@article{PfestorfWeissMuelleretal.2013, author = {Pfestorf, H. and Weiss, L. and M{\"u}ller, J. and Boch, Steffen and Socher, S. A. and Prati, Daniel and Sch{\"o}ning, Ingo and Weisser, W. and Fischer, M. and Jeltsch, Florian}, title = {Community mean traits as additional indicators to monitor effects of land-use intensity On grassland plant diversity}, series = {Perspectives in plant ecology, evolution and systematics}, volume = {15}, journal = {Perspectives in plant ecology, evolution and systematics}, number = {1}, publisher = {Elsevier}, address = {Jena}, issn = {1433-8319}, doi = {10.1016/j.ppees.2012.10.003}, pages = {1 -- 11}, year = {2013}, abstract = {Semi-natural grasslands, biodiversity hotspots in Central-Europe, suffer from the cessation of traditional land-use. Amount and intensity of these changes challenge current monitoring frameworks typically based on classic indicators such as selected target species or diversity indices. Indicators based on plant functional traits provide an interesting extension since they reflect ecological strategies at individual and ecological processes at community levels. They typically show convergent responses to gradients of land-use intensity over scales and regions, are more directly related to environmental drivers than diversity components themselves and enable detecting directional changes in whole community dynamics. However, probably due to their labor- and cost intensive assessment in the field, they have been rarely applied as indicators so far. Here we suggest overcoming these limitations by calculating indicators with plant traits derived from online accessible databases. Aiming to provide a minimal trait set to monitor effects of land-use intensification on plant diversity we investigated relationships between 12 community mean traits, 2 diversity indices and 6 predictors of land-use intensity within grassland communities of 3 different regions in Germany (part of the German 'Biodiversity Exploratory' research network). By standardization of traits and diversity measures, use of null models and linear mixed models we confirmed (i) strong links between functional community composition and plant diversity, (ii) that traits are closely related to land-use intensity, and (iii) that functional indicators are equally, or even more sensitive to land-use intensity than traditional diversity indices. The deduced trait set consisted of 5 traits, i.e., specific leaf area (SLA), leaf dry matter content (LDMC), seed release height, leaf distribution, and onset of flowering. These database derived traits enable the early detection of changes in community structure indicative for future diversity loss. As an addition to current monitoring measures they allow to better link environmental drivers to processes controlling community dynamics.}, language = {en} } @article{MayGiladiRistowetal.2013, author = {May, Felix and Giladi, Itamar and Ristow, Michael and Ziv, Yaron and Jeltsch, Florian}, title = {Plant functional traits and community assembly along interacting gradients of productivity and fragmentation}, series = {Perspectives in plant ecology, evolution and systematics}, volume = {15}, journal = {Perspectives in plant ecology, evolution and systematics}, number = {6}, publisher = {Elsevier}, address = {Jena}, issn = {1433-8319}, doi = {10.1016/j.ppees.2013.08.002}, pages = {304 -- 318}, year = {2013}, abstract = {Quantifying the association of plant functional traits to environmental gradients is a promising approach for understanding and projecting community responses to land use and climatic changes. Although habitat fragmentation and climate are expected to affect plant communities interactively, there is a lack of empirical studies addressing trait associations to fragmentation in different climatic regimes. In this study, we analyse data on the key functional traits: specific leaf area (SLA), plant height, seed mass and seed number. First, we assess the evidence for the community assembly mechanisms habitat filtering and competition at different spatial scales, using several null-models and a comprehensive set of community-level trait convergence and divergence indices. Second, we analyse the association of community-mean traits with patch area and connectivity along a south-north productivity gradient. We found clear evidence for trait convergence due to habitat filtering. In contrast, the evidence for trait divergence due to competition fundamentally depended on the null-model used. When the null-model controlled for habitat filtering, there was only evidence for trait divergence at the smallest sampling scale (0.25 m x 0.25 m). All traits varied significantly along the S-N productivity gradient. While plant height and SLA were consistently associated with fragmentation, the association of seed mass and seed number with fragmentation changed along the S-N gradient. Our findings indicate trait convergence due to drought stress in the arid sites and due to higher productivity in the mesic sites. The association of plant traits to fragmentation is likely driven by increased colonization ability in small and/or isolated patches (plant height, seed number) or increased persistence ability in isolated patches (seed mass). Our study provides the first empirical test of trait associations with fragmentation along a productivity gradient. We conclude that it is crucial to study the interactive effects of different ecological drivers on plant functional traits.