@article{ProkhorovFoersterLesuretal.2018, author = {Prokhorov, Boris E. and F{\"o}rster, Matthias and Lesur, Vincent and Namgaladze, Alexander A. and Holschneider, Matthias and Stolle, Claudia}, title = {Modeling of the ionospheric current system and calculating its}, series = {Magnetic Fields in the Solar System: Planets, Moons and Solar Wind Interactions}, volume = {448}, journal = {Magnetic Fields in the Solar System: Planets, Moons and Solar Wind Interactions}, publisher = {Springer}, address = {Dordrecht}, isbn = {978-3-319-64292-5}, issn = {0067-0057}, doi = {10.1007/978-3-319-64292-5_10}, pages = {263 -- 292}, year = {2018}, abstract = {The additional magnetic field produced by the ionospheric current system is a part of the Earth's magnetic field. This current system is a highly variable part of a global electric circuit. The solar wind and interplanetary magnetic field (IMF) interaction with the Earth's magnetosphere is the external driver for the global electric circuit in the ionosphere. The energy is transferred via the field-aligned currents (FACs) to the Earth's ionosphere. The interactions between the neutral and charged particles in the ionosphere lead to the so-called thermospheric neutral wind dynamo which represents the second important driver for the global current system. Both processes are components of the magnetosphere-ionosphere-thermosphere (MIT) system, which depends on solar and geomagnetic conditions, and have significant seasonal and UT variations. The modeling of the global dynamic Earth's ionospheric current system is the first aim of this investigation. For our study, we use the Potsdam version of the Upper Atmosphere Model (UAM-P). The UAM is a first-principle, time-dependent, and fully self-consistent numerical global model. The model includes the thermosphere, ionosphere, plasmasphere, and inner magnetosphere as well as the electrodynamics of the coupled MIT system for the altitudinal range from 80 (60) km up to the 15 Earth radii. The UAM-P differs from the UAM by a new electric field block. For this study, the lower latitudinal and equatorial electrodynamics of the UAM-P model was improved. The calculation of the ionospheric current system's contribution to the Earth's magnetic field is the second aim of this study. We present the method, which allows computing the additional magnetic field inside and outside the current layer as generated by the space current density distribution using the Biot-Savart law. Additionally, we perform a comparison of the additional magnetic field calculation using 2D (equivalent currents) and 3D current distribution.}, language = {en} } @article{FatkullinFoersterSchwarz1999, author = {Fatkullin, Mars N. and F{\"o}rster, Matthias and Schwarz, Udo}, title = {Irregularities of electron density and temperature in the day sector of the plasmasphere base during the summer season at high solar activity by observations of the aktivnyi satellite}, year = {1999}, abstract = {Based on the data of the Magion2 subsatellite of the Intercosmos24 satellite, an example of small-scale irregularities of the electron concentration with linear dimensions l ~ 100-300 m in the polar ion- osphere of the morning sector under field-aligned currents at altitudes of 1800-2030 km during the main phase of the magnetic storm of June 13, 1990 is presented. The dependence of the spectral index of the above small-scale irregularities on latitude is determined for the first time. Certain mechanisms of the generation of these small-scale irregularities are also qualitatively discussed.}, language = {en} }