and annotated. Particular emphasis has been placed on the reconstruction of metabolic pathways present in this organism. For example, we provide evidence for (i) a complete pathway for lipid A biosynthesis; (ii) export of triose-phosphates from rhodoplasts; (iii) and absence of eukaryotic hexokinases. Sequence data and additional information are available at http://genomics.msu.edu/galdieria}, language = {en} } @article{BarbierOesterheltLarsonetal.2005, author = {Barbier, Guillaume and Oesterhelt, Christine and Larson, Matthew D. and Halgren, Robert G. and Wilkerson, Curtis and Garavito, Michael R. and Benning, Christoph and Weber, Andreas P. M.}, title = {Comparative genomics of two closely related unicellular thermo-acidophilic red algae, Galdieria sulphuraria and Cyanidioschyzon merolae, reveals the molecular basis of the metabolic flexibility of Galdieria sulphuraria and sigant differences in carbohydrate metabolism of both algae}, year = {2005}, abstract = {Unicellular algae serve as models for the study and discovery of metabolic pathways, for the functional dissection of cell biological processes such as organellar division and cell motility, and for the identification of novel genes and gene functions. The recent completion of several algal genome sequences and expressed sequence tag collections and the establishment of nuclear and organellar transformation methods has opened the way for functional genomics approaches using algal model systems. The thermo-acidophilic unicellular red alga Galdieria sulphuraria represents a particularly interesting species for a genomics approach owing to its extraordinary metabolic versatility such as heterotrophic and mixotrophic growth on more than 50 different carbon sources and its adaptation to hot acidic environments. However, the ab initio prediction of genes required for unknown metabolic pathways from genome sequences is not trivial. A compelling strategy for gene identification is the comparison of similarly sized genomes of related organisms with different physiologies. Using this approach, candidate genes were identified that are critical to the metabolic versatility of Galdieria. Expressed sequence tags and high-throughput genomic sequence reads covering >70\% of the G. sulphuraria genome were compared to the genome of the unicellular, obligate photoautotrophic red alga Cyanidioschyzon merolae. More than 30\% of the Galdieria sequences did not relate to any of the Cyandioschyzon genes. A closer inspection of these sequences revealed a large number of membrane transporters and enzymes of carbohydrate metabolism that are unique to Galdieria. Based on these data, it is proposed that genes involved in the uptake of reduced carbon compounds and enzymes involved in their metabolism are crucial to the metabolic flexibility of G. sulphuraria}, language = {en} }