}, language = {en} } @article{SeifanSeifanSchiffersetal.2013, author = {Seifan, Merav and Seifan, Tal and Schiffers, Katja and Jeltsch, Florian and Tielboerger, Katja}, title = {Beyond the competition-colonization trade-off - linking multiple trait response to disturbance characteristics}, series = {The American naturalist : a bi-monthly journal devoted to the advancement and correlation of the biological sciences}, volume = {181}, journal = {The American naturalist : a bi-monthly journal devoted to the advancement and correlation of the biological sciences}, number = {2}, publisher = {Univ. of Chicago Press}, address = {Chicago}, issn = {0003-0147}, doi = {10.1086/668844}, pages = {151 -- 160}, year = {2013}, abstract = {Disturbances' role in shaping communities is well documented but highly disputed. We suggest replacing the overused two-trait trade-off approach with a functional group scheme, constructed from combinations of four key traits that represent four classes of species' responses to disturbances. Using model results and field observations from sites affected by two highly different disturbances, we demonstrated that popular dichotomous trade-offs are not sufficient to explain community dynamics, even if some emerge under certain conditions. Without disturbances, competition was only sufficient to predict species survival but not relative success, which required some escape mechanism (e.g., long-term dormancy). With highly predictable and large-scale disturbances, successful species showed a combination of high individual tolerance to disturbance and, more surprisingly, high competitive ability. When disturbances were less predictable, high individual tolerance and long-term seed dormancy were favored, due to higher environmental uncertainty. Our study demonstrates that theories relying on a small number of predefined trade-offs among traits (e.g., competition-colonization trade-off) may lead to unrealistic results. We suggest that the understanding of disturbance-community relationships can be significantly improved by employing sets of relevant trait assemblies instead of the currently common approach in which trade-offs are assumed in advance.}, language = {en} } @article{BuchmannSchurrNathanetal.2013, author = {Buchmann, Carsten M. and Schurr, Frank Martin and Nathan, Ran and Jeltsch, Florian}, title = {Habitat loss and fragmentation affecting mammal and bird communities-The role of interspecific competition and individual space use}, series = {Ecological informatics : an international journal on ecoinformatics and computational ecolog}, volume = {14}, journal = {Ecological informatics : an international journal on ecoinformatics and computational ecolog}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1574-9541}, doi = {10.1016/j.ecoinf.2012.11.015}, pages = {90 -- 98}, year = {2013}, abstract = {Fragmentation and loss of habitat are major threats to animal communities and are therefore important to conservation. Due to the complexity of the interplay of spatial effects and community processes, our mechanistic understanding of how communities respond to such landscape changes is still poor. Modelling studies have mostly focused on elucidating the principles of community response to fragmentation and habitat loss at relatively large spatial and temporal scales relevant to metacommunity dynamics. Yet, it has been shown that also small scale processes, like foraging behaviour, space use by individuals and local resource competition are also important factors. However, most studies that consider these smaller scales are designed for single species and are characterized by high model complexity. Hence, they are not easily applicable to ecological communities of interacting individuals. To fill this gap, we apply an allometric model of individual home range formation to investigate the effects of habitat loss and fragmentation on mammal and bird communities, and, in this context, to investigate the role of interspecific competition and individual space use. Results show a similar response of both taxa to habitat loss. Community composition is shifted towards higher frequency of relatively small animals. The exponent and the 95\%-quantile of the individual size distribution (ISD, described as a power law distribution) of the emerging communities show threshold behaviour with decreasing habitat area. Fragmentation per se has a similar and strong effect on mammals, but not on birds. The ISDs of bird communities