@article{MondalBehrensMatthesetal.2015, author = {Mondal, Suvendu Sekhar and Behrens, Karsten and Matthes, Philipp R. and Sch{\"o}nfeld, Fabian and Nitsch, J{\"o}rn and Steffen, Andreas and Primus, Philipp-Alexander and Kumke, Michael Uwe and M{\"u}ller-Buschbaum, Klaus and Holdt, Hans-J{\"u}rgen}, title = {White light emission of IFP-1 by in situ co-doping of the MOF pore system with Eu3+ and Tb3+}, series = {Journal of materials chemistry : C, Materials for optical and electronic devices}, volume = {18}, journal = {Journal of materials chemistry : C, Materials for optical and electronic devices}, number = {3}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2050-7534}, doi = {10.1039/C4TC02919D}, pages = {4623 -- 4631}, year = {2015}, abstract = {Co-doping of the MOF 3∞[Zn(2-methylimidazolate-4-amide-5-imidate)] (IFP-1 = Imidazolate Framework Potsdam-1) with luminescent Eu3+ and Tb3+ ions presents an approach to utilize the porosity of the MOF for the intercalation of luminescence centers and for tuning of the chromaticity to the emission of white light of the quality of a three color emitter. Organic based fluorescence processes of the MOF backbone as well as metal based luminescence of the dopants are combined to one homogenous single source emitter while retaining the MOF's porosity. The lanthanide ions Eu3+ and Tb3+ were doped in situ into IFP-1 upon formation of the MOF by intercalation into the micropores of the growing framework without a structure directing effect. Furthermore, the color point is temperature sensitive, so that a cold white light with a higher blue content is observed at 77 K and a warmer white light at room temperature (RT) due to the reduction of the organic emission at higher temperatures. The study further illustrates the dependence of the amount of luminescent ions on porosity and sorption properties of the MOF and proves the intercalation of luminescence centers into the pore system by low-temperature site selective photoluminescence spectroscopy, SEM and EDX. It also covers an investigation of the border of homogenous uptake within the MOF pores and the formation of secondary phases of lanthanide formates on the surface of the MOF. Crossing the border from a homogenous co-doping to a two-phase composite system can be beneficially used to adjust the character and warmth of the white light. This study also describes two-color emitters of the formula Ln@IFP-1a-d (Ln: Eu, Tb) by doping with just one lanthanide Eu3+ or Tb3+.}, language = {en} } @article{MondalBehrensMatthesetal.2015, author = {Mondal, Suvendu Sekhar and Behrens, Karsten and Matthes, Philipp R. and Sch{\"o}nfeld, Fabian and Nitsch, J{\"o}rn and Steffen, Andreas and Primus, Philipp-Alexander and Kumke, Michael Uwe and M{\"u}ller-Buschbaum, Klaus and Holdt, Hans-J{\"u}rgen}, title = {White light emission of IFP-1 by in situ co-doping of the MOF pore system with Eu3+ and Tb3+}, series = {Journal of materials chemistry : C, Materials for optical and electronic devices}, volume = {3}, journal = {Journal of materials chemistry : C, Materials for optical and electronic devices}, number = {18}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2050-7526}, doi = {10.1039/c4tc02919d}, pages = {4623 -- 4631}, year = {2015}, language = {en} } @article{MondalMarquardtJaniaketal.2016, author = {Mondal, Suvendu Sekhar and Marquardt, Dorothea and Janiak, Christoph and Holdt, Hans-J{\"u}rgen}, title = {Use of a 4,5-dicyanoimidazolate anion based ionic liquid for the synthesis of iron and silver nanoparticles}, series = {Dalton transactions : an international journal of inorganic chemistry}, journal = {Dalton