@article{GeierDorschPelisolietal.2022, author = {Geier, Stephan and Dorsch, Matti and Pelisoli, Ingrid and Reindl, Nicole and Heber, Ulrich and Irrgang, Andreas}, title = {Radial velocity variability and the evolution of hot subdwarf stars}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {661}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/202143022}, pages = {15}, year = {2022}, abstract = {Hot subdwarf stars represent a late and peculiar stage in the evolution of low-mass stars, since they are likely formed by close binary interactions. In this work, we perform a radial velocity (RV) variability study of a sample of 646 hot subdwarfs with multi-epoch radial velocities based on spectra from Sloan Digital Sky Survey (SDSS) and Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST). The atmospheric parameters and RVs were taken from the literature. For stars with archival spectra but without literature values, we determined the parameters by fitting model atmospheres. In addition, we redetermined the atmospheric parameters and RVs for all the He-enriched sdO/Bs. This broad sample allowed us to study RV-variability as a function of the location in the T-eff - log g- and T-eff - log n(He)/n(H) diagrams in a statistically significant way. We used the fraction of RV-variable stars and the distribution of the maximum RV variations Delta RVmax as diagnostics. Both indicators turned out to be quite inhomogeneous across the studied parameter ranges. A striking feature is the completely dissimilar behaviour of He-poor and He-rich hot subdwarfs. While the former have a high fraction of close binaries, almost no significant RV variations could be detected for the latter. This has led us to the conclusion that there is likely no evolutionary connection between these subtypes. On the other hand, intermediate He-rich- and extreme He-rich sdOB/Os are more likely to be related. Furthermore, we conclude that the vast majority of this population is formed via one or several binary merger channels. Hot subdwarfs with temperatures cooler than similar to 24 000 K tend to show fewer and smaller RV-variations. These objects might constitute a new subpopulation of binaries with longer periods and late-type or compact companions. The RV-variability properties of the extreme horizontal branch (EHB) and corresponding post-EHB populations of the He-poor hot subdwarfs match and confirm the predicted evolutionary connection between them. Stars found below the canonical EHB at somewhat higher surface gravities show large RV variations and a high RV variability fraction. These properties are consistent with most of them being low-mass EHB stars or progenitors of low-mass helium white dwarfs in close binaries.}, language = {en} } @article{WernerReindlDorschetal.2022, author = {Werner, Klaus and Reindl, Nicole and Dorsch, Matti and Geier, Stephan and Munari, Ulisse and Raddi, Roberto}, title = {Non-local thermodynamic equilibrium spectral analysis of five hot, hydrogen-deficient pre-white dwarfs}, series = {Astronomy and Astrophysics}, volume = {658}, journal = {Astronomy and Astrophysics}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/202142397}, pages = {15}, year = {2022}, abstract = {Hot, compact, hydrogen-deficient pre-white dwarfs (pre-WDs) with effective temperatures of Teff > 70 000 K and a surface gravity of 5.0 < logg < 7.0 are rather rare objects despite recent and ongoing surveys. It is believed that they are the outcome of either single star evolution (late helium-shell flash or late helium-core flash) or binary star evolution (double WD merger). Their study is interesting because the surface elemental abundances reflect the physics of thermonuclear flashes and merger events. Spectroscopically they are divided in three different classes, namely PG1159, O(He), or He-sdO. We present a spectroscopic analysis of five such stars that turned out to have atmospheric parameters in the range Teff = 70 000-80 000 K and logg = 5.2-6.3. The three investigated He-sdOs have a relatively high hydrogen mass fraction (10\%) that is unexplained by both single (He core flash) and binary evolution (He-WD merger) scenarios. The O(He) star JL 9 is probably a binary helium-WD merger, but its hydrogen content (6\%) is also at odds with merger models. We found that RL 104 is the 'coolest' (Teff = 80 000 K) member of the PG1159 class in a pre-WD stage. Its optical spectrum is remarkable because it exhibits C{\^a}€» IV lines involving Rydberg states with principal quantum numbers up to n = 22. Its rather low mass (0.48-0.02+0.03 M·) is difficult to reconcile with the common evolutionary scenario for PG1159 stars due to it being the outcome of a (very) late He-shell flash. The same mass-problem faces a merger model of a close He-sdO plus CO WD binary that predicts PG1159-like abundances. Perhaps RL 104 originates from a very late He-shell flash in a CO/He WD formed by a merger of two low-mass He-WDs.