@article{BoumaRichterWendt2021, author = {Bouma, Sietske Jeltje Deirdre and Richter, Philipp and Wendt, Martin}, title = {The relation between Ly alpha absorbers and local galaxy filaments}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {647}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/202039786}, pages = {16}, year = {2021}, abstract = {Context. The intergalactic medium (IGM) is believed to contain the majority of baryons in the universe and to trace the same dark matter structure as galaxies, forming filaments and sheets. Ly alpha absorbers, which sample the neutral component of the IGM, have been extensively studied at low and high redshift, but the exact relation between Ly alpha absorption, galaxies, and the large-scale structure is observationally not well constrained.Aims. In this study, we aim at characterising the relation between Ly alpha absorbers and nearby over-dense cosmological structures (galaxy filaments) at recession velocities Delta v <= 6700 km s(-1) by using archival observational data from various instruments.Methods. We analyse 587 intervening Ly alpha absorbers in the spectra of 302 extragalactic background sources obtained with the Cosmic Origins Spectrograph (COS) installed on the Hubble Space Telescope (HST). We combine the absorption line information with galaxy data of five local galaxy filaments from the V8k catalogue.Results. Along the 91 sightlines that pass close to a filament, we identify 215 (227) Ly alpha absorption systems (components). Among these, 74 Ly alpha systems are aligned in position and velocity with the galaxy filaments, indicating that these absorbers and the galaxies trace the same large-scale structure. The filament-aligned Ly alpha absorbers have a similar to 90\% higher rate of incidence (d?/dz=189 for log N(HI) >= 13.2) and a slightly shallower column density distribution function slope (-beta=-1.47) relative to the general Ly alpha population at z=0, reflecting the filaments' matter over-density. The strongest Ly alpha absorbers are preferentially found near galaxies or close to the axis of a filament, although there is substantial scatter in this relation. Our sample of absorbers clusters more strongly around filament axes than a randomly distributed sample would do (as confirmed by a Kolmogorov-Smirnov test), but the clustering signal is less pronounced than for the galaxies in the filaments.}, language = {en} } @article{BoumaRichterFechner2019, author = {Bouma, Sietske Jeltje Deirdre and Richter, Philipp and Fechner, Cora}, title = {A population of high-velocity absorption-line systems residing in the Local Group}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {627}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201935078}, pages = {12}, year = {2019}, abstract = {Aims. We investigated the ionisation conditions and distances of Galactic high-velocity clouds (HVCs) in the Galactic halo and beyond in the direction of the Local Group (LG) barycentre and anti-barycentre, by studying spectral data of 29 extragalactic background sources obtained with the Cosmic Origins Spectropgraph (COS) installed on the Hubble Space Telescope (HST). Methods. We model column-densities of low, intermediate, and high ions such as Si ii, C ii, Si iii, Si vi, and C iv, and use these data to construct a set of Cloudy ionisation models. Results. In total, we found 69 high-velocity absorption components along the 29 lines of sight. The components in the direction of the LG barycentre span the entire range of studied velocities, 100 less than or similar to vertical bar nu(LSR)vertical bar less than or similar to 400 km s(-1), while those in the anti-barycentre sample have velocities up to about 300 km s(-1). For 49 components, we infer the gas densities. In the direction of the LG barycentre, the gas densities exhibit a wide range from log nH = -3.96 to -2.55, while in the anti-barycentre direction the densities are systematically higher, log nH > -3.25. The barycentre absorbers can be split into two groups based on their density: a high-density group with log nH > -3.54, which can be affected by the Milky Way radiation field, and a low-density group (log nH <= -3.54). The latter has very low thermal pressures of P/k < 7.3 Kcm(-3). Conclusions. Our study shows that part of the absorbers in the LG barycentre direction trace gas at very low gas densities and thermal pressures. These properties indicate that the absorbers are located beyond the virial radius of the Milky Way. Our study also confirms results from earlier, single-sightline studies, suggesting the presence of a metal-enriched intragroup medium filling the LG near its barycentre.}, language = {en} }