were insensitive to fragmentation at the small scales considered here. These patterns can be explained by competitive release taking place in interacting animal communities, with the exception of bird's buffering response to fragmentation, presumably by adjusting the size of their home ranges. These results reflect consequences of higher mobility of birds compared to mammals of the same size and the importance of considering competitive interaction, particularly for mammal communities, in response to landscape fragmentation. Our allometric approach enables scaling up from individual physiology and foraging behaviour to terrestrial communities, and disentangling the role of individual space use and interspecific competition in controlling the response of mammal and bird communities to landscape changes.}, language = {en} } @article{JeltschBlaumBroseetal.2013, author = {Jeltsch, Florian and Blaum, Niels and Brose, Ulrich and Chipperfield, Joseph D. and Clough, Yann and Farwig, Nina and Geissler, Katja and Graham, Catherine H. and Grimm, Volker and Hickler, Thomas and Huth, Andreas and May, Felix and Meyer, Katrin M. and Pagel, J{\"o}rn and Reineking, Bj{\"o}rn and Rillig, Matthias C. and Shea, Katriona and Schurr, Frank Martin and Schroeder, Boris and Tielb{\"o}rger, Katja and Weiss, Lina and Wiegand, Kerstin and Wiegand, Thorsten and Wirth, Christian and Zurell, Damaris}, title = {How can we bring together empiricists and modellers in functional biodiversity research?}, series = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, volume = {14}, journal = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, number = {2}, publisher = {Elsevier}, address = {Jena}, issn = {1439-1791}, doi = {10.1016/j.baae.2013.01.001}, pages = {93 -- 101}, year = {2013}, abstract = {Improving our understanding of biodiversity and ecosystem functioning and our capacity to inform ecosystem management requires an integrated framework for functional biodiversity research (FBR). However, adequate integration among empirical approaches (monitoring and experimental) and modelling has rarely been achieved in FBR. We offer an appraisal of the issues involved and chart a course towards enhanced integration. A major element of this path is the joint orientation towards the continuous refinement of a theoretical framework for FBR that links theory testing and generalization with applied research oriented towards the conservation of biodiversity and ecosystem functioning. We further emphasize existing decision-making frameworks as suitable instruments to practically merge these different aims of FBR and bring them into application. This integrated framework requires joint research planning, and should improve communication and stimulate collaboration between modellers and empiricists, thereby overcoming existing reservations and prejudices. The implementation of this integrative research agenda for FBR requires an adaptation in most national and international funding schemes in order to accommodate such joint teams and their more complex structures and data needs.}, language = {en} } @inproceedings{SapirRoticsKaatzetal.2013, author = {Sapir, N. and Rotics, S. and Kaatz, M. and Davidson, S. and Zurell, Damaris and Eggers, U. and Jeltsch, Florian and Nathan, R. and Wikelski, M.}, title = {Multi-year tracking of white storks (Ciconia ciconia) how the environment shapes the movement and behavior of a soaring-gliding inter-continental migrant}, series = {Integrative and comparative biology}, volume = {53}, booktitle = {Integrative and comparative biology}, number = {3}, publisher = {Oxford Univ. Press}, address = {Cary}, issn = {1540-7063}, pages = {E189 -- E189}, year = {2013}, language = {en} } @article{SarmentoJeltschThuilleretal.2013, author = {Sarmento, Juliano Sarmento and Jeltsch, Florian and Thuiller, Wilfried and Higgins, Steven and Midgley, Guy F. and Rebelo, Anthony G. and Rouget, Mathieu and Schurr, Frank Martin}, title = {Impacts of past habitat loss and future climate change on the range dynamics of South African Proteaceae}, series = {Diversity \& distributions : a journal of biological invasions and biodiversity}, volume = {19}, journal = {Diversity \& distributions : a journal of biological invasions and biodiversity}, number = {4}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1366-9516}, doi = {10.1111/ddi.12011}, pages = {363 -- 376}, year = {2013}, abstract = {Aim To assess how habitat loss and climate change interact in affecting the range dynamics of species and to quantify how predicted range dynamics depend on demographic properties of species and the severity of environmental change. Location South African Cape Floristic Region. Methods We use data-driven demographic models to assess the impacts of past habitat loss and future climate change on range size, range filing and abundances of eight species of woody plants (Proteaceae). The species-specific models employ a hybrid approach that simulates population dynamics