@article{BlayneyDupontNivetNajmanetal.2019, author = {Blayney, Tamsin and Dupont-Nivet, Guillaume and Najman, Yani and Proust, Jean-Noel and Meijer, Niels and Roperch, Pierrick and Sobel, Edward and Millar, Ian and Guo, Zhaojie}, title = {Tectonic Evolution of the Pamir Recorded in the Western Tarim Basin (China)}, series = {Tectonics}, volume = {38}, journal = {Tectonics}, number = {2}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1029/2018TC005146}, pages = {492 -- 515}, year = {2019}, abstract = {The northward indentation of the Pamir salient into the Tarim basin at the western syntaxis of the India-Asia collision zone is the focus of controversial models linking lithospheric to surface and atmospheric processes. Here we report on tectonic events recorded in the most complete and best-dated sedimentary sequences from the western Tarim basin flanking the eastern Pamir (the Aertashi section), based on sedimentologic, provenance, and magnetostratigraphic analyses. Increased tectonic subsidence and a shift from marine to continental fluvio-deltaic deposition at 41Ma indicate that far-field deformation from the south started to affect the Tarim region. A sediment accumulation hiatus from 24.3 to 21.6Ma followed by deposition of proximal conglomerates is linked to fault propagation into the Tarim basin. From 21.6 to 15.0Ma, increasing accumulation rates of fining upward clastics is interpreted as the expression of a major dextral transtensional system linking the Kunlun to the Tian Shan ahead of the northward Pamir indentation. At 15.0Ma, the appearance of North Pamir-sourced conglomerates followed at 11Ma by Central Pamir-sourced volcanics coincides with a shift to E-W compression, clockwise vertical-axis rotations and the onset of growth strata associated with the activation of the local east vergent Qimugen thrust wedge. Together, this enables us to interpret that Pamir indentation into Tarim had started by 24.3Ma, reached the study location by 15.0Ma and had passed it by 11Ma, providing kinematic constraints on proposed tectonic models involving intracontinental subduction and delamination.}, language = {en} } @article{BlayneyNajmanDupontNivetetal.2016, author = {Blayney, Tamsin and Najman, Yani and Dupont-Nivet, Guillaume and Carter, Andrew and Millar, Ian and Garzanti, Eduardo and Sobel, Edward and Rittner, Martin and Ando, Sergio and Guo, Zhaojie and Vezzoli, Giovanni}, title = {Indentation of the Pamirs with respect to the northern margin of Tibet: Constraints from the Tarim basin sedimentary record}, series = {Tectonics}, volume = {35}, journal = {Tectonics}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1002/2016TC004222}, pages = {2345 -- 2369}, year = {2016}, abstract = {The Pamirs represent the indented westward continuation of the northern margin of the Tibetan Plateau, dividing the Tarim and Tajik basins. Their evolution may be a key factor influencing aridification of the Asian interior, yet the tectonics of the Pamir Salient are poorly understood. We present a provenance study of the Aertashi section, a Paleogene to late Neogene clastic succession deposited in the Tarim basin to the north of the NW margin of Tibet (the West Kunlun) and to the east of the Pamirs. Our detrital zircon U-Pb ages coupled with zircon fission track, bulk rock Sm-Nd, and petrography data document changes in contributing source terranes during the Oligocene to Miocene, which can be correlated to regional tectonics. We propose a model for the evolution of the Pamir and West Kunlun (WKL), in which the WKL formed topography since at least similar to 200 Ma. By similar to 25 Ma, movement along the Pamir-bounding faults such as the Kashgar-Yecheng Transfer System had commenced, marking the onset of Pamir indentation into the Tarim-Tajik basin. This is coincident with basinward expansion of the northern WKL margin, which changed the palaeodrainage pattern within the Kunlun, progressively cutting off the more southerly WKL sources from the Tarim basin. An abrupt change in the provenance and facies of sediments at Aertashi has a maximum age of 14 Ma; this change records when the Pamir indenter had propagated sufficiently far north that the North Pamir was now located proximal to the Aertashi region.}, language = {en} }