@article{vanSoestAleluiaReisBaptistaetal.2021, author = {van Soest, Heleen L. and Aleluia Reis, Lara and Baptista, Luiz Bernardo and Bertram, Christoph and Despr{\´e}s, Jacques and Drouet, Laurent and den Elzen, Michel and Fragkos, Panagiotis and Fricko, Oliver and Fujimori, Shinichiro and Grant, Neil and Harmsen, Mathijs and Iyer, Gokul and Keramidas, Kimon and K{\"o}berle, Alexandre C. and Kriegler, Elmar and Malik, Aman and Mittal, Shivika and Oshiro, Ken and Riahi, Keywan and Roelfsema, Mark and van Ruijven, Bas and Schaeffer, Roberto and Silva Herran, Diego and Tavoni, Massimo and {\"U}nl{\"u}, Gamze and Vandyck, Toon and van Vuuren, Detlef P.}, title = {Global roll-out of comprehensive policy measures may aid in bridging emissions gap}, series = {Nature communications}, volume = {12}, journal = {Nature communications}, number = {1}, publisher = {Nature Publishing Group UK}, address = {London}, doi = {10.1038/s41467-021-26595-z}, pages = {10}, year = {2021}, abstract = {Closing the emissions gap between Nationally Determined Contributions (NDCs) and the global emissions levels needed to achieve the Paris Agreement's climate goals will require a comprehensive package of policy measures. National and sectoral policies can help fill the gap, but success stories in one country cannot be automatically replicated in other countries. They need to be adapted to the local context. Here, we develop a new Bridge scenario based on nationally relevant, short-term measures informed by interactions with country experts. These good practice policies are rolled out globally between now and 2030 and combined with carbon pricing thereafter. We implement this scenario with an ensemble of global integrated assessment models. We show that the Bridge scenario closes two-thirds of the emissions gap between NDC and 2 °C scenarios by 2030 and enables a pathway in line with the 2 °C goal when combined with the necessary long-term changes, i.e. more comprehensive pricing measures after 2030. The Bridge scenario leads to a scale-up of renewable energy (reaching 52\%-88\% of global electricity supply by 2050), electrification of end-uses, efficiency improvements in energy demand sectors, and enhanced afforestation and reforestation. Our analysis suggests that early action via good-practice policies is less costly than a delay in global climate cooperation.}, language = {en} } @article{BertramRiahiHilaireetal.2021, author = {Bertram, Christoph and Riahi, Keywan and Hilaire, J{\´e}r{\^o}me and Bosetti, Valentina and Drouet, Laurent and Fricko, Oliver and Malik, Aman and Nogueira, Larissa Pupo and van der Zwaan, Bob and van Ruijven, Bas and van Vuuren, Detlef P. and Weitzel, Matthias and Longa, Francesco Dalla and de Boer, Harmen-Sytze and Emmerling, Johannes and Fosse, Florian and Fragkiadakis, Kostas and Harmsen, Mathijs and Keramidas, Kimon and Kishimoto, Paul Natsuo and Kriegler, Elmar and Krey, Volker and Paroussos, Leonidas and Saygin, Deger and Vrontisi, Zoi and Luderer, Gunnar}, title = {Energy system developments and investments in the decisive decade for the Paris Agreement goals}, series = {Environmental research letters}, volume = {16}, journal = {Environmental research letters}, number = {7}, publisher = {IOP Publishing}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/ac09ae}, pages = {12}, year = {2021}, abstract = {The Paris Agreement does not only stipulate to limit the global average temperature increase to well below 2 °C, it also calls for 'making finance flows consistent with a pathway towards low greenhouse gas emissions'. Consequently, there is an urgent need to understand the implications of climate targets for energy systems and quantify the associated investment requirements in the coming decade. A meaningful analysis must however consider the near-term mitigation requirements to avoid the overshoot of a temperature goal. It must also include the recently observed fast technological progress in key mitigation options. Here, we use a new and unique scenario ensemble that limit peak warming by construction and that stems from seven up-to-date integrated assessment models. This allows us to study the near-term implications of different limits to peak temperature increase under a consistent and up-to-date set of assumptions. We find that ambitious immediate action allows for limiting median warming outcomes to well below 2 °C in all models. By contrast, current nationally determined contributions for 2030 would add around 0.2 °C of peak warming, leading to an unavoidable transgression of 1.5 °C in all models, and 2 °C in some. In contrast to the incremental changes as foreseen by current plans, ambitious peak warming targets require decisive emission cuts until 2030, with the most substantial contribution to decarbonization coming from the power sector. Therefore, investments into low-carbon power generation need to increase beyond current levels to meet the Paris goals, especially for solar and wind technologies and related system enhancements for electricity transmission, distribution and storage. Estimates on absolute investment levels, up-scaling of other low-carbon power generation technologies and investment shares in less ambitious scenarios vary considerably across models. In scenarios limiting peak warming to below 2 °C, while coal is phased out quickly, oil and gas are still being used significantly until 2030, albeit at lower than current levels. This requires continued investments into existing oil and gas infrastructure, but investments into new fields in such scenarios might not be needed. The results show that credible and effective policy action is essential for ensuring efficient allocation of investments aligned with medium-term climate targets.}, language = {en} } @article{MalikBertramKriegleretal.2021, author = {Malik, Aman and Bertram, Christoph and Kriegler, Elmar and Luderer, Gunnar}, title = {Climate policy accelerates structural changes in energy employment}, series = {Energy policy}, volume = {159}, journal = {Energy policy}, publisher = {Elsevier Science}, address = {Amsterdam}, issn = {0301-4215}, doi = {10.1016/j.enpol.2021.112642}, pages = {8}, year = {2021}, abstract = {The employment implications of decarbonizing the energy sector have received far less attention than the technology dimension of the transition, although being of critical importance to policymakers. In this work, we adapt a methodology based on employment factors to project future changes in quantity and composition of direct energy supply jobs for two scenarios - (1) relatively weak emissions reductions as pledged in the nationally determined contributions (NDC) and (2) stringent reductions compatible with the 1.5 °C target. We find that in the near-term the 1.5°C-compatible scenario results in a net increase in jobs through gains in solar and wind jobs in construction, installation, and manufacturing, despite significant losses in coal fuel supply; eventually leading to a peak in total direct energy jobs in 2025. In the long run, improvements in labour productivity lead to a decrease of total direct energy employment compared to today, however, total jobs are still higher in a 1.5 °C than in an NDC scenario. Operation and maintenance jobs dominate future jobs, replacing fuel supply jobs. The results point to the need for active policies aimed at retraining, both inside and outside the renewable energy sector, to complement climate policies within the concept of a "just transition".}, language = {en} }