@article{CalitriSommerNortonetal.2019, author = {Calitri, Francesca and Sommer, Michael and Norton, Kevin and Temme, Arnaud and Brandova, Dagmar and Portes, Raquel and Christl, Marcus and Ketterer, Mike E. and Egli, Markus}, title = {Tracing the temporal evolution of soil redistribution rates in an agricultural landscape using Pu239+240 and Be-10}, series = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, volume = {44}, journal = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, number = {9}, publisher = {Wiley}, address = {Hoboken}, issn = {0197-9337}, doi = {10.1002/esp.4612}, pages = {1783 -- 1798}, year = {2019}, abstract = {Two principal groups of processes shape mass fluxes from and into a soil: vertical profile development and lateral soil redistribution. Periods having predominantly progressive soil forming processes (soil profile development) alternate with periods having predominantly regressive processes (erosion). As a result, short-term soil redistribution - years to decades - can differ substantially from long-term soil redistribution; i.e. centuries to millennia. However, the quantification of these processes is difficult and consequently their rates are poorly understood. To assess the competing roles of erosion and deposition we determined short- and long-term soil redistribution rates in a formerly glaciated area of the Uckermark, northeast Germany. We compared short-term erosion or accumulation rates using plutonium-239 and -240 (239+240Pu) and long-term rates using both in situ and meteoric cosmogenic beryllium-10 (10Be). Three characteristic process domains have been analysed in detail: a flat landscape position having no erosion/deposition, an erosion-dominated mid-slope, and a deposition-dominated lower-slope site. We show that the short-term mass erosion and accumulation rates are about one order of magnitude higher than long-term redistribution rates. Both, in situ and meteoric 10Be provide comparable results. Depth functions, and therefore not only an average value of the topsoil, give the most meaningful rates. The long-term soil redistribution rates were in the range of -2.1 t ha-1 yr-1 (erosion) and +0.26 t ha-1 yr-1 (accumulation) whereas the short-term erosion rates indicated strong erosion of up to 25 t ha-1 yr-1 and accumulation of 7.6 t ha-1 yr-1. Our multi-isotope method identifies periods of erosion and deposition, confirming the 'time-split approach' of distinct different phases (progressive/regressive) in soil evolution. With such an approach, temporally-changing processes can be disentangled, which allows the identification of both the dimensions of and the increase in soil erosion due to human influence}, language = {en} } @article{CalitriSommervanderMeijetal.2020, author = {Calitri, Francesca and Sommer, Michael and van der Meij, Marijn W. and Egli, Markus}, title = {Soil erosion along a transect in a forested catchment: recent or ancient processes?}, series = {Catena : an interdisciplinary journal of soil science, hydrology, geomorphology focusing on geoecology and landscape evolution}, volume = {194}, journal = {Catena : an interdisciplinary journal of soil science, hydrology, geomorphology focusing on geoecology and landscape evolution}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0341-8162}, doi = {10.1016/j.catena.2020.104683}, pages = {11}, year = {2020}, abstract = {Forested areas are assumed not to be influenced by erosion processes. However, forest soils of Northern Germany in a hummocky ground moraine landscape can sometimes exhibit a very shallow thickness on crest positions and buried soils on slope positions. The question consequently is: Are these on-going or ancient erosional and depositional processes? Plutonium isotopes act as soil erosion/deposition tracers for recent (last few decades) processes. Here, we quantified the 239+240PU inventories in a small, forested catchment (ancient forest "Melzower Forst", deciduous trees), which is characterised by a hummocky terrain including a kettle hole. Soil development depths (depth to C horizon) and 239+240PU inventories along a catena of sixteen different profiles were determined and correlated to relief parameters. Moreover, we compared different modelling approaches to derive erosion rates from Pu data.
We find a strong relationship between soil development depths, distance-to-sink and topography along the catena. Fully developed Retisols (thicknesses > 1 m) in the colluvium overlay old land surfaces as documented by fossil Ah horizons. However, we found no relationship of Pu-based erosion rates to any relief parameter. Instead, 239+240PU inventories showed a very high local, spatial variability (36-70 Bq m(-2)). Low annual rainfall, spatially distributed interception and stem flow might explain the high variability of the 239+240PU inventories, giving rise to a patchy input pattern. Different models resulted in quite similar erosion and deposition rates (max: -5 t ha(-1) yr(-1) to +7.3 t ha(-1) yr(-1)). Although some rates are rather high, the magnitude of soil erosion and deposition - in terms of soil thickness change - is negligible during the last 55 years. The partially high values are an effect of the patchy Pu deposition on the forest floor. This forest has been protected for at least 240 years. Therefore rather natural events and anthropogenic activities during medieval times or even earlier must have caused the observed soil pattern, which documents strong erosion and deposition processes.}, language = {en} }