@article{MondalBehrensKellingetal.2015, author = {Mondal, Suvendu Sekhar and Behrens, Karsten and Kelling, Alexandra and Nabein, Hans-Peter and Schilde, Uwe and Holdt, Hans-J{\"u}rgen}, title = {Two Cd-II/Co-II-Imidazolate Coordination Polymers: Syntheses, Crystal Structures, Stabilities, and Luminescent/Magnetic Properties}, series = {Zeitschrift f{\"u}r anorganische und allgemeine Chemie}, volume = {641}, journal = {Zeitschrift f{\"u}r anorganische und allgemeine Chemie}, number = {11}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0044-2313}, doi = {10.1002/zaac.201500526}, pages = {1991 -- 1997}, year = {2015}, abstract = {Cadmium(II) based 2D coordination polymer [Cd(L1)(2)(DMF)(2)] (1) (L1 = 4,5-dicyano-2-methylimidazolate, DMF = N,N'-dimethylformamide) and 2D cobalt(II)-imidazolate framework [Co(L3)(4)] (2) (L3 = 4,5-diamide-2-ethoxyimidazolate) were synthesized under solvothermal reaction conditions. The materials were characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, powder X-ray diffraction measurement (PXRD) and single-crystal X-ray diffraction. Compound 1 has hexacoordinate Cd-II ions and forms a zigzag chain-like coordination polymer structure, whereas compound 2 exhibits a 2D square grid type structure. The thermal stability analysis reveals that 2 showed an exceptional thermal stability up to 360 degrees C. Also, 2 maintained its fully crystalline integrity in boiling water as confirmed by PXRD. The solid state luminescent property of 1 was not observed at room temperature. Compound 2 showed an independent high spin central Co-II atom.}, language = {en} } @article{KwesigaKellingKerstingetal.2020, author = {Kwesiga, George and Kelling, Alexandra and Kersting, Sebastian and Sperlich, Eric and von Nickisch-Rosenegk, Markus and Schmidt, Bernd}, title = {Total syntheses of prenylated isoflavones from Erythrina sacleuxii and their antibacterial activity}, series = {Journal of natural products}, volume = {83}, journal = {Journal of natural products}, number = {11}, publisher = {American Chemical Society}, address = {Washington}, issn = {0163-3864}, doi = {10.1021/acs.jnatprod.0c00932}, pages = {3445 -- 3453}, year = {2020}, abstract = {The prenylated isoflavones 5-deoxyprenylbiochanin A (7-hydroxy-4'-methoxy-3'-prenylisoflavone) and erysubin F (7,4'-dihydroxy-8,3'-diprenylisoflavone) were synthesized for the first time, starting from mono-or di-O-allylated chalcones, and the structure of 5-deoxy-3'-prenylbiochanin A was corroborated by single-crystal X-ray diffraction analysis. Flavanones are key intermediates in the synthesis. Their reaction with hypervalent iodine reagents affords isoflavones via a 2,3-oxidative rearrangement and the corresponding flavone isomers via 2,3-dehydrogenation. This enabled a synthesis of 7,4'-dihydroxy-8,3'-diprenylflavone, a non-natural regioisomer of erysubin F. Erysubin F (8), 7,4'-dihydroxy-8,3'-diprenylflavone (27), and 5-deoxy-3'prenylbiochanin A (7) were tested against three bacterial strains and one fungal pathogen. All three compounds are inactive against Salmonella enterica subsp. enterica (NCTC 13349), Escherichia coli (ATCC 25922), and Candida albicans (ATCC 90028), with MIC values greater than 80.0 mu M. The diprenylated natural product erysubin F (8) and its flavone isomer 7,4'-dihydroxy-8,3'diprenylflavone (27) show in vitro activity against methicillin-resistant Staphylococcus aureus (MRSA, ATCC 43300) at MIC values of 15.4 and 20.5 mu M, respectively. In contrast, the monoprenylated 5-deoxy-3'-prenylbiochanin A (7) is inactive against this MRSA strain.