transactions : an international journal of inorganic chemistry}, number = {45}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1477-9226}, doi = {10.1039/C6DT00225K}, pages = {5476 -- 5483}, year = {2016}, abstract = {Sixteen new ionic liquids (ILs) with tetraethylammonium, 1-butyl-3-methylimidazolium, 3-methyl-1-octylimidazolium and tetrabutylphosphonium cations paired with 2-substituted 4,5-dicyanoimidazolate anions (substituent at C2 = methyl, trifluoromethyl, pentafluoroethyl, N,N′-dimethyl amino and nitro) have been synthesized and characterized by using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA). The effects of cation and anion type and structure of the resulting ILs, including several room temperature ionic liquids (RTILs), are reflected in the crystallization, melting points and thermal decomposition of the ILs. ILs exhibited large liquid and crystallization ranges and formed glasses on cooling with glass transition temperatures in the range of -22 to -71 °C. We selected one of the newly designed ILs due to its bigger size, compared to the common conventional IL anion and high electron-withdrawing nitrile group leads to an overall stabilization anion that may stabilize the metal nanoparticles. Stable and better separated iron and silver nanoparticles are obtained by the decomposition of corresponding Fe2(CO)9 and AgPF6, respectively, under N2-atmosphere in newly designed nitrile functionalized 4,5-dicyanoimidazolate anion based IL. Very small and uniform size for Fe-nanoparticles of about 1.8 ± 0.6 nm were achieved without any additional stabilizers or capping molecules. Comparatively bigger size of Ag-nanoparticles was obtained through the reduction of AgPF6 by hydrogen gas. Additionally, the AgPF6 precursor was decomposed under microwave irradiation (MWI), fabricating nut-in-shell-like, that is, core-separated-from-shell Ag-nano-structures.}, language = {en} } @article{MondalMarquardtJaniaketal.2016, author = {Mondal, Suvendu Sekhar and Marquardt, Dorothea and Janiak, Christoph and Holdt, Hans-J{\"u}rgen}, title = {Use of a 4,5-dicyanoimidazolate anion based ionic liquid for the synthesis of iron and silver nanoparticles}, series = {Dalton transactions : a journal of inorganic chemistry, including bioinorganic, organometallic, and solid-state chemistry}, volume = {45}, journal = {Dalton transactions : a journal of inorganic chemistry, including bioinorganic, organometallic, and solid-state chemistry}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1477-9226}, doi = {10.1039/c6dt00225k}, pages = {5476 -- 5483}, year = {2016}, abstract = {Sixteen new ionic liquids (ILs) with tetraethylammonium, 1-butyl-3-methylimidazolium, 3-methyl-1-octylimidazolium and tetrabutylphosphonium cations paired with 2-substituted 4,5-dicyanoimidazolate anions (substituent at C2 = methyl, trifluoromethyl, pentafluoroethyl, N,N\&\#8242;-dimethyl amino and nitro) have been synthesized and characterized by using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA). The effects of cation and anion type and structure of the resulting ILs, including several room temperature ionic liquids (RTILs), are reflected in the crystallization, melting points and thermal decomposition of the ILs. ILs exhibited large liquid and crystallization ranges and formed glasses on cooling with glass transition temperatures in the range of \&\#8722;22 to \&\#8722;71 °C. We selected one of the newly designed ILs due to its bigger size, compared to the common conventional IL anion and high electron-withdrawing nitrile group leads to an overall stabilization anion that may stabilize the metal nanoparticles. Stable and