@article{NeusserSunTanetal.2022, author = {Neusser, David and Sun, Bowen and Tan, Wen Liang and Thomsen, Lars and Schultz, Thorsten and Perdigon-Toro, Lorena and Koch, Norbert and Shoaee, Safa and McNeill, Christopher R. and Neher, Dieter and Ludwigs, Sabine}, title = {Spectroelectrochemically determined energy levels of PM6:Y6 blends and their relevance to solar cell performance}, series = {Journal of materials chemistry : C, Materials for optical and electronic devices}, volume = {10}, journal = {Journal of materials chemistry : C, Materials for optical and electronic devices}, number = {32}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2050-7526}, doi = {10.1039/d2tc01918c}, pages = {11565 -- 11578}, year = {2022}, abstract = {Recent advances in organic solar cell performance have been mainly driven forward by combining high-performance p-type donor-acceptor copolymers (e.g.PM6) and non-fullerene small molecule acceptors (e.g.Y6) as bulk-heterojunction layers. A general observation in such devices is that the device performance, e.g., the open-circuit voltage, is strongly dependent on the processing solvent. While the morphology is a typically named key parameter, the energetics of donor-acceptor blends are equally important, but less straightforward to access in the active multicomponent layer. Here, we propose to use spectral onsets during electrochemical cycling in a systematic spectroelectrochemical study of blend films to access the redox behavior and the frontier orbital energy levels of the individual compounds. Our study reveals that the highest occupied molecular orbital offset (Delta E-HOMO) in PM6:Y6 blends is similar to 0.3 eV, which is comparable to the binding energy of Y6 excitons and therefore implies a nearly zero driving force for the dissociation of Y6 excitons. Switching the PM6 orientation in the blend films from face-on to edge-on in bulk has only a minor influence on the positions of the energy levels, but shows significant differences in the open circuit voltage of the device. We explain this phenomenon by the different interfacial molecular orientations, which are known to affect the non-radiative decay rate of the charge-transfer state. We compare our results to ultraviolet photoelectron spectroscopy data, which shows distinct differences in the HOMO offsets in the PM6:Y6 blend compared to neat films. This highlights the necessity to measure the energy levels of the individual compounds in device-relevant blend films.}, language = {en} } @article{TurnerPingelSteyrleuthneretal.2011, author = {Turner, Sarah T. and Pingel, Patrick and Steyrleuthner, Robert and Crossland, Edward J. W. and Ludwigs, Sabine and Neher, Dieter}, title = {Quantitative analysis of bulk heterojunction films using linear absorption spectroscopy and solar cell performance}, series = {Advanced functional materials}, volume = {21}, journal = {Advanced functional materials}, number = {24}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1616-301X}, doi = {10.1002/adfm.201101583}, pages = {4640 -- 4652}, year = {2011}, abstract = {A fundamental understanding of the relationship between the bulk morphology and device performance is required for the further development of bulk heterojunction organic solar cells. Here, non-optimized (chloroform cast) and nearly optimized (solvent-annealed o-dichlorobenzene cast) P3HT:PCBM blend films treated over a range of annealing temperatures are studied via optical and photovoltaic device measurements. Parameters related to the P3HT aggregate morphology in the blend are obtained through a recently established analytical model developed by F. C. Spano for the absorption of weakly interacting H-aggregates. Thermally induced changes are related to the glass transition range of the blend. In the chloroform prepared devices, the improvement in device efficiency upon annealing within the glass transition range can be attributed to the growth of P3HT aggregates, an overall increase in the percentage of chain crystallinity, and a concurrent increase in the hole mobilities. Films treated above the glass transition range show an increase in efficiency and fill factor not only associated with the change in chain crystallinity, but also with a decrease in the energetic disorder. On the other hand, the properties of the P3HT phase in the solvent-annealed o-dichlorobenzene cast blends are almost indistinguishable from those of the corresponding pristine P3HT layer and are only weakly affected by thermal annealing. Apparently, slow drying of the blend allows the P3HT chains to crystallize into large domains with low degrees of intra- and interchain disorder. This morphology appears to be most favorable for the efficient generation and extraction of charges.