}, language = {en} } @article{RudershausenDrexlerBansseetal.2007, author = {Rudershausen, S. and Drexler, Hans-Joachim and Banße, Wolfgang and Kelling, Alexandra and Schilde, Uwe and Holdt, Hans-Joachim}, title = {Three polymorphs of bis(5-methylthio-1,2-dithiole-3-thione)-disulfide}, doi = {10.1002/crat.200610776}, year = {2007}, abstract = {The title compound, bis(5-methylthio-1,2-dithiole-3-thione)-disulfide, was yielded for the first time as by- product of the reaction of nickel(II) and cobalt(II) ions with 5-methylthio-1,2-dithiole-3-thione-4-thiolate. The compound can be obtained directly by oxidation of the ammonium salt of the ligand. C8H6S10 forms three polymorphs: (I), which crystallizes in the orthorhombic space group P212121, (II) and (III), which crystallize in the monoclinic space groups P21/c and P21/n, respectively. The crystal and molecular structures are presented here. The determination of the absolute configuration of (I) indicated the P-helical enantiomer. In contrast to this, the crystals of (II) und (III) are racemic, containing P- and M-helical enantiomers. The polymorphs differ in the kind of skewing around the disulfide bond and of the positions of the both dithiole rings to the S-S-moiety}, language = {en} } @article{SchmidtWernerKellingetal.2010, author = {Schmidt, Bernd and Werner, Frank and Kelling, Alexandra and Schilde, Uwe}, title = {The reaction of 3,4-dihydro-2H-pyran with oxalyl chloride : formation and crystal structure analysis of an unexpected bicyclic product}, issn = {0022-152X}, year = {2010}, abstract = {3,4-Dihydro-2-H-pyran and oxalyl chloride react, depending on the conditions, to keto esters, a pyran-3- carboxylic acid or derivatives thereof, or to an hitherto unknown bicyclic acetal containing a vinyl chloride moiety. The structure of the latter product has been unambiguously elucidated by single-crystal X-ray structure analysis. A mechanism for its formation is proposed.}, language = {en} } @article{HoldtMuellerPotteretal.2006, author = {Holdt, Hans-J{\"u}rgen and M{\"u}ller, Holger and Potter, Matthias and Kelling, Alexandra and Schilde, Uwe and Starke, Ines and Heydenreich, Matthias and Kleinpeter, Erich}, title = {The first sandwich complex with an octa(thioether) coordination sphere : Bis(maleonitrile-tetrathia-12-crown- 4)silver(I)}, issn = {1434-1948}, doi = {10.1002/ejic.200501109}, year = {2006}, abstract = {The new tetrathiacrown ethers maleonitrile-tetrathia-12-crown-4 (mn12S(4)) and maleonitrile-tetrathia-13-crown- 4 (mn13S(4)) have been prepared and characterised by X-ray crystallographic analysis. These crown ethers form 2:1, 3:2 and 1: 1 complexes with AgY (Y = BF4, PF6). The crystal structures of [Ag(mn12S(4))(2)]BF4 (3a), [Ag(mn13S(4))(2)]BF4 (4a) and [Ag-2(mn13S(4))(3)](PF6)(2) (6b) have been determined. Compound 3a contains the centrosymmetric sandwich complex cation [Ag(mn12S(4))(2)](+) where each mn12S(4) ligand is coordinated to the Ag centre in an endo manner through all four S atoms. The 2:1 complex [Ag(mn12S(4))(2)](+) is the first sandwich complex with a tetrathiacrown ether and the first complex with an octa(thioether) coordination sphere. The crystal structure of compound 4a also reveals a 2:1 complex. This complex, [Ag(mnl3S(4))(2)](+), exhibits a half-sandwich structure. One mn13S(4) ligand coordinates to Ag+ by all four S donor atoms and the other 13S(4) crown by only one S atom. Compound 6b contains a dinuclear Ag complex. The Ag complexes 3a,b-8a,b were also studied by electrospray ionisation mass spectrometry. Collision-induced dissociation (CID) was used to compare the relative stability of 2:1 complexes [AgL2]+ and 1:1 complexes [AgL](+) (L = mn12S(4), mn13S(4)). The C-13 NMR chemical shifts of 2:1 and 1:1 Ag complexes and their corresponding free ligands were also estimated and compared. The free energy of the barrier of ring inversion (Delta G(double dagger)) for [Ag(mn12S(4))(2)](+) was determined to be 64 kJmol(-1).