better separated iron and silver nanoparticles are obtained by the decomposition of corresponding Fe2(CO)9 and AgPF6, respectively, under N2-atmosphere in newly designed nitrile functionalized 4,5-dicyanoimidazolate anion based IL. Very small and uniform size for Fe-nanoparticles of about 1.8 ± 0.6 nm were achieved without any additional stabilizers or capping molecules. Comparatively bigger size of Ag-nanoparticles was obtained through the reduction of AgPF6 by hydrogen gas. Additionally, the AgPF6 precursor was decomposed under microwave irradiation (MWI), fabricating nut-in-shell-like, that is, core-separated-from-shell Ag-nano-structures.}, language = {en} } @article{SchwarzeGarzTeuchneretal.2014, author = {Schwarze, Thomas and Garz, Andreas and Teuchner, Klaus and Menzel, Ralf and Holdt, Hans-J{\"u}rgen}, title = {Two-photon probes for metal ions based on phenylaza[18]crown-6 ethers and 1,2,3-triazoles as pi-linkers}, series = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, volume = {15}, journal = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, number = {12}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1439-4235}, doi = {10.1002/cphc.201402232}, pages = {2436 -- 2439}, year = {2014}, language = {en} } @article{MondalBehrensKellingetal.2015, author = {Mondal, Suvendu Sekhar and Behrens, Karsten and Kelling, Alexandra and Nabein, Hans-Peter and Schilde, Uwe and Holdt, Hans-J{\"u}rgen}, title = {Two Cd-II/Co-II-Imidazolate Coordination Polymers: Syntheses, Crystal Structures, Stabilities, and Luminescent/Magnetic Properties}, series = {Zeitschrift f{\"u}r anorganische und allgemeine Chemie}, volume = {641}, journal = {Zeitschrift f{\"u}r anorganische und allgemeine Chemie}, number = {11}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0044-2313}, doi = {10.1002/zaac.201500526}, pages = {1991 -- 1997}, year = {2015}, abstract = {Cadmium(II) based 2D coordination polymer [Cd(L1)(2)(DMF)(2)] (1) (L1 = 4,5-dicyano-2-methylimidazolate, DMF = N,N'-dimethylformamide) and 2D cobalt(II)-imidazolate framework [Co(L3)(4)] (2) (L3 = 4,5-diamide-2-ethoxyimidazolate) were synthesized under solvothermal reaction conditions. The materials were characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, powder X-ray diffraction measurement (PXRD) and single-crystal X-ray diffraction. Compound 1 has hexacoordinate Cd-II ions and forms a zigzag chain-like coordination polymer structure, whereas compound 2 exhibits a 2D square grid type structure. The thermal stability analysis reveals that 2 showed an exceptional thermal stability up to 360 degrees C. Also, 2 maintained its fully crystalline integrity in boiling water as confirmed by PXRD. The solid state luminescent property of 1 was not observed at room temperature. Compound 2 showed an independent high spin central Co-II atom.}, language = {en} } @article{HoldtMuellerPotteretal.2006, author = {Holdt, Hans-J{\"u}rgen and M{\"u}ller, Holger and Potter, Matthias and Kelling, Alexandra and Schilde, Uwe and Starke, Ines and Heydenreich, Matthias and Kleinpeter, Erich}, title = {The first sandwich complex with an octa(thioether) coordination sphere : Bis(maleonitrile-tetrathia-12-crown- 4)silver(I)}, issn = {1434-1948}, doi = {10.1002/ejic.200501109}, year = {2006}, abstract = {The new tetrathiacrown ethers maleonitrile-tetrathia-12-crown-4 (mn12S(4)) and maleonitrile-tetrathia-13-crown- 4 (mn13S(4)) have been prepared and characterised by X-ray crystallographic analysis. These crown ethers form 2:1, 3:2 and 1: 1 complexes with AgY (Y = BF4, PF6). The crystal structures of [Ag(mn12S(4))(2)]BF4 (3a), [Ag(mn13S(4))(2)]BF4 (4a) and [Ag-2(mn13S(4))(3)](PF6)(2) (6b) have been determined. Compound 3a contains the centrosymmetric sandwich complex cation [Ag(mn12S(4))(2)](+) where each mn12S(4) ligand is coordinated to the Ag centre in an endo manner through all four S atoms. The 2:1 complex [Ag(mn12S(4))(2)](+) is the first sandwich complex with a tetrathiacrown ether and the first complex with an octa(thioether) coordination sphere. The crystal structure of compound 4a also reveals a 2:1 complex. This complex, [Ag(mnl3S(4))(2)](+), exhibits a half-sandwich structure. One mn13S(4) ligand coordinates to Ag+ by all four S donor atoms and the other 13S(4) crown by only one S atom. Compound 6b contains a dinuclear Ag complex. The Ag complexes 3a,b-8a,b were also studied by electrospray ionisation mass spectrometry. Collision-induced dissociation (CID) was used to compare the relative stability of 2:1 complexes [AgL2]+ and 1:1 complexes [AgL](+) (L = mn12S(4), mn13S(4)). The C-13 NMR chemical shifts of 2:1 and 1:1 Ag complexes and their corresponding free ligands were also estimated and compared. The free energy of the barrier of ring inversion (Delta G(double dagger)) for [Ag(mn12S(4))(2)](+) was determined to be 64 kJmol(-1).}, language = {en} } @article{GrunwaldKellingHoldtetal.2017, author = {Grunwald, Nicolas and Kelling, Alexandra and Holdt, Hans-J{\"u}rgen and Schilde, Uwe}, title = {The crystal structure of 1,1′-bisisoquinoline, C18H12N2}, series = {Zeitschrift f{\"u}r Kristallographie : international journal for structural, physical and chemical aspects of crystalline materials. New crystal structures}, volume = {232}, journal = {Zeitschrift f{\"u}r Kristallographie : international journal for structural, physical and chemical aspects of crystalline materials. New crystal structures}, number = {5}, publisher = {de Gruyter}, address = {Berlin}, doi = {10.1515/ncrs-2017-0088}, pages = {839 -- 841}, year = {2017}, abstract = {C18H12N2, tetragonal, I41/a (no. 88), a=13.8885(6) {\AA}, c=13.6718(6) {\AA}, V =2637.2(3) {\AA}3, Z =8, Rgt(F)=0.0295, wRref(F2)=0.0854, T =210 K. CCDC no.: 631823}, language = {en} } @article{KirsteBrietzkeHoldtetal.2019, author = {Kirste, Matthias and Brietzke, Thomas Martin and Holdt, Hans-J{\"u}rgen and Schilde, Uwe}, title = {The crystal structure of 1,12-diazaperylene, C₁₈H₁₀N₂}, series = {Zeitschrift f{\"u}r Kristallographie - New Crystal Structures}, volume = {234}, journal = {Zeitschrift f{\"u}r Kristallographie - New Crystal Structures}, number = {6}, publisher = {De Gruyter}, address = {Berlin}, issn = {2196-7105}, doi = {10.1515/NCRS-2019-0385}, pages = {1255 -- 1257}, year = {2019}, abstract = {C₁₈H₁₀N₂, monoclinic, P2₁/c (no. 14), a=7.9297(9) {\AA}, b=11.4021(14) {\AA}, c=13.3572(15) {\AA}, β=105.363(8)°, V =1164.5(2) {\AA}³, Z =4, Rgt(F)=0.0325, wRref(F²)=0.0774, T =210(2) K.}, language = {en} } @article{GrunwaldKellingHoldtetal.2017, author = {Grunwald, Nicolas and Kelling, Alexandra and Holdt, Hans-J{\"u}rgen and Schilde, Uwe}, title = {The crystal structure of 1,1\&\#8242;-bisisoquinoline, C18H12N2}, series = {Zeitschrift f{\"u}r Kristallographie : international journal for structural, physical and chemical aspects of crystalline materials ; New crystal structures}, volume = {232}, journal = {Zeitschrift f{\"u}r Kristallographie : international journal for structural, physical and chemical aspects of crystalline materials ; New crystal structures}, publisher = {De Gruyter}, address = {Berlin}, issn = {1433-7266}, doi = {10.1515/ncrs-2017-0088}, pages = {839 -- 841}, year = {2017}, abstract = {C18H12N2, tetragonal, I4(1)/a (no. 88), a = 13.8885(6) angstrom, c = 13.6718(6) angstrom, V = 2637.2(3) angstrom(3), Z = 8, R-gt(F) = 0.0295, wR(ref)(F-2) = 0.0854, T = 210 K.