@article{WichmannJeltschDeanetal.2002, author = {Wichmann, Matthias and Jeltsch, Florian and Dean, Richard and Moloney, Kirk A. and Wissel, Christian}, title = {Weather does matter : simulating population dynamics of tawny eagle (Aquila rapax) under various rainfall scenarios}, year = {2002}, language = {en} } @article{EccardDeanWichmannetal.2006, author = {Eccard, Jana and Dean, W. Richard J. and Wichmann, Matthias and Huttunen, S. M and Eskelinen, Eeva-Liisa and Moloney, Kirk A. and Jeltsch, Florian}, title = {Use of large Acacia trees by the cavity dwelling Black-tailed Tree Rat in the southern Kalahari}, issn = {0140-1963}, doi = {10.1016/j.jaridenv.2005.06.019}, year = {2006}, abstract = {Recent extensive harvesting of large, often dead Acacia trees in and savanna of southern Africa is cause for concern about the conservation status of the arid savanna and its animal community. We mapped vegetation and nests of the Black-tailed Tree Rat Thallomy's nigricauda to assess the extent to which the rats depend on particular tree species and on the existence of dead, standing trees. The study was conducted in continuous Acacia woodland on the southern and eastern edge of the Kalahari, South Africa. Trees in which there were tree rat nests were compared with trees of similar size and vigour to identify the characteristics of nest sites. Spatial analysis of tree rat distribution was conducted using Ripley's-L function. We found that T nigricauda was able to utilize all available tree species, as long as trees were large and old enough so that cavities were existing inside the stem. The spatial distribution of nest trees did not show clumping at the investigated scale, and we therefore reject the notion of the rats forming colonies when inhabiting continuous woodlands. The selection of a particular tree as a nest site was furthermore depending on the close proximity of the major food plant, Acacia mellifera. This may limit the choice of suitable nest sites. since A. mellifera was less likely to grow within a vegetation patch containing a large trees than in patches without large trees.}, language = {en} } @article{JeltschMoloneySchurretal.2008, author = {Jeltsch, Florian and Moloney, Kirk A. and Schurr, Frank Martin and K{\"o}chy, Martin and Schwager, Monika}, title = {The state of plant population modelling in light of environmental change}, issn = {1433-8319}, doi = {10.1016/j.ppees.2007.11.004}, year = {2008}, abstract = {Plant population modelling has been around since the 1970s, providing a valuable approach to understanding plant ecology from a mechanistic standpoint. It is surprising then that this area of research has not grown in prominence with respect to other approaches employed in modelling plant systems. In this review, we provide an analysis of the development and role of modelling in the field of plant population biology through an exploration of where it has been, where it is now and, in our opinion, where it should be headed. We focus, in particular, on the role plant population modelling could play in ecological forecasting, an urgent need given current rates of regional and global environmental change. We suggest that a critical element limiting the current application of plant population modelling in environmental research is the trade-off between the necessary resolution and detail required to accurately characterize ecological dynamics pitted against the goal of generality, particularly at broad spatial scales. In addition to suggestions how to overcome the current shortcoming of data on the process-level we discuss two emerging strategies that may offer a way to overcome the described limitation: (1) application of a modern approach to spatial scaling from local processes to broader levels of interaction and (2) plant functional-type modelling. Finally we outline what we believe to be needed in developing these approaches towards a 'science of forecasting'.}, language = {en} } @article{JeltschMoloney2001, author = {Jeltsch, Florian and Moloney, Kirk A.}, title = {Spatially-explicit vegetation models : what have we learned ?}, year = {2001}, language = {en} } @article{MoloneyJeltsch2008, author = {Moloney, Kirk A. and Jeltsch, Florian}, title = {Space matters : novel developments in plant ecology through spatial modelling}, issn = {1433-8319}, doi = {10.1016/j.ppees.2007.12.002}, year = {2008}, language = {en} } @article{JeltschWeberMoloney2000, author = {Jeltsch, Florian and Weber, G. E. and Moloney, Kirk A.}, title = {Simulated long-term vegetation response to alternative stocking strategies in savanna rangelands}, year = {2000}, language = {en} } @article{MoloneyHolzapfelTielboergeretal.2009, author = {Moloney, Kirk A. and Holzapfel, Claus and Tielb{\"o}rger, Katja and Jeltsch, Florian and Schurr, Frank Martin}, title = {Rethinking the common garden in invasion research}, issn = {1433-8319}, doi = {10.1016/j.ppees.2009.05.002}, year = {2009}, abstract = {In common garden experiments, a number of genotypes are raised in a common environment in order to quantify the genetic component of phenotypic variation. Common gardens are thus ideally suited for disentangling how genetic and environmental factors contribute to the success of invasive species in their new non-native range. Although common garden experiments are increasingly employed in the study of invasive species, there has been little discussion about how these experiments should be designed for greatest utility. We argue that this has delayed progress in developing a general theory of invasion biology. We suggest a minimum optimal design (MOD) for common garden studies that target the ecological and evolutionary processes leading to phenotypic differentiation between native and invasive ranges. This involves four elements: (A) multiple, strategically sited garden locations, involving at the very least four gardens (2 in the native range and 2 in the invaded range); (B) careful consideration of the genetic design of the experiment; (C) standardization of experimental protocols across all gardens; and (D) care to ensure the biosafety of the experiment. Our understanding of the evolutionary ecology of biological invasions will be greatly enhanced by common garden studies, if and only if they are designed in a more systematic fashion, incorporating at the very least the MOD suggested here.}, language = {en} } @article{JeltschTewsMoloney2004, author = {Jeltsch, Florian and Tews, J{\"o}rg and Moloney, Kirk A.