}, language = {en} } @article{SengeHatscherWieheetal.2004, author = {Senge, Mathias O. and Hatscher, S. S. and Wiehe, A. and Dahms, Katja and Kelling, Alexandra}, title = {The dithianyl group as a synthon in porphyrin chemistry : condensation reactions and preparation of formylporphyrins under basic conditions}, issn = {0002-7863}, year = {2004}, language = {en} } @article{GrunwaldKellingHoldtetal.2017, author = {Grunwald, Nicolas and Kelling, Alexandra and Holdt, Hans-J{\"u}rgen and Schilde, Uwe}, title = {The crystal structure of 1,1′-bisisoquinoline, C18H12N2}, series = {Zeitschrift f{\"u}r Kristallographie : international journal for structural, physical and chemical aspects of crystalline materials. New crystal structures}, volume = {232}, journal = {Zeitschrift f{\"u}r Kristallographie : international journal for structural, physical and chemical aspects of crystalline materials. New crystal structures}, number = {5}, publisher = {de Gruyter}, address = {Berlin}, doi = {10.1515/ncrs-2017-0088}, pages = {839 -- 841}, year = {2017}, abstract = {C18H12N2, tetragonal, I41/a (no. 88), a=13.8885(6) {\AA}, c=13.6718(6) {\AA}, V =2637.2(3) {\AA}3, Z =8, Rgt(F)=0.0295, wRref(F2)=0.0854, T =210 K. CCDC no.: 631823}, language = {en} } @article{GrunwaldKellingHoldtetal.2017, author = {Grunwald, Nicolas and Kelling, Alexandra and Holdt, Hans-J{\"u}rgen and Schilde, Uwe}, title = {The crystal structure of 1,1\&\#8242;-bisisoquinoline, C18H12N2}, series = {Zeitschrift f{\"u}r Kristallographie : international journal for structural, physical and chemical aspects of crystalline materials ; New crystal structures}, volume = {232}, journal = {Zeitschrift f{\"u}r Kristallographie : international journal for structural, physical and chemical aspects of crystalline materials ; New crystal structures}, publisher = {De Gruyter}, address = {Berlin}, issn = {1433-7266}, doi = {10.1515/ncrs-2017-0088}, pages = {839 -- 841}, year = {2017}, abstract = {C18H12N2, tetragonal, I4(1)/a (no. 88), a = 13.8885(6) angstrom, c = 13.6718(6) angstrom, V = 2637.2(3) angstrom(3), Z = 8, R-gt(F) = 0.0295, wR(ref)(F-2) = 0.0854, T = 210 K.}, language = {en} } @article{BrietzkeDietzKellingetal.2017, author = {Brietzke, Thomas Martin and Dietz, Thomas and Kelling, Alexandra and Schilde, Uwe and Bois, Juliana and Kelm, Harald and Reh, Manuel and Schmitz, Markus and Koerzdoerfer, Thomas and Leimk{\"u}hler, Silke and Wollenberger, Ulla and Krueger, Hans-Joerg and Holdt, Hans-J{\"u}rgen}, title = {The 1,6,7,12-Tetraazaperylene Bridging Ligand as an Electron Reservoir and Its Disulfonato Derivative as Redox Mediator in an Enzyme-Electrode Process}, series = {Chemistry - a European journal}, volume = {23}, journal = {Chemistry - a European journal}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0947-6539}, doi = {10.1002/chem.201703639}, pages = {15583 -- 15587}, year = {2017}, abstract = {The homodinuclear ruthenium(II) complex [{Ru(l-N4Me2)}(2)(-tape)](PF6)(4) {[1](PF6)(4)} (l-N4Me2=N,N-dimethyl-2,11-diaza[3.3](2,6)-pyridinophane, tape=1,6,7,12-tetraazaperylene) can store one or two electrons in the energetically low-lying * orbital of the bridging ligand tape. The corresponding singly and doubly reduced complexes [{Ru(l-N4Me2)}(2)(-tape(.-))](PF6)(3) {[2](PF6)(3)} and [{Ru(l-N4Me2)}(2)(-tape(2-))](PF6)(2) {[3](PF6)(2)}, respectively, were electrochemically generated, successfully isolated and fully characterized by single-crystal X-ray crystallography, spectroscopic methods and magnetic susceptibility measurements. The singly reduced complex [2](PF6)(3) contains the -radical tape(.-) and the doubly reduced [3](PF6)(2) the diamagnetic dianion tape(2-) as bridging ligand, respectively. Nucleophilic aromatic substitution at the bridging tape in [1](4+) by two sulfite units gave the complex [{Ru(l-N4Me2)}(2){-tape-(SO3)(2)}](2+) ([4](2+)). Complex dication [4](2+) was exploited as a redox mediator between an anaerobic homogenous reaction solution of an enzyme system (sulfite/sulfite oxidase) and the electrode via participation of the low-energy *-orbital of the disulfonato-substituted bridging ligand tape-(SO3)(2)(2-) (E-red1=-0.1V versus Ag/AgCl/1m KCl in water).