}, language = {en} } @article{BrietzkeDietzKellingetal.2017, author = {Brietzke, Thomas Martin and Dietz, Thomas and Kelling, Alexandra and Schilde, Uwe and Bois, Juliana and Kelm, Harald and Reh, Manuel and Schmitz, Markus and Koerzdoerfer, Thomas and Leimk{\"u}hler, Silke and Wollenberger, Ulla and Krueger, Hans-Joerg and Holdt, Hans-J{\"u}rgen}, title = {The 1,6,7,12-Tetraazaperylene Bridging Ligand as an Electron Reservoir and Its Disulfonato Derivative as Redox Mediator in an Enzyme-Electrode Process}, series = {Chemistry - a European journal}, volume = {23}, journal = {Chemistry - a European journal}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0947-6539}, doi = {10.1002/chem.201703639}, pages = {15583 -- 15587}, year = {2017}, abstract = {The homodinuclear ruthenium(II) complex [{Ru(l-N4Me2)}(2)(-tape)](PF6)(4) {[1](PF6)(4)} (l-N4Me2=N,N-dimethyl-2,11-diaza[3.3](2,6)-pyridinophane, tape=1,6,7,12-tetraazaperylene) can store one or two electrons in the energetically low-lying * orbital of the bridging ligand tape. The corresponding singly and doubly reduced complexes [{Ru(l-N4Me2)}(2)(-tape(.-))](PF6)(3) {[2](PF6)(3)} and [{Ru(l-N4Me2)}(2)(-tape(2-))](PF6)(2) {[3](PF6)(2)}, respectively, were electrochemically generated, successfully isolated and fully characterized by single-crystal X-ray crystallography, spectroscopic methods and magnetic susceptibility measurements. The singly reduced complex [2](PF6)(3) contains the -radical tape(.-) and the doubly reduced [3](PF6)(2) the diamagnetic dianion tape(2-) as bridging ligand, respectively. Nucleophilic aromatic substitution at the bridging tape in [1](4+) by two sulfite units gave the complex [{Ru(l-N4Me2)}(2){-tape-(SO3)(2)}](2+) ([4](2+)). Complex dication [4](2+) was exploited as a redox mediator between an anaerobic homogenous reaction solution of an enzyme system (sulfite/sulfite oxidase) and the electrode via participation of the low-energy *-orbital of the disulfonato-substituted bridging ligand tape-(SO3)(2)(2-) (E-red1=-0.1V versus Ag/AgCl/1m KCl in water).}, language = {en} } @article{SchwarzeMicklerDoscheetal.2010, author = {Schwarze, Thomas and Mickler, Wulfhard and Dosche, Carsten and Flehr, Roman and Klamroth, Tillmann and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Saalfrank, Peter and Holdt, Hans-J{\"u}rgen}, title = {Systematic investigation of photoinduced electron transfer controlled by internal charge transfer and its consequences for selective PdCl2 coordination}, issn = {0947-6539}, doi = {10.1002/chem.200902281}, year = {2010}, abstract = {Fluoroionophores of fluorophore-spacer-receptor format were prepared for detection of PdCl2 by fluorescence enhancement. The fluorophore probes 1-13 consist of a fluorophore group, in alkyl spacer and a dithiomaleonitrile PdCl2 receptor. First, varying the length of the alkylene spacer (compounds 1-3) revealed, dominant through-space pathway for oxidative photoinduced electron transfer (PET) in CH2-bridged dithiomaleonitrile fluoroionophores. Second. fluorescent probes 4-9 containing two anthracene or pyrene fragments connected through CH2 bridges to the dithiomaleonitrile unit were synthesized. Modulation of the oxidation potential (E-Ox) through electron-withdrawing or -donating groups on the anthracene moiety regulates file thermodynamic driving force for oxidative PET (Delta G(PET)) in bis(anthrylmethylthio)maleonitriles and therefore the fluorescence quantum yields (Phi(f)), too. The new concept was confirmed and transferred to pyrenyl ligands, and fluorescence enhancements (FE) greater than 3.2 in the presence of PdCl2 were achieved by 7 and 8 (FE=5.4 and 5.2). Finally, for comparison, monofluorophore ligands 10-13 were synthesized.