and long-distance dispersal on top of expected spatio-temporal dynamics of suitable habitat. Results Climate change was mainly predicted to reduce range size and range filling (because of a combination of strong habitat shifts with low migration ability). In contrast, habitat loss mostly decreased mean local abundance. For most species and response measures, the combination of habitat loss and climate change had the most severe effect. Yet, this combined effect was mostly smaller than expected from adding or multiplying effects of the individual environmental drivers. This seems to be because climate change shifts suitable habitats to regions less affected by habitat loss. Interspecific variation in range size responses depended mostly on the severity of environmental change, whereas responses in range filling and local abundance depended mostly on demographic properties of species. While most surviving populations concentrated in areas that remain climatically suitable, refugia for multiple species were overestimated by simply overlying habitat models and ignoring demography. Main conclusions Demographic models of range dynamics can simultaneously predict the response of range size, abundance and range filling to multiple drivers of environmental change. Demographic knowledge is particularly needed to predict abundance responses and to identify areas that can serve as biodiversity refugia under climate change. These findings highlight the need for data-driven, demographic assessments in conservation biogeography.}, language = {en} } @article{MayGiladiRistowetal.2013, author = {May, Felix and Giladi, Itamar and Ristow, Michael and Ziv, Yaron and Jeltsch, Florian}, title = {Metacommunity, mainland-island system or island communities? : assessing the regional dynamics of plant communities in a fragmented landscape}, series = {Ecography : pattern and diversity in ecology ; research papers forum}, volume = {36}, journal = {Ecography : pattern and diversity in ecology ; research papers forum}, number = {7}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0906-7590}, doi = {10.1111/j.1600-0587.2012.07793.x}, pages = {842 -- 853}, year = {2013}, abstract = {Understanding the regional dynamics of plant communities is crucial for predicting the response of plant diversity to habitat fragmentation. However, for fragmented landscapes the importance of regional processes, such as seed dispersal among isolated habitat patches, has been controversially debated. Due to the stochasticity and rarity of among-patch dispersal and colonization events, we still lack a quantitative understanding of the consequences of these processes at the landscape-scale. In this study, we used extensive field data from a fragmented, semi-arid landscape in Israel to parameterize a multi-species incidence-function model. This model simulates species occupancy pattern based on patch areas and habitat configuration and explicitly considers the locations and the shapes of habitat patches for the derivation of patch connectivity. We implemented an approximate Bayesian computation approach for parameter inference and uncertainty assessment. We tested which of the three types of regional dynamics - the metacommunity, the mainland-island, or the island communities type - best represents the community dynamics in the study area and applied the simulation model to estimate the extinction debt in the investigated landscape. We found that the regional dynamics in the patch-matrix study landscape is best represented as a system of highly isolated island' communities with low rates of propagule exchange among habitat patches and consequently low colonization rates in local communities. Accordingly, the extinction rates in the local communities are the main drivers of community dynamics. Our findings indicate that the landscape carries a significant extinction debt and in model projections 33-60\% of all species went extinct within 1000 yr. Our study demonstrates that the combination of dynamic simulation models with field data provides a promising approach for understanding regional community dynamics and for projecting community responses to habitat fragmentation. The approach bears the potential for efficient tests of conservation activities aimed at mitigating future losses of biodiversity.