}, language = {en} } @article{BalischewskiBhattacharyyaSperlichetal.2022, author = {Balischewski, Christian and Bhattacharyya, Biswajit and Sperlich, Eric and G{\"u}nter, Christina and Beqiraj, Alkit and Klamroth, Tillmann and Behrens, Karsten and Mies, Stefan and Kelling, Alexandra and Lubahn, Susanne and Holtzheimer, Lea and Nitschke, Anne and Taubert, Andreas}, title = {Tetrahalidometallate(II) ionic liquids with more than one metal}, series = {Chemistry - a European journal}, volume = {28}, journal = {Chemistry - a European journal}, number = {64}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-3765}, doi = {10.1002/chem.202201068}, pages = {13}, year = {2022}, abstract = {Fifteen N-butylpyridinium salts - five monometallic [C4Py](2)[MBr4] and ten bimetallic [C4Py](2)[(M0.5M0.5Br4)-M-a-Br-b] (M=Co, Cu, Mn, Ni, Zn) - were synthesized, and their structures and thermal and electrochemical properties were studied. All the compounds are ionic liquids (ILs) with melting points between 64 and 101 degrees C. Powder and single-crystal X-ray diffraction show that all ILs are isostructural. The electrochemical stability windows of the ILs are between 2 and 3 V. The conductivities at room temperature are between 10(-5) and 10(-6) S cm(-1). At elevated temperatures, the conductivities reach up to 10(-4) S cm(-1) at 70 degrees C. The structures and properties of the current bromide-based ILs were also compared with those of previous examples using chloride ligands, which illustrated differences and similarities between the two groups of ILs.}, language = {en} } @article{FarraThielWinteretal.2011, author = {Farra, Ramzi and Thiel, Kerstin and Winter, Alette and Klamroth, Tillmann and Poeppl, Andreas and Kelling, Alexandra and Schilde, Uwe and Taubert, Andreas and Strauch, Peter}, title = {Tetrahalidocuprates(II)-structure and EPR spectroscopy Part 1: Tetrabromidocuprates(II)}, series = {New journal of chemistry}, volume = {35}, journal = {New journal of chemistry}, number = {12}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1144-0546}, doi = {10.1039/c1nj20271e}, pages = {2793 -- 2803}, year = {2011}, abstract = {Tetrahalidocuprates(II) show a high degree of structural flexibility. We present the results of crystallographic and electron paramagnetic resonance (EPR) spectroscopic analyses of four new tetrabromidocuprate(II) compounds and compare the results with previously reported data. The cations in the new compounds are the sterically demanding benzyltriphenylphosphonium, methyltriphenylphosphonium, tetraphenylphosphonium, and hexadecyltrimethylammonium ions; they were used to achieve a reasonable separation of the paramagnetic Cu(II) ions for EPR spectroscopy. X-Ray crystallography shows that in all four complexes the [CuBr4](2-) units have a distorted tetrahedral coordination geometry which is in agreement with DFT calculations. The EPR hyperfine structure was not resolved. This is due to the exchange broadening resulting from still incomplete separation of the paramagnetic Cu(II) centres. Nevertheless, the principal values of the electron Zeemann tensor (g(parallel to) and g(perpendicular to)) of the complexes could be determined. A correlation of structural (X-ray) parameters with the spin density at the copper centres (DFT) is well reflected in the EPR spectra of the bromidocuprates. This enables the correlation of X-ray and EPR parameters to predict the structure of tetrabromidocuprates in physical states other than the crystalline state. As a result, we provide a method to structurally characterize [CuBr4](2-) in, for example, ionic liquids or in solution, which has important implications for e.g. catalysis or materials science.