@article{VossBookhagenSachseetal.2020, author = {Voss, Katalyn A. and Bookhagen, Bodo and Sachse, Dirk and Chadwick, Oliver A.}, title = {Variation of deuterium excess in surface waters across a 5000-m elevation gradient in eastern Nepal}, series = {Journal of hydrology}, volume = {586}, journal = {Journal of hydrology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2020.124802}, pages = {17}, year = {2020}, abstract = {The strong elevation gradient of the Himalaya allows for investigation of altitude and orographic impacts on surface water delta O-18 and delta D stable isotope values. This study differentiates the time- and altitude-variable contributions of source waters to the Arun River in eastern Nepal. It provides isotope data along a 5000-m gradient collected from tributaries as well as groundwater, snow, and glacial-sourced surface waters and time-series data from April to October 2016. We find nonlinear trends in delta O-18 and delta D lapse rates with high-elevation lapse rates (4000-6000 masl) 5-7 times more negative than low-elevation lapse rates (1000-3000 masl). A distinct seasonal signal in delta O-18 and delta D lapse rates indicates time-variable source-water contributions from glacial and snow meltwater as well as precipitation transitions between the Indian Summer Monsoon and Winter Westerly Disturbances. Deuterium excess correlates with the extent of snowpack and tracks melt events during the Indian Summer Monsoon season. Our analysis identifies the influence of snow and glacial melt waters on river composition during low-flow conditions before the monsoon (April/May 2016) followed by a 5-week transition to the Indian Summer Monsoon-sourced rainfall around mid-June 2016. In the post-monsoon season, we find continued influence from glacial melt waters as well as ISM-sourced groundwater.}, language = {en} } @article{HartmanBookhagenChadwick2016, author = {Hartman, Brett D. and Bookhagen, Bodo and Chadwick, Oliver A.}, title = {The effects of check dams and other erosion control structures on the restoration of Andean bofedal ecosystems}, series = {Restoration Ecology}, volume = {24}, journal = {Restoration Ecology}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1061-2971}, doi = {10.1111/rec.12402}, pages = {761 -- 772}, year = {2016}, abstract = {Restoring degraded lands in rural environments that are heavily managed to meet subsistence needs is a challenge due to high rates of disturbance and resource extraction. This study investigates the efficacy of erosion control structures (ECSs) as restoration tools in the context of a watershed rehabilitation and wet meadow (bofedal) restoration program in the Bolivian Andes. In an effort to enhance water security and increase grazing stability, Aymara indigenous communities built over 15,000 check dams, 9,100 terraces, 5,300 infiltration ditches, and 35 pasture improvement trials. Communities built ECSs at different rates, and we compared vegetation change in the highest restoration management intensity, lowest restoration management intensity, and nonproject control communities. We used line transects to measure changes in vegetation cover and standing water in gullies with check dams and without check dams, and related these ground measurements to a time series (1986-2009) of normalized difference vegetation index derived from Landsat TM5 images. Evidence suggests that check dams increase bofedal vegetation and standing water at a local scale, and lead to increased greenness at a basin scale when combined with other ECSs. Watershed rehabilitation enhances ecosystem services significant to local communities (grazing stability, water security), which creates important synergies when conducting land restoration in rural development settings.}, language = {en} }