}, language = {en} } @article{SchwarzeMicklerDoscheetal.2010, author = {Schwarze, Thomas and Mickler, Wulfhard and Dosche, Carsten and Flehr, Roman and Klamroth, Tillmann and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Saalfrank, Peter and Holdt, Hans-J{\"u}rgen}, title = {Systematic investigation of photoinduced electron transfer controlled by internal charge transfer and its consequences for selective PdCl2 coordination}, issn = {0947-6539}, year = {2010}, abstract = {Fluoroionophores of fluorophore-spacer-receptor format were prepared for detection of PdCl2 by fluorescence enhancement. The fluorescent probes 1-13 consist of a fluorophore group, an alkyl spacer and a dithiomaleonitrile PdCl2 receptor. First, varying the length of the alkylene spacer (compounds 1-3) revealed a dominant through-space pathway for oxidative photoinduced electron transfer (PET) in CH2-bridged dithiomaleonitrile fluoroionophores. Second, fluorescent probes 4-9 containing two anthracene or pyrene fragments connected through CH2 bridges to the dithiomaleonitrile unit were synthesized. Modulation of the oxidation potential (EOx) through electron-withdrawing or -donating groups on the anthracene moiety regulates the thermodynamic driving force for oxidative PET (GPET) in bis(anthrylmethylthio)maleonitriles and therefore the fluorescence quantum yields (f), too. The new concept was confirmed and transferred to pyrenyl ligands, and fluorescence enhancements (FE) greater than 3.2 in the presence of PdCl2 were achieved by 7 and 8 (FE=5.4 and 5.2). Finally, for comparison, monofluorophore ligands 10-13 were synthesized.}, language = {en} } @article{MondalKreuzerBehrensetal.2019, author = {Mondal, Suvendu Sekhar and Kreuzer, Alex and Behrens, Karsten and Sch{\"u}tz, Gisela and Holdt, Hans-J{\"u}rgen and Hirscher, Michael}, title = {Systematic experimental study on quantum sieving of hydrogen isotopes in metal-amide-imidazolate frameworks with narrow 1-D channels}, series = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, volume = {20}, journal = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, number = {10}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1439-4235}, doi = {10.1002/cphc.201900183}, pages = {1311 -- 1315}, year = {2019}, abstract = {Quantum sieving of hydrogen isotopes is experimentally studied in isostructural hexagonal metal-organic frameworks having 1-D channels, named IFP-1, -3, -4 and -7. Inside the channels, different molecules or atoms restrict the channel diameter periodically with apertures larger (4.2 angstrom for IFP-1, 3.1 angstrom for IFP-3) and smaller (2.1 angstrom for IFP-7, 1.7 angstrom for IFP-4) than the kinetic diameter of hydrogen isotopes. From a geometrical point of view, no gas should penetrate into IFP-7 and IFP-4, but due to the thermally induced flexibility, so-called gate-opening effect of the apertures, penetration becomes possible with increasing temperature. Thermal desorption spectroscopy (TDS) measurements with pure H-2 or D-2 have been applied to study isotope adsorption. Further TDS experiments after exposure to an equimolar H-2/D-2 mixture allow to determine directly the selectivity of isotope separation by quantum sieving. IFP-7 shows a very low selectivity not higher than S=2. The selectivity of the materials with the smallest pore aperture IFP-4 has a constant value of S approximate to 2 for different exposure times and pressures, which can be explained by the 1-D channel structure. Due to the relatively small cavities between the apertures of IFP-4 and IFP-7, molecules in the channels cannot pass each other, which leads to a single-file filling. Therefore, no time dependence is observed, since the quantum sieving effect occurs only at the outermost pore aperture, resulting in a low separation selectivity.