}, title = {Modelling seed dispersal in a variable environment : a case study of the fleshy-fruited savanna shrub Grewia flava}, year = {2004}, abstract = {In ecology much attention has been paid towards seed dispersal of fleshy-fruited plants, however, knowledge is lacking about the Iona-term demographic consequences of variation in dispersal distance and fruit removal rate, particularly given the natural variability of the environment the organism lives in. In this study we used a spatially explicit, two-level stochastic computer model to simulate population dynamics of a fleshy-fruited shrub living in the sub-canopy of solitary savanna trees. On the landscape level we implemented three realistic scenarios of savanna landscape dynamics for a period of 500 years with equal inter-annual mean of environmental variables. The first scenario is representative of a relatively constant environment with normal variability in precipitation, constant tree density and random tree recruitment pattern. The second and third scenarios represent positive auto-correlated, cyclic patterns with alternating phases of tree cover increase and decrease corresponding with favorable and unfavorable rain phases. Our simulation experiments show that when fruit removal rate is extremely low, population persistence is enhanced under relatively constant rain conditions, while alternating rain phases of the cyclic scenarios lead to a significant population decrease. This result confirms previous findings that periodically fluctuating environments may increase local extinction risk. However, when dispersal distance is a limiting factor (whilst removal rate was sufficiently high), tree clumps typically forming in wet phases of both cyclic scenarios compensated for the negative effect of low dispersal distances, while the constant scenario with random tree pattern and larger inter-tree distances resulted in a significant population decline. (C) 2003 Elsevier B.V. All rights reserved}, language = {en} } @article{JeltschWichmannDeanetal.2003, author = {Jeltsch, Florian and Wichmann, Matthias and Dean, W. R. J. and Moloney, Kirk A. and Wissel, Christian}, title = {Implications of climate change for the persistence of raptors in arid savannah}, year = {2003}, language = {en} } @article{JeltschWichmannJohstetal.2003, author = {Jeltsch, Florian and Wichmann, Matthias and Johst, J. and Moloney, Kirk A. and Wissel, Christian}, title = {Extinction risk in periodically fluctuating environments}, year = {2003}, language = {en} } @article{WichmannJeltschDeanetal.2002, author = {Wichmann, Matthias and Jeltsch, Florian and Dean, Richard and Moloney, Kirk A. and Wissel, Christian}, title = {Does climate change in arid savanna affect the population persistence of raptors?}, year = {2002}, language = {en} } @article{SchiffersSchurrTielboergeretal.2008, author = {Schiffers, Katja and Schurr, Frank Martin and Tielb{\"o}rger, Katja and Urbach, Carsten and Moloney, Kirk A. and Jeltsch, Florian}, title = {Dealing with virtual aggregation : a new index for analysing heterogeneous point patterns}, issn = {0906-7590}, doi = {10.1111/j.0906-7590.2008.05374.x}, year = {2008}, language = {en} } @article{JeltschMoloneySchwageretal.2011, author = {Jeltsch, Florian and Moloney, Kirk A. and Schwager, Monika and K{\"o}rner, Katrin and Blaum, Niels}, title = {Consequences of correlations between habitat modifications and negative impact of climate change for regional species survival}, series = {Agriculture, ecosystems \& environment : an international journal for scientific research on the relationship of agriculture and food production to the biosphere}, volume = {145}, journal = {Agriculture, ecosystems \& environment : an international journal for scientific research on the relationship of agriculture and food production to the biosphere}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0167-8809}, doi = {10.1016/j.agee.2010.12.019}, pages = {49 -- 58}, year = {2011}, abstract = {While several empirical and theoretical studies have clearly shown the negative effects of climate or landscape changes on population and species survival only few of them addressed combined and correlated consequences of these key environmental drivers. This also includes positive landscape changes such as active habitat management and restoration to buffer the negative effects of deteriorating climatic conditions. In this study, we apply a conceptual spatial modelling approach based on functional types to explore the effects of both positive and negative correlations between changes in habitat and climate conditions on the survival of spatially structured populations. We test the effect of different climate and landscape change scenarios on four different functional types that represent a broad spectrum of species characterised by their landscape level carrying capacity, the local population turnover rates at the patch level (K-strategies vs. r-strategies) and dispersal characterstics. As expected, simulation results show that correlated landscape and climatic changes can accelerate (in case of habitat loss or degradation) or slow down (in case of habitat gain or improvement) regional species extinction. However, the strength of the combined changes depends on local turnover at the patch level, the overall landscape capacity of the species, and its specific dispersal characteristics. Under all scenarios of correlated changes in habitat and climate conditions we found the highest sensitivity for functional types representing species with a low landscape capacity but a high population growth rate and a strong density regulation causing a high turnover at the local patch level. The relative importance of habitat loss or habitat degradation, in combination with climate deterioration, differed among the functional types. However, an increase in regional capacity revealed a similar response pattern: For all types, habitat improvement led to higher survival times than habitat gain, i.e. the establishment of new habitat patches. This suggests that improving local habitat quality at a regional scale is a more promising conservation strategy under climate change than implementing new habitat patches. This conceptual modelling study provides a general framework to better understand and support the management of populations prone to complex environmental changes.}, language = {en} }