}, language = {en} } @article{WinterThielZabeletal.2014, author = {Winter, Alette and Thiel, Kerstin and Zabel, Andre and Klamroth, Tillmann and Poeppl, Andreas and Kelling, Alexandra and Schilde, Uwe and Taubert, Andreas and Strauch, Peter}, title = {Tetrahalidocuprates(II) - structure and EPR spectroscopy. Part 2: tetrachloridocuprates(II)}, series = {New journal of chemistry}, volume = {38}, journal = {New journal of chemistry}, number = {3}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1144-0546}, doi = {10.1039/c3nj01039b}, pages = {1019 -- 1030}, year = {2014}, abstract = {We present and discuss the results of crystallographic and electron paramagnetic resonance (EPR) spectroscopic analyses of five tetrachloridocuprate(II) complexes to supply a useful tool for the structural characterisation of the [CuCl4](2-) moiety in the liquid state, for example in ionic liquids, or in solution. Bis(benzyltriethylammonium)-, bis(trimethylphenylammonium)-, bis(ethyltriphenylphosphonium)-, bis(benzyltriphenylphosphonium)-, and bis(tetraphenylarsonium) tetrachloridocuprate(II) were synthesised and characterised by elemental, IR, EPR and X-ray analyses. The results of the crystallographic analyses show distorted tetrahedral coordination geometry of all [CuCl4](2-) anions in the five complexes and prove that all investigated complexes are stabilised by hydrogen bonds of different intensities. Despite the use of sterically demanding ammonium, phosphonium and arsonium cations to obtain the separation of the paramagnetic Cu(II) centres for EPR spectroscopy no hyperfine structure was observed in the EPR spectra but the principal values of the electron Zeeman tensor, g(parallel to) and g(perpendicular to), could be determined. With these EPR data and the crystallographic parameters we were able to carry out a correlation study to anticipate the structural situation of tetrachloridocuprates in different physical states. This correlation is in good agreement with DFT calculations.}, language = {en} } @article{ZabelWinterKellingetal.2016, author = {Zabel, Andr{\´e} and Winter, Alette and Kelling, Alexandra and Schilde, Uwe and Strauch, Peter}, title = {Tetrabromidocuprates(II)-Synthesis, Structure and EPR}, series = {International journal of molecular sciences}, volume = {17}, journal = {International journal of molecular sciences}, number = {4}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/ijms17040596}, pages = {14}, year = {2016}, abstract = {Metal-containing ionic liquids (ILs) are of interest for a variety of technical applications, e.g., particle synthesis and materials with magnetic or thermochromic properties. In this paper we report the synthesis of, and two structures for, some new tetrabromidocuprates(II) with several "onium" cations in comparison to the results of electron paramagnetic resonance (EPR) spectroscopic analyses. The sterically demanding cations were used to separate the paramagnetic Cu(II) ions for EPR measurements. The EPR hyperfine structure in the spectra of these new compounds is not resolved, due to the line broadening resulting from magnetic exchange between the still-incomplete separated paramagnetic Cu(II) centres. For the majority of compounds, the principal g values (g|| and gK) of the tensors could be determined and information on the structural changes in the [CuBr4]2- anions can be obtained. The complexes have high potential, e.g., as ionic liquids, as precursors for the synthesis of copper bromide particles, as catalytically active or paramagnetic ionic liquids.}, language = {en} } @article{ZabelWinterKellingetal.2016, author = {Zabel, Andre and Winter, Alette and Kelling, Alexandra and Schilde, Uwe and Strauch, Peter}, title = {Tetrabromidocuprates(II)-Synthesis, Structure and EPR}, series = {International journal of molecular sciences}, volume = {17}, journal = {International journal of molecular sciences}, publisher = {MDPI}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms17040596}, pages = {14}, year = {2016}, abstract = {Metal-containing ionic liquids (ILs) are of interest for a variety of technical applications, e.g., particle synthesis and materials with magnetic or thermochromic properties. In this paper we report the synthesis of, and two structures for, some new tetrabromidocuprates(II) with several "onium" cations in comparison to the results of electron paramagnetic resonance (EPR) spectroscopic analyses. The sterically demanding cations were used to separate the paramagnetic Cu(II) ions for EPR measurements. The EPR hyperfine structure in the spectra of these new compounds is not resolved, due to the line broadening resulting from magnetic exchange between the still-incomplete separated paramagnetic Cu(II) centres. For the majority of compounds, the principal g values (g|| and g(perpendicular to)) of the tensors could be determined and information on the structural changes in the [CuBr4](2-) anions can be obtained. The complexes have high potential, e.g., as ionic liquids, as precursors for the synthesis of copper bromide particles, as catalytically active or paramagnetic ionic liquids.}, language = {en} } @article{MondalHovestadtDeyetal.2017, author = {Mondal, Suvendu Sekhar and Hovestadt, Maximilian and Dey, Subarna and Paula, Carolin and Glomb, Sebastian and Kelling, Alexandra and Schilde, Uwe and Janiak, Christoph and Hartmann, Martin and Holdt, Hans-J{\"u}rgen}, title = {Synthesis of a partially fluorinated ZIF-8 analog for ethane/ethene separation}, series = {CrystEngComm}, volume = {19}, journal = {CrystEngComm}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1466-8033}, doi = {10.1039/c7ce01438d}, pages = {5882 -- 5891}, year = {2017}, abstract = {The separation of ethane/ethene mixtures (as well as other paraffin/olefin mixtures) is one of the most important but challenging processes in the petrochemical industry. In this work, we report the synthesis of ZIF-318, isostructural to ZIF-8 but built from the mixed linkers of 2-methylimidazole (L1) and 2-trifluoromethylimidazole (L2) (ZIF-318 = [(Zn(L1)(L2)](n)). The synthesis has been optimized to proceed without ZnO-formation. Using only the L2 linker under solvothermal conditions afforded ZnO-embedded in the H-bonded and non-porous coordination polymer ZnO@[Zn-2(L2)(2)(HCOO)(OH)](n). The slight differences in the size of the substituents (-CH3 vs. -CF3) possibly in combination with different electronic inductive effects led to small but significant changes to the pore size and properties respectively, though the effective pore opening (aperture) size of ZIF-318 remained the same in comparison with ZIF-8. ZIF-318 is chemically (boiling water, methanol, benzene, and wide pH range at room temperature for 1 day), thermally (up to 310 degrees C) stable, and more hydrophobic than ZIF-8 which is proven by contact angle measurement. ZIF-318 can be activated for N-2, CO2, CH4, H-2, ethane, ethane, propane, and propene gases sorptions. Consequently, in breakthrough experiments, the ethane/ethene mixtures can be separated.}, language = {en} } @article{MondalBhuniaDemeshoketal.2008, author = {Mondal, Suvendu Sekhar and Bhunia, Asamanjoy and Demeshok, Serhiy and Kelling, Alexandra and Schilde, Uwe and Janiak, Christoph and Holdt, Hans-J{\"u}rgen}, title = {Synthesis of a Co(II)-imidazolate framework from an anionic linker precursor: gas-sorption ans magnetic proberties}, year = {2008}, abstract = {A Co(II)-imidazolate-4-amide-5-imidate based MOF, IFP-5, is synthesized by using an imidazolate anion-based novel ionic liquid as a linker precursor under solvothermal conditions. IFP-5 shows significant amounts of gas (N2, CO2, CH4 and H2) uptake capacities. IFP-5 exhibits an independent high spin Co(II) centre and antiferromagnetic coupling.}, language = {en} } @article{MondalBhuniaDemeshkoetal.2014, author = {Mondal, Suvendu Sekhar and Bhunia, Asamanjoy and Demeshko, Serhiy and Kelling, Alexandra and Schilde, Uwe and Janiak, Christoph and Holdt, Hans-J{\"u}rgen}, title = {Synthesis of a Co(II)-imidazolate framework from an anionic linker precursor: gas-sorption and magnetic properties}, series = {CrystEngComm}, volume = {16}, journal = {CrystEngComm}, number = {1}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1466-8033}, doi = {10.1039/c3ce42040j}, pages = {39 -- 42}, year = {2014}, abstract = {A Co(II)-imidazolate-4-amide-5-imidate based MOF, IFP-5, is synthesized by using an imidazolate anion-based novel ionic liquid as a linker precursor under solvothermal conditions. IFP-5 shows significant amounts of gas (N-2, CO2, CH4 and H-2) uptake capacities. IFP-5 exhibits an independent high spin Co(II) centre and antiferromagnetic coupling.