}, language = {en} } @article{MondalHovestadtDeyetal.2017, author = {Mondal, Suvendu Sekhar and Hovestadt, Maximilian and Dey, Subarna and Paula, Carolin and Glomb, Sebastian and Kelling, Alexandra and Schilde, Uwe and Janiak, Christoph and Hartmann, Martin and Holdt, Hans-J{\"u}rgen}, title = {Synthesis of a partially fluorinated ZIF-8 analog for ethane/ethene separation}, series = {CrystEngComm}, volume = {19}, journal = {CrystEngComm}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1466-8033}, doi = {10.1039/c7ce01438d}, pages = {5882 -- 5891}, year = {2017}, abstract = {The separation of ethane/ethene mixtures (as well as other paraffin/olefin mixtures) is one of the most important but challenging processes in the petrochemical industry. In this work, we report the synthesis of ZIF-318, isostructural to ZIF-8 but built from the mixed linkers of 2-methylimidazole (L1) and 2-trifluoromethylimidazole (L2) (ZIF-318 = [(Zn(L1)(L2)](n)). The synthesis has been optimized to proceed without ZnO-formation. Using only the L2 linker under solvothermal conditions afforded ZnO-embedded in the H-bonded and non-porous coordination polymer ZnO@[Zn-2(L2)(2)(HCOO)(OH)](n). The slight differences in the size of the substituents (-CH3 vs. -CF3) possibly in combination with different electronic inductive effects led to small but significant changes to the pore size and properties respectively, though the effective pore opening (aperture) size of ZIF-318 remained the same in comparison with ZIF-8. ZIF-318 is chemically (boiling water, methanol, benzene, and wide pH range at room temperature for 1 day), thermally (up to 310 degrees C) stable, and more hydrophobic than ZIF-8 which is proven by contact angle measurement. ZIF-318 can be activated for N-2, CO2, CH4, H-2, ethane, ethane, propane, and propene gases sorptions. Consequently, in breakthrough experiments, the ethane/ethene mixtures can be separated.}, language = {en} } @article{MondalBhuniaDemeshoketal.2008, author = {Mondal, Suvendu Sekhar and Bhunia, Asamanjoy and Demeshok, Serhiy and Kelling, Alexandra and Schilde, Uwe and Janiak, Christoph and Holdt, Hans-J{\"u}rgen}, title = {Synthesis of a Co(II)-imidazolate framework from an anionic linker precursor: gas-sorption ans magnetic proberties}, year = {2008}, abstract = {A Co(II)-imidazolate-4-amide-5-imidate based MOF, IFP-5, is synthesized by using an imidazolate anion-based novel ionic liquid as a linker precursor under solvothermal conditions. IFP-5 shows significant amounts of gas (N2, CO2, CH4 and H2) uptake capacities. IFP-5 exhibits an independent high spin Co(II) centre and antiferromagnetic coupling.}, language = {en} } @article{MondalBhuniaDemeshkoetal.2014, author = {Mondal, Suvendu Sekhar and Bhunia, Asamanjoy and Demeshko, Serhiy and Kelling, Alexandra and Schilde, Uwe and Janiak, Christoph and Holdt, Hans-J{\"u}rgen}, title = {Synthesis of a Co(II)-imidazolate framework from an anionic linker precursor: gas-sorption and magnetic properties}, series = {CrystEngComm}, volume = {16}, journal = {CrystEngComm}, number = {1}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1466-8033}, doi = {10.1039/c3ce42040j}, pages = {39 -- 42}, year = {2014}, abstract = {A Co(II)-imidazolate-4-amide-5-imidate based MOF, IFP-5, is synthesized by using an imidazolate anion-based novel ionic liquid as a linker precursor under solvothermal conditions. IFP-5 shows significant amounts of gas (N-2, CO2, CH4 and H-2) uptake capacities. IFP-5 exhibits an independent high spin Co(II) centre and antiferromagnetic coupling.