}, language = {en} } @article{LatourDorschHeber2019, author = {Latour, Marilyn and Dorsch, Matti and Heber, Ulrich}, title = {Heavy metal enrichment in the intermediate He-sdOB pulsator Feige 46}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {629}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201936247}, pages = {12}, year = {2019}, abstract = {The intermediate He-enriched hot subdwarf star Feige 46 was recently reported as the second member of the V366 Aqr (or He-sdOBV) pulsating class. Feige 46 is very similar to the prototype of the class, LS IV-14 degrees 116, not only in terms of pulsational properties, but also in terms of atmospheric parameters and kinematic properties. LS IV-14 degrees 116 is additionally characterized by a very peculiar chemical composition, with extreme overabundances of the trans-iron elements Ge, Sr, Y, and Zr. We investigate the possibility that the similarity between the two pulsators extends to their chemical composition. We retrieved archived optical and UV spectroscopic observations of Feige 46 and performed an abundance analysis using model atmospheres and synthetic spectra computed with TLUSTY and SYNSPEC. In total, we derived abundances for 16 elements and provide upper limits for four additional elements. Using absorption lines in the optical spectrum of the star we measure an enrichment of more than 10 000x solar for yttrium and zirconium. The UV spectrum revealed that strontium is equally enriched. Our results confirm that Feige 46 is not only a member of the now growing group of heavy metal subdwarfs, but also has an abundance pattern that is remarkably similar to that of LS IV-14 degrees 116.}, language = {en} } @article{DorschJefferyIrrgangetal.2021, author = {Dorsch, Matti and Jeffery, C. Simon and Irrgang, Andreas and Woolf, Vincent and Heber, Ulrich}, title = {EC 22536-5304}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {653}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/202141381}, pages = {22}, year = {2021}, abstract = {Helium-burning hot subdwarf stars of spectral types O and B (sdO/B) are thought to be produced through various types of binary interactions. The helium-rich hot subdwarf star EC 22536-5304 was recently found to be extremely enriched in lead. Here, we show that EC 22536-5304 is a binary star with a metal-poor subdwarf F-type (sdF) companion. We performed a detailed analysis of high-resolution SALT/HRS and VLT/UVES spectra, deriving metal abundances for the hot subdwarf, as well as atmospheric parameters for both components. Because we consider the contribution of the sdF star, the derived lead abundance for the sdOB, + 6.3 +/- 0.3 dex relative to solar, is even higher than previously thought. We derive T-eff = 6210 +/- 70 K, log g = 4.64 +/- 0.10, [FE/H] = - 1.95 +/- 0.04, and [alpha/Fe] = + 0.40 +/- 0.04 for the sdF component. Radial velocity variations, although poorly sampled at present, indicate that the binary system has a long orbital period of about 457 days. This suggests that the system was likely formed through stable Roche lobe overflow (RLOF). A kinematic analysis shows that EC 22536-5304 is on an eccentric orbit around the Galactic centre. This, as well as the low metallicity and strong alpha enhancement of the sdF-type companion, indicate that EC 22536-5304 is part of the Galactic halo or metal-weak thick disc. As the first long-period hot subdwarf binary at [FE/H] less than or similar to- 1, EC 22536-5304 may help to constrain the RLOF mechanism for mass transfer from low-mass, low-metallicity red giant branch (RGB) stars to main-sequence companions.}, language = {en} } @article{PelisoliDorschHeberetal.2022, author = {Pelisoli, Ingrid and Dorsch, Matti and Heber, Ulrich and G{\"a}nsicke, Boris and Geier, Stephan and Kupfer, Thomas and Nemeth, Peter and Scaringi, Simone and Schaffenroth, Veronika}, title = {Discovery and analysis of three magnetic hot subdwarf stars}, series = {Monthly notices of the Royal Astronomical Society}, volume = {515}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford University Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stac1069}, pages = {2496 -- 2510}, year = {2022}, abstract = {Magnetic fields can play an important role in stellar evolution. Among white dwarfs, the most common stellar remnant, the fraction of magnetic systems is more than 20 per cent. The origin of magnetic fields in white dwarfs, which show strengths ranging from 40 kG to hundreds of MG, is still a topic of debate. In contrast, only one magnetic hot subdwarf star has been identified out of thousands of known systems. Hot subdwarfs are formed from binary interaction, a process often associated with the generation of magnetic fields, and will evolve to become white dwarfs, which makes the lack of detected magnetic hot subdwarfs a puzzling phenomenon. Here we report the discovery of three new magnetic hot subdwarfs with field strengths in the range 300-500 kG. Like the only previously known system, they are all helium-rich O-type stars (He-sdOs). We analysed multiple archival spectra of the three systems and derived their stellar properties. We find that they all lack radial velocity variability, suggesting formation via a merger channel. However, we derive higher than typical hydrogen abundances for their spectral type, which are in disagreement with current model predictions. Our findings suggest a lower limit to the magnetic fraction of hot subdwarfs of 0.147(+0.143)(-0.047) per cent, and provide evidence for merger-induced magnetic fields which could explain white dwarfs with field strengths of 50-150 MG, assuming magnetic flux conservation.}, language = {en} }