@article{YuanBraunGueritetal.2019, author = {Yuan, Xiaoping P. and Braun, Jean and Guerit, Laure and Rouby, D. and Cordonnier, G.}, title = {A New Efficient Method to Solve the Stream Power Law Model Taking Into Account Sediment Deposition}, series = {Journal of geophysical research : Earth surface}, volume = {124}, journal = {Journal of geophysical research : Earth surface}, number = {6}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9003}, doi = {10.1029/2018JF004867}, pages = {1346 -- 1365}, year = {2019}, abstract = {The stream power law model has been widely used to represent erosion by rivers but does not take into account the role played by sediment in modulating erosion and deposition rates. Davy and Lague (2009, ) provide an approach to address this issue, but it is computationally demanding because the local balance between erosion and deposition depends on sediment flux resulting from net upstream erosion. Here, we propose an efficient (i.e., O(N) and implicit) method to solve their equation. This means that, unlike other methods used to study the complete dynamics of fluvial systems (e.g., including the transition from detachment-limited to transport-limited behavior), our method is unconditionally stable even when large time steps are used. We demonstrate its applicability by performing a range of simulations based on a simple setup composed of an uplifting region adjacent to a stable foreland basin. As uplift and erosion progress, the mean elevations of the uplifting relief and the foreland increase, together with the average slope in the foreland. Sediments aggrade in the foreland and prograde to reach the base level where sediments are allowed to leave the system. We show how the topography of the uplifting relief and the stratigraphy of the foreland basin are controlled by the efficiency of river erosion and the efficiency of sediment transport by rivers. We observe the formation of a steady-state geometry in the uplifting region, and a dynamic steady state (i.e., autocyclic aggradation and incision) in the foreland, with aggradation and incision thicknesses up to tens of meters.}, language = {en} } @article{YuanBraunGueritetal.2019, author = {Yuan, Xiaoping and Braun, Jean and Guerit, Laure and Simon, Brendan and Bovy, Beno{\^i}t and Rouby, Delphine and Robin, C{\´e}cile and Jiao, R.}, title = {Linking continental erosion to marine sediment transport and deposition: A new implicit and O(N) method for inverse analysis}, series = {Earth \& planetary science letters}, volume = {524}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2019.115728}, pages = {15}, year = {2019}, abstract = {The marine sedimentary record contains unique information about the history of erosion, uplift and climate of the adjacent continent. Inverting this record has been the purpose of many numerical studies. However, limited attention has been given to linking continental erosion to marine sediment transport and deposition in large-scale surface process evolution models. Here we present a new numerical method for marine sediment transport and deposition that is directly coupled to a landscape evolution algorithm solving for the continental fluvial and hillslope erosion equations using implicit and O(N) algorithms. The new method takes into account the sorting of grain sizes (e.g., silt and sand) in the marine domain using a non-linear multiple grain-size diffusion equation and assumes that the sediment flux exported from the continental domain is proportional to the bathymetric slope. Specific transport coefficients and compaction factors are assumed for the two different grain sizes to simulate the stratigraphic architecture. The resulting set of equations is solved using an efficient (O(N) and implicit) algorithm. It can thus be used to invert stratigraphic geometries using a Bayesian approach that requires a large number of simulations. This new method is used to invert the sedimentary geometry of a natural example, the Ogooue Delta (Gabon), over the last similar to 5 Myr. The objective is to unravel the set of erosional histories of the adjacent continental domain compatible with the observed geometry of the offshore delta. For this, we use a Bayesian inversion scheme in which the misfit function is constructed by comparing four geometrical parameters between the natural and the simulated delta: the volume of sediments stored in the delta, the surface slope, the initial and the final shelf lengths. We find that the best-fit values of the transport coefficients for silt in the marine domain are in the range of 300 - 500 m(2)/yr, in agreement with previous studies on offshore diffusion. We also show that, in order to fit the sedimentary geometry, erosion rate on the continental domain must have increased by a factor of 6 to 8 since 5.3 Ma. (C) 2019 Elsevier B.V. All rights reserved.}, language = {en} }