}, language = {en} } @article{SchwarzeSperlichMuelleretal.2021, author = {Schwarze, Thomas and Sperlich, Eric and M{\"u}ller, Thomas and Kelling, Alexandra and Holdt, Hans-J{\"u}rgen}, title = {Synthesis efforts of acyclic bis(monoalkylamino)maleonitriles and macrocyclic bis(dialkylamino)maleonitriles as fluorescent probes for cations and a new colorimetric copper(II) chemodosimeter}, series = {Helvetica chimica acta}, volume = {104}, journal = {Helvetica chimica acta}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1522-2675}, doi = {10.1002/hlca.202100028}, pages = {e2100028}, year = {2021}, abstract = {In this article, we report on the synthesis of acyclic bis(monoalkylamino)maleonitriles and on the intended synthesis of macrocyclic bis(dialkylamino)maleonitriles to get fluorescent probes for cations. During our efforts to synthesize macrocyclic bis(dialkylamino)maleonitriles, we were only able to isolate macrocyclic bis(dialkylamino)-fumaronitriles. The synthesis of macrocyclic bis(dialkylamino)maleonitriles is challenging, due to the fact that bis-(dialkylamino)fumaronitriles are thermodynamically more stable than the corresponding bis(dialkylamino)-maleonitriles. Further, it turned out that the acyclic bis(monoalkylamino)maleonitriles and macrocyclic bis-(dialkylamino)fumaronitriles are no suitable tools to detect cations by a strong fluorescence enhancement. Further, only the bis(monoalkylamino)maleonitriles, which are bearing a 2-pyridyl unit as an additional complexing unit, are able to selectively recognize copper(II) by a color change from yellow to red.}, language = {en} } @article{MondalDeyBaburinetal.2013, author = {Mondal, Suvendu Sekhar and Dey, Subarna and Baburin, Igor A. and Kelling, Alexandra and Schilde, Uwe and Seifert, Gotthard and Janiak, Christoph and Holdt, Hans-J{\"u}rgen}, title = {Syntheses of two imidazolate-4-amide-5-imidate linker-based hexagonal metal-organic frameworks with flexible ethoxy substituent}, series = {CrystEngComm}, volume = {15}, journal = {CrystEngComm}, number = {45}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1466-8033}, doi = {10.1039/c3ce41632a}, pages = {9394 -- 9399}, year = {2013}, abstract = {A rare example of in situ linker generation with the formation of soft porous Zn- and Co-MOFs (IFP-9 and -10, respectively) is reported. The flexible ethoxy groups of IFP-9 and -10 protrude into the 1D hexagonal channels. The gas-sorption behavior of both materials for H-2, CO2 and CH4 showed wide hysteretic isotherms, typical for MOFs having a flexible substituent which can give rise to a gate effect.}, language = {en} } @article{MondalDeyBaburinetal.2008, author = {Mondal, Suvendu Sekhar and Dey, Subarna and Baburin, Igor A. and Kelling, Alexandra and Schilde, Uwe and Janiak, Christoph and Holdt, Hans-J{\"u}rgen}, title = {Syntheses of two imidazolate-4-amide-5-imidate linker based hexagonal metal-organic frameworks with flexible ethoxy substituent}, doi = {10.1039/C3CE41632A}, year = {2008}, abstract = {A rare example of in situ linker generation with the formation of soft porous Zn- and Co-MOFs (IFP-9 and -10, respectively) is reported. The flexible ethoxy groups of IFP-9 and -10 protrude into the 1D hexagonal channels. The gas- sorption behavior of both materials for H2, CO2 and CH4 showed wide hysteretic isotherms, typical for MOFs having a flexible substituent which can give rise to a gate effect.}, language = {en} }