}, language = {en} } @article{LauterbachRoemermannJeltschetal.2013, author = {Lauterbach, D. and Roemermann, C. and Jeltsch, Florian and Ristow, Michael}, title = {Factors driving plant rarity in dry grasslands on different spatial scales: a functional trait approach}, series = {BIODIVERSITY AND CONSERVATION}, volume = {22}, journal = {BIODIVERSITY AND CONSERVATION}, number = {10}, publisher = {SPRINGER}, address = {DORDRECHT}, issn = {0960-3115}, doi = {10.1007/s10531-013-0455-y}, pages = {2337 -- 2352}, year = {2013}, abstract = {In European dry grasslands land-use changes affect plant species performance and frequency. Potential driving forces are eutrophication and habitat fragmentation. The importance of these factors is presumably scale dependent. We used a functional trait approach to detect processes that influence species frequency and endangerment on different spatial scales. We tested for associations between functional traits and (1) frequency and (2) degree of endangerment on local, regional and national scales. We focussed on five selected traits that describe the life-history of plant species and that are related to competition, dispersal ability and habitat specificity. Trait data on plant height, SLA, plant coverage, peak of flowering and diaspore mass were measured for 28 perennials from common to rare and endangered to non-endangered on 59 dry grassland sites in north-eastern Germany. Multiple regression models revealed that species frequency is positively and species endangerment negatively related to plant height, plant coverage and SLA on more than one spatial scale. On the local scale, diaspore mass has a negative effect on species frequency. More frequent and less endangered species show a later peak of flowering on nationwide and regional scales. We concluded that competition traits are more important on larger scales, whereas dispersal traits are more important for species frequency on the smaller scale. On national and regional scales, eutrophication and habitat loss may be the main drivers of species threat, whereas on the local scale fragmentation plays a crucial role for the performance of dry grassland species.}, language = {en} } @article{JeltschBontePeeretal.2013, author = {Jeltsch, Florian and Bonte, Dries and Peer, Guy and Reineking, Bj{\"o}rn and Leimgruber, Peter and Balkenhol, Niko and Schr{\"o}der-Esselbach, Boris and Buchmann, Carsten M. and M{\"u}ller, Thomas and Blaum, Niels and Zurell, Damaris and B{\"o}hning-Gaese, Katrin and Wiegand, Thorsten and Eccard, Jana and Hofer, Heribert and Reeg, Jette and Eggers, Ute and Bauer, Silke}, title = {Integrating movement ecology with biodiversity research - exploring new avenues to address spatiotemporal biodiversity dynamics}, doi = {10.1186/2051-3933-1-6}, year = {2013}, language = {en} } @article{SchwagerCovasBlaumetal.2008, author = {Schwager, Monika and Covas, Rita and Blaum, Niels and Jeltsch, Florian}, title = {Limitations of population models in predicting climate change effects : a simulation study of sociable weavers in southern Africa}, issn = {0030-1299}, doi = {10.1111/j.0030-1299.2008.16464.x}, year = {2008}, language = {en} } @article{ZurellBergerCabraletal.2010, author = {Zurell, Damaris and Berger, Uta and Cabral, Juliano Sarmento and Jeltsch, Florian and Meynard, Christine N. and Muenkemueller, Tamara and Nehrbass, Nana and Pagel, J{\"o}rn and Reineking, Bjoern and Schroeder, Boris and Grimm, Volker}, title = {The virtual ecologist approach : simulating data and observers}, issn = {0030-1299}, doi = {10.1111/j.1600-0706.2009.18284.x}, year = {2010}, abstract = {Ecologists carry a well-stocked toolbox with a great variety of sampling methods, statistical analyses and modelling tools, and new methods are constantly appearing. Evaluation and optimisation of these methods is crucial to guide methodological choices. Simulating error-free data or taking high-quality data to qualify methods is common practice. Here, we emphasise the methodology of the 'virtual ecologist' (VE) approach where simulated data and observer models are used to mimic real species and how they are 'virtually' observed. This virtual data is then subjected to statistical analyses and modelling, and the results are evaluated against the 'true' simulated data. The VE approach is an intuitive and powerful evaluation framework that allows a quality assessment of sampling protocols, analyses and modelling tools. It works under controlled conditions as well as under consideration of confounding factors such as animal movement and biased observer behaviour. In this review, we promote the approach as a rigorous research tool, and demonstrate its capabilities and practical relevance. We explore past uses of VE in different ecological research fields, where it mainly has been used to test and improve sampling regimes as well as for testing and comparing models, for example species distribution models. We discuss its benefits as well as potential limitations, and provide some practical considerations for designing VE studies. Finally, research fields are identified for which the approach could be useful in the future. We conclude that VE could foster the integration of theoretical and empirical work and stimulate work that goes far beyond sampling methods, leading to new questions, theories, and better mechanistic understanding of ecological systems.