}, language = {en} } @article{SiniSchubertRiskoetal.2018, author = {Sini, Gjergji and Schubert, Marcel and Risko, Chad and Roland, Steffen and Lee, Olivia P. and Chen, Zhihua and Richter, Thomas V. and Dolfen, Daniel and Coropceanu, Veaceslav and Ludwigs, Sabine and Scherf, Ullrich and Facchetti, Antonio and Frechet, Jean M. J. and Neher, Dieter}, title = {On the Molecular Origin of Charge Separation at the Donor-Acceptor Interface}, series = {Advanced energy materials}, volume = {8}, journal = {Advanced energy materials}, number = {12}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.201702232}, pages = {15}, year = {2018}, abstract = {Fullerene-based acceptors have dominated organic solar cells for almost two decades. It is only within the last few years that alternative acceptors rival their dominance, introducing much more flexibility in the optoelectronic properties of these material blends. However, a fundamental physical understanding of the processes that drive charge separation at organic heterojunctions is still missing, but urgently needed to direct further material improvements. Here a combined experimental and theoretical approach is used to understand the intimate mechanisms by which molecular structure contributes to exciton dissociation, charge separation, and charge recombination at the donor-acceptor (D-A) interface. Model systems comprised of polythiophene-based donor and rylene diimide-based acceptor polymers are used and a detailed density functional theory (DFT) investigation is performed. The results point to the roles that geometric deformations and direct-contact intermolecular polarization play in establishing a driving force ( energy gradient) for the optoelectronic processes taking place at the interface. A substantial impact for this driving force is found to stem from polymer deformations at the interface, a finding that can clearly lead to new design approaches in the development of the next generation of conjugated polymers and small molecules.}, language = {en} } @article{AlbrechtVandewalTumblestonetal.2014, author = {Albrecht, Steve and Vandewal, Koen and Tumbleston, John R. and Fischer, Florian S. U. and Douglas, Jessica D. and Frechet, Jean M. J. and Ludwigs, Sabine and Ade, Harald W. and Salleo, Alberto and Neher, Dieter}, title = {On the efficiency of charge transfer state splitting in polymer: Fullerene solar cells}, series = {Advanced materials}, volume = {26}, journal = {Advanced materials}, number = {16}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0935-9648}, doi = {10.1002/adma.201305283}, pages = {2533 -- 2539}, year = {2014}, language = {en} } @article{FischerTrefzBacketal.2015, author = {Fischer, Florian S. U. and Trefz, Daniel and Back, Justus and Kayunkid, Navaphun and Tornow, Benjamin and Albrecht, Steve and Yager, Kevin G. and Singh, Gurpreet and Karim, Alamgir and Neher, Dieter and Brinkmann, Martin and Ludwigs, Sabine}, title = {Highly Crystalline Films of PCPDTBT with Branched Side Chains by Solvent Vapor Crystallization: Influence on Opto-Electronic Properties}, series = {Advanced materials}, volume = {27}, journal = {Advanced materials}, number = {7}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0935-9648}, doi = {10.1002/adma.201403475}, pages = {1223 -- 1228}, year = {2015}, abstract = {PCPDTBT, a marginally crystallizable polymer, is crystallized into a new crystal structure using solvent-vapor annealing. Highly ordered areas with three different polymer-chain orientations are identified using TEM/ED, GIWAXS, and polarized Raman spectroscopy. The optical and structural properties differ significantly from films prepared by standard device preparation protocols. Bilayer solar cells, however, show similar performance.}, language = {en} } @article{TremelFischerKayunkidetal.2014, author = {Tremel, Kim and Fischer, Florian S. U. and Kayunkid, Navaphun and Di Pietro, Riccardo and Tkachov, Roman and Kiriy, Anton and Neher, Dieter and Ludwigs, Sabine and Brinkmann, Martin}, title = {Charge transport anisotropy in highly oriented thin films of the acceptor polymer P(NDI2OD-T2)}, series = {dvanced energy materials}, volume = {4}, journal = {dvanced energy materials}, number = {10}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.201301659}, pages = {13}, year = {2014}, abstract = {The nanomorphology of the high mobility polymer poly{[N,N'-bis(2-octyldodecyl)-1,4,5,8-naphthalenedicarboximide-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} P(NDI2OD-T2) in thin films is explored as a function of different annealing conditions and correlated to optical and electrical properties. While nanofibrils with face-on orientation in form I are obtained directly after spin-coating and annealing below the melt transition temperature, clear evidence of lamellar structures is found after melt-annealing followed by slow cooling to room temperature. Interestingly these structural changes are accompanied by distinct changes in the absorption patterns. Electron diffraction measurements further show clear transitions towards predominant edge-on oriented chains in form II upon melt-annealing. Large-scale alignment with dichroic ratios up to 10 and improved order is achieved by high temperature rubbing and subsequent post-rubbing annealing. These highly oriented morphologies allow anisotropic in-plane charge transport to be probed with top-gate transistors parallel and perpendicular to the polymer chain direction. Mobilities up to 0.1 cm(2) V-1 s(-1) are observed parallel to the polymer chain, which is up to 10 times higher than those perpendicular to the polymer chain.}, language = {en} }