}, language = {en} } @article{SchmidtKrehlKellingetal.2012, author = {Schmidt, Bernd and Krehl, Stefan and Kelling, Alexandra and Schilde, Uwe}, title = {Synthesis of 8-Aryl-Substituted Coumarins based on Ring-Closing Metathesis and Suzuki-Miyaura coupling - synthesis of a Furyl Coumarin natural product from Galipea panamensis}, series = {The journal of organic chemistry}, volume = {77}, journal = {The journal of organic chemistry}, number = {5}, publisher = {American Chemical Society}, address = {Washington}, issn = {0022-3263}, doi = {10.1021/jo2026564}, pages = {2360 -- 2367}, year = {2012}, abstract = {The synthesis of 7-methoxy-8-(4-methyl-3-furyl)-2H-chromen-2-one, a natural product with antileishmanial activity recently isolated from the plant Galipea panamensis, is described. The key step is a Suzuki-Miyaura coupling of a furan-3-boronic acid and an 8-halocoumarin, which is advantageously synthesized using a ring-closing metathesis reaction. Several non-natural analogues are also available along these lines.}, language = {en} } @article{SchwarzeSperlichMuelleretal.2021, author = {Schwarze, Thomas and Sperlich, Eric and M{\"u}ller, Thomas and Kelling, Alexandra and Holdt, Hans-J{\"u}rgen}, title = {Synthesis efforts of acyclic bis(monoalkylamino)maleonitriles and macrocyclic bis(dialkylamino)maleonitriles as fluorescent probes for cations and a new colorimetric copper(II) chemodosimeter}, series = {Helvetica chimica acta}, volume = {104}, journal = {Helvetica chimica acta}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1522-2675}, doi = {10.1002/hlca.202100028}, pages = {e2100028}, year = {2021}, abstract = {In this article, we report on the synthesis of acyclic bis(monoalkylamino)maleonitriles and on the intended synthesis of macrocyclic bis(dialkylamino)maleonitriles to get fluorescent probes for cations. During our efforts to synthesize macrocyclic bis(dialkylamino)maleonitriles, we were only able to isolate macrocyclic bis(dialkylamino)-fumaronitriles. The synthesis of macrocyclic bis(dialkylamino)maleonitriles is challenging, due to the fact that bis-(dialkylamino)fumaronitriles are thermodynamically more stable than the corresponding bis(dialkylamino)-maleonitriles. Further, it turned out that the acyclic bis(monoalkylamino)maleonitriles and macrocyclic bis-(dialkylamino)fumaronitriles are no suitable tools to detect cations by a strong fluorescence enhancement. Further, only the bis(monoalkylamino)maleonitriles, which are bearing a 2-pyridyl unit as an additional complexing unit, are able to selectively recognize copper(II) by a color change from yellow to red.}, language = {en} } @article{MondalDeyBaburinetal.2013, author = {Mondal, Suvendu Sekhar and Dey, Subarna and Baburin, Igor A. and Kelling, Alexandra and Schilde, Uwe and Seifert, Gotthard and Janiak, Christoph and Holdt, Hans-J{\"u}rgen}, title = {Syntheses of two imidazolate-4-amide-5-imidate linker-based hexagonal metal-organic frameworks with flexible ethoxy substituent}, series = {CrystEngComm}, volume = {15}, journal = {CrystEngComm}, number = {45}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1466-8033}, doi = {10.1039/c3ce41632a}, pages = {9394 -- 9399}, year = {2013}, abstract = {A rare example of in situ linker generation with the formation of soft porous Zn- and Co-MOFs (IFP-9 and -10, respectively) is reported. The flexible ethoxy groups of IFP-9 and -10 protrude into the 1D hexagonal channels. The gas-sorption behavior of both materials for H-2, CO2 and CH4 showed wide hysteretic isotherms, typical for MOFs having a flexible substituent which can give rise to a gate effect.}, language = {en} }