}, language = {en} } @article{EstherGroeneveldEnrightetal.2010, author = {Esther, Alexandra and Groeneveld, Juergen and Enright, Neal J. and Miller, Ben P. and Lamont, Byron B. and Perry, George L. W. and Blank, F. Benjamin and Jeltsch, Florian}, title = {Sensitivity of plant functional types to climate change : classification tree analysis of a simulation model}, issn = {1100-9233}, doi = {10.1111/j.1654-1103.2009.01155.x}, year = {2010}, abstract = {Question: The majority of studies investigating the impact of climate change on local plant communities ignores changes in regional processes, such as immigration from the regional seed pool. Here we explore: (i) the potential impact of climate change on composition of the regional seed pool, (ii) the influence of changes in climate and in the regional seed pool on local community structure, and (iii) the combinations of life history traits, i.e. plant functional types (PFTs), that are most affected by environmental changes. Location: Fire-prone, Mediterranean-type shrublands in southwestern Australia. Methods: Spatially explicit simulation experiments were conducted at the population level under different rainfall and fire regime scenarios to determine the effect of environmental change on the regional seed pool for 38 PFTs. The effects of environmental and seed immigration changes on local community dynamics were then derived from community-level experiments. Classification tree analyses were used to investigate PFT- specific vulnerabilities to climate change. Results: The classification tree analyses revealed that responses of PFTs to climate change are determined by specific trait characteristics. PFT-specific seed production and community patterns responded in a complex manner to climate change. For example, an increase in annual rainfall caused an increase in numbers of dispersed seeds for some PFTs, but decreased PFT diversity in the community. Conversely, a simulated decrease in rainfall reduced the number of dispersed seeds and diversity of PFTs. Conclusions: PFT interactions and regional processes must be considered when assessing how local community structure will be affected by environmental change.}, language = {en} } @article{BurkartAlslebenLachmuthetal.2010, author = {Burkart, Michael and Alsleben, Katja and Lachmuth, Susanne and Schumacher, Juliane and Hofmann, Ralf and Jeltsch, Florian and Schurr, Frank Martin}, title = {Recruitment requirements of the rare and threatened Juncus atratus}, issn = {0367-2530}, doi = {10.1016/j.flora.2009.08.003}, year = {2010}, abstract = {The long-term persistence of populations and species depends on the successful recruitment of individuals. The generative recruitment of plants may be limited by a lack of suitable germination and establishment conditions. Establishment limitation may especially be caused by the competitive effect of surrounding dense vegetation, which is believed to restrict the recruitment success of many plant species to small open patches ('safe sites'). We conducted experiments to clarify the roles of germination and seedling establishment as limiting processes in the recruitment of Juncus atratus Krock., a rare and threatened herbaceous perennial river corridor plant in Central Europe. Light intensity had a positive effect on germination. However, some seedlings emerged even in total darkness and the germination rate at 1\% light intensity was more than half of that at 60\% light intensity. Seedling establishment in the field after 10 weeks was 30\% on bare ground, but it was close to zero in grassland. Establishment in the growth chamber after 8 weeks was close to 75\% for seedlings that germinated underwater, but only about 35\% for seedlings that germinated afloat. Furthermore, establishment decreased with flooding duration on bare ground, but increased with flooding duration in grassland. These data indicate that establishment, rather than germination, is a critical life stage in Central European populations off. atratus. They furthermore indicate that the competition of surrounding vegetation for water limits seedling establishment under field conditions without flooding, largely restricting establishment success to bare ground habitats. In contrast, grassland is more suitable for the recruitment off. atratus than bare ground under prolonged flooding. Grassland may facilitate the establishment off. atratus seedlings during long- lasting floods by supplying oxygen to the soil through aerenchyma. The shift from competition to facilitation in grassland occurred after 30 days of flooding, i.e. within the ontogeny of individual plants. The specific recruitment requirements off. arrows may be a main cause of its rarity in modern Central Europe. In order to prevent regional extinction off. atratus, we suggest maintaining or re-establishing natural hydrodynamics in the species' habitats.