@article{FreitasdaCruzPfahringerMartensenetal.2021, author = {Freitas da Cruz, Harry and Pfahringer, Boris and Martensen, Tom and Schneider, Frederic and Meyer, Alexander and B{\"o}ttinger, Erwin and Schapranow, Matthieu-Patrick}, title = {Using interpretability approaches to update "black-box" clinical prediction models}, series = {Artificial intelligence in medicine : AIM}, volume = {111}, journal = {Artificial intelligence in medicine : AIM}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0933-3657}, doi = {10.1016/j.artmed.2020.101982}, pages = {13}, year = {2021}, abstract = {Despite advances in machine learning-based clinical prediction models, only few of such models are actually deployed in clinical contexts. Among other reasons, this is due to a lack of validation studies. In this paper, we present and discuss the validation results of a machine learning model for the prediction of acute kidney injury in cardiac surgery patients initially developed on the MIMIC-III dataset when applied to an external cohort of an American research hospital. To help account for the performance differences observed, we utilized interpretability methods based on feature importance, which allowed experts to scrutinize model behavior both at the global and local level, making it possible to gain further insights into why it did not behave as expected on the validation cohort. The knowledge gleaned upon derivation can be potentially useful to assist model update during validation for more generalizable and simpler models. We argue that interpretability methods should be considered by practitioners as a further tool to help explain performance differences and inform model update in validation studies.}, language = {en} } @article{DattaSachsFreitasdaCruzetal.2021, author = {Datta, Suparno and Sachs, Jan Philipp and Freitas da Cruz, Harry and Martensen, Tom and Bode, Philipp and Morassi Sasso, Ariane and Glicksberg, Benjamin S. and B{\"o}ttinger, Erwin}, title = {FIBER}, series = {JAMIA open}, volume = {4}, journal = {JAMIA open}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {2574-2531}, doi = {10.1093/jamiaopen/ooab048}, pages = {10}, year = {2021}, abstract = {Objectives: The development of clinical predictive models hinges upon the availability of comprehensive clinical data. Tapping into such resources requires considerable effort from clinicians, data scientists, and engineers. Specifically, these efforts are focused on data extraction and preprocessing steps required prior to modeling, including complex database queries. A handful of software libraries exist that can reduce this complexity by building upon data standards. However, a gap remains concerning electronic health records (EHRs) stored in star schema clinical data warehouses, an approach often adopted in practice. In this article, we introduce the FlexIBle EHR Retrieval (FIBER) tool: a Python library built on top of a star schema (i2b2) clinical data warehouse that enables flexible generation of modeling-ready cohorts as data frames. Materials and Methods: FIBER was developed on top of a large-scale star schema EHR database which contains data from 8 million patients and over 120 million encounters. To illustrate FIBER's capabilities, we present its application by building a heart surgery patient cohort with subsequent prediction of acute kidney injury (AKI) with various machine learning models. Results: Using FIBER, we were able to build the heart surgery cohort (n = 12 061), identify the patients that developed AKI (n = 1005), and automatically extract relevant features (n = 774). Finally, we trained machine learning models that achieved area under the curve values of up to 0.77 for this exemplary use case. Conclusion: FIBER is an open-source Python library developed for extracting information from star schema clinical data warehouses and reduces time-to-modeling, helping to streamline the clinical modeling process.}, language = {en} }