@article{StolleSchwanghartAndermannetal.2018, author = {Stolle, Amelie and Schwanghart, Wolfgang and Andermann, Christoff and Bernhardt, Anne and Fort, Monique and Jansen, John D. and Wittmann, Hella and Merchel, Silke and Rugel, Georg and Adhikari, Basanta Raj and Korup, Oliver}, title = {Protracted river response to medieval earthquakes}, series = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, volume = {44}, journal = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {0197-9337}, doi = {10.1002/esp.4517}, pages = {331 -- 341}, year = {2018}, abstract = {Mountain rivers respond to strong earthquakes by rapidly aggrading to accommodate excess sediment delivered by co-seismic landslides. Detailed sediment budgets indicate that rivers need several years to decades to recover from seismic disturbances, depending on how recovery is defined. We examine three principal proxies of river recovery after earthquake-induced sediment pulses around Pokhara, Nepal's second largest city. Freshly exhumed cohorts of floodplain trees in growth position indicate rapid and pulsed sedimentation that formed a fan covering 150 km2 in a Lesser Himalayan basin with tens of metres of debris between the 11th and 15th centuries AD. Radiocarbon dates of buried trees are consistent with those of nearby valley deposits linked to major medieval earthquakes, such that we can estimate average rates of re-incision since. We combine high-resolution digital elevation data, geodetic field surveys, aerial photos, and dated tree trunks to reconstruct geomorphic marker surfaces. The volumes of sediment relative to these surfaces require average net sediment yields of up to 4200 t km-2 yr-1 for the 650 years since the last inferred earthquake-triggered sediment pulse. The lithological composition of channel bedload differs from that of local bedrock, confirming that rivers are still mostly evacuating medieval valley fills, locally incising at rates of up to 0.2 m yr-1. Pronounced knickpoints and epigenetic gorges at tributary junctions further illustrate the protracted fluvial response; only the distal portions of the earthquake-derived sediment wedges have been cut to near their base. Our results challenge the notion that mountain rivers recover speedily from earthquakes within years to decades. The valley fills around Pokhara show that even highly erosive Himalayan rivers may need more than several centuries to adjust to catastrophic perturbations. Our results motivate some rethinking of post-seismic hazard appraisals and infrastructural planning in active mountain regions.}, language = {en} } @article{MengesHoviusAndermannetal.2020, author = {Menges, Johanna and Hovius, Niels and Andermann, Christoff and Lupker, Maarten and Haghipour, Negar and M{\"a}rki, Lena and Sachse, Dirk}, title = {Variations in organic carbon sourcing along a trans-Himalayan river determined by a Bayesian mixing approach}, series = {Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society}, volume = {286}, journal = {Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society}, publisher = {Elsevier}, address = {New York [u.a.]}, issn = {0016-7037}, doi = {10.1016/j.gca.2020.07.003}, pages = {159 -- 176}, year = {2020}, abstract = {Rivers transfer particulate organic carbon (POC) from eroding mountains into geological sinks. Organic carbon source composition and selective mobilization have been shown to affect the type and quantity of POC export, but their combined effects across complex mountain ranges remain underexplored. Here, we examine the variation in organic carbon sourcing and transport in the trans-Himalayan Kali Gandaki River catchment, along strong gradients in precipitation, rock type and vegetation. Combining bulk stable nitrogen, and stable and radioactive organic carbon isotopic composition of bedrock, litter, soil and river sediment samples with a Bayesian end-member mixing approach, we differentiate POC sources along the river and quantify their export. Our analysis shows that POC export from the Tibetan segment of the catchment, where carbon bearing shales are partially covered by aged and modern soils, is dominated by petrogenic POC. Based on our data we re-assess the presence of aged biospheric OC in this part of the catchment, and its contribution to the river load. In the High Himalayan segment, we observed low inputs of petrogenic and biospheric POC, likely due to very low organic carbon concentrations in the metamorphic bedrock, combined with erosion dominated by deep-seated landslides. Our findings show that along the Kali Gandaki River, the sourcing of sediment and organic carbon are decoupled, due to differences in rock organic carbon content, soil and above ground carbon stocks, and geomorphic process activity. While the fast eroding High Himalayas are the principal source of river sediment, the Tibetan headwaters, where erosion rates are lower, are the principal source of organic carbon. To robustly estimate organic carbon export from the Himalayas, the mountain range should be divided into tectono-physiographic zones with distinct organic carbon yields due to differences in substrate and erosion processes and rates.}, language = {en} }