@article{CanitzKirschbaumTiedemann2020, author = {Canitz, Julia and Kirschbaum, Frank and Tiedemann, Ralph}, title = {Transcriptome-wide single nucleotide polymorphisms related to electric organ discharge differentiation among African weakly electric fish species}, series = {PLoS one}, volume = {15}, journal = {PLoS one}, number = {10}, publisher = {PLoS}, address = {San Francisco, California, US}, issn = {1932-6203}, doi = {10.1371/journal.pone.0240812}, pages = {21}, year = {2020}, abstract = {African weakly electric fish of the mormyrid genus Campylomormyrus generate pulse-type electric organ discharges (EODs) for orientation and communication. Their pulse durations are species-specific and elongated EODs are a derived trait. So far, differential gene expression among tissue-specific transcriptomes across species with different pulses and point mutations in single ion channel genes indicate a relation of pulse duration and electrocyte geometry/excitability. However, a comprehensive assessment of expressed Single Nucleotide Polymorphisms (SNPs) throughout the entire transcriptome of African weakly electric fish, with the potential to identify further genes influencing EOD duration, is still lacking. This is of particular value, as discharge duration is likely based on multiple cellular mechanisms and various genes. Here we provide the first transcriptome-wide SNP analysis of African weakly electric fish species (genus Campylomormyrus) differing by EOD duration to identify candidate genes and cellular mechanisms potentially involved in the determination of an elongated discharge of C. tshokwe. Non-synonymous substitutions specific to C. tshokwe were found in 27 candidate genes with inferred positive selection among Campylomormyrus species. These candidate genes had mainly functions linked to transcriptional regulation, cell proliferation and cell differentiation. Further, by comparing gene annotations between C. compressirostris (ancestral short EOD) and C. tshokwe (derived elongated EOD), we identified 27 GO terms and 2 KEGG pathway categories for which C. tshokwe significantly more frequently exhibited a species-specific expressed substitution than C. compressirostris. The results indicate that transcriptional regulation as well cell proliferation and differentiation take part in the determination of elongated pulse durations in C. tshokwe. Those cellular processes are pivotal for tissue morphogenesis and might determine the shape of electric organs supporting the observed correlation between electrocyte geometry/tissue structure and discharge duration. The inferred expressed SNPs and their functional implications are a valuable resource for future investigations on EOD durations.}, language = {en} } @article{VencesLyraKuenemanetal.2016, author = {Vences, Miguel and Lyra, Mariana L. and Kueneman, Jordan G. and Bletz, Molly C. and Archer, Holly M. and Canitz, Julia and Handreck, Svenja and Randrianiaina, Roger-Daniel and Struck, Ulrich and Bhuju, Sabin and Jarek, Michael and Geffers, Robert and McKenzie, Valerie J. and Tebbe, Christoph C. and Haddad, CLio F. B. and Glos, Julian}, title = {Gut bacterial communities across tadpole ecomorphs in two diverse tropical anuran faunas}, series = {The science of nature}, volume = {103}, journal = {The science of nature}, publisher = {Springer}, address = {Heidelberg}, issn = {0028-1042}, doi = {10.1007/s00114-016-1348-1}, pages = {68 -- 73}, year = {2016}, abstract = {Animal-associated microbial communities can play major roles in the physiology, development, ecology, and evolution of their hosts, but the study of their diversity has yet focused on a limited number of host species. In this study, we used high-throughput sequencing of partial sequences of the bacterial 16S rRNA gene to assess the diversity of the gut-inhabiting bacterial communities of 212 specimens of tropical anuran amphibians from Brazil and Madagascar. The core gut-associated bacterial communities among tadpoles from two different continents strongly overlapped, with eight highly represented operational taxonomic units (OTUs) in common. In contrast, the core communities of adults and tadpoles from Brazil were less similar with only one shared OTU. This suggests a community turnover at metamorphosis. Bacterial diversity was higher in tadpoles compared to adults. Distinct differences in composition and diversity occurred among gut bacterial communities of conspecific tadpoles from different water bodies and after experimental fasting for 8 days, demonstrating the influence of both environmental factors and food on the community structure. Communities from syntopic tadpoles clustered by host species both in Madagascar and Brazil, and the Malagasy tadpoles also had species-specific isotope signatures. We recommend future studies to analyze the turnover of anuran gut bacterial communities at metamorphosis, compare the tadpole core communities with those of other aquatic organisms, and assess the possible function of the gut microbiota as a reservoir for protective bacteria on the amphibian skin.}, language = {en} }