}, language = {en} } @article{TreydteGrantJeltsch2009, author = {Treydte, Anna C. and Grant, Rina C. C. and Jeltsch, Florian}, title = {Tree size and herbivory determine below-canopy grass quality and species composition in savannahs}, issn = {0960-3115}, doi = {10.1007/s10531-009-9694-3}, year = {2009}, abstract = {Large single-standing trees are rapidly declining in savannahs, ecosystems supporting a high diversity of large herbivorous mammals. Savannah trees are important as they support both a unique flora and fauna. The herbaceous layer in particular responds to the structural and functional properties of a tree. As shrubland expands stem thickening occurs and large trees are replaced by smaller trees. Here we examine whether small trees are as effective in providing advantages for grasses growing beneath their crowns as large trees are. The role of herbivory in this positive tree- grass interaction is also investigated. We assessed soil and grass nutrient content, structural properties, and herbaceous species composition beneath trees of three size classes and under two grazing regimes in a South African savannah. We found that grass leaf content (N and P) beneath the crowns of particularly large (ca. 3.5 m) and very large trees (ca. 9 m) was as much as 40\% greater than the same grass species not growing under a tree canopy, whereas nutrient contents of grasses did not differ beneath small trees (< 2.3 m). Moderate herbivory enhanced these effects slightly. Grass species composition differed beneath and beyond the tree canopy but not between tree size classes. As large trees significantly improve the grass nutrient quality for grazers in contrast to smaller trees, the decline of the former should be halted. The presence of trees further increases grass species diversity and patchiness by favouring shade- tolerant species. Both grazing wildlife and livestock will benefit from the presence of large trees because of their structural and functional importance for savannahs.}, language = {en} } @article{WasiolkaJeltschHenscheletal.2010, author = {Wasiolka, Bernd and Jeltsch, Florian and Henschel, Joh and Blaum, Niels}, title = {Space use of the spotted sand lizard (Pedioplanis l. lineoocellata) under different degradation states}, issn = {0141-6707}, doi = {10.1111/j.1365-2028.2009.01085.x}, year = {2010}, abstract = {Although the effects of grazing-induced savannah degradation on animal diversity are well documented, knowledge of how they affect space use or responding behaviour remains poor. In this study, we analysed space use of the spotted sand lizard (Pedioplanis l. lineoocellata) in degraded versus nondegraded habitats of southern Kalahari savannah habitats. Lizards were radio tracked, daily movement distances recorded and home range sizes calculated. In degraded Kalahari savannah habitats where plant diversity and perennial grass cover are low but shrub cover high, P. lineoocellata moves larger distances (40.88 +/- 6.42 m versus 27.43 +/- 5.08 m) and occupies larger home ranges (646.64 +/- 244.84 m(2) versus 209.15 +/- 109.84 m(2)) than in nondegraded habitats (high plant diversity, high perennial grass cover and low shrub cover). We assume that this increase in daily movement distances and home range sizes is a behavioural plasticity to limited food resources in degraded savannah habitats. Although P. lineoocellata is able to adjust to resource-poor savannah habitats, the increase in the lizard's movement activities is likely to result in a higher predation risk. This is supported by the lower availability of protective vegetation i.e. perennial grass cover. Hence, we conclude that despite behavioural plasticity of P. lineoocellata, overgrazing has a severe negative impact on the space use of P. lineoocellata.}, language = {en} } @article{TreydteRiginosJeltsch2010, author = {Treydte, Anna C. and Riginos, Corinna and Jeltsch, Florian}, title = {Enhanced use of beneath-canopy vegetation by grazing ungulates in African savannahs}, issn = {0140-1963}, doi = {10.1016/j.jaridenv.2010.07.003}, year = {2010}, abstract = {The cover of large trees in African savannahs is rapidly declining, mainly due to human land-use practices. Trees improve grass nutrient quality and contribute to species and structural diversity of savannah vegetation. However, the response of herbivores to trees as habitat features is unknown We quantified the habitat use of wild and domestic ungulates in two eastern and southern African savannahs. We assessed grazing intensities and quantified dung depositions beneath and around canopies of different sized trees. Grasses were eaten and dung was deposited twice as frequently beneath large (ca. 5 m in height) and very large trees (7-10 m) than in open grasslands. Small trees (<2.5 m) did not show this trend. Grazing intensity and dung deposition decreased with distance away from trees at both study sites. These results suggest that large trees represent essential habitat features for domestic and wild herbivores. Increased dung depositions beneath large trees may further promote the maintenance of a patchy nutrient distribution in savannahs. Small trees cannot provide the same structural and functional advantages as large trees do. We recommend that land-use practices be promoted which conserve large single-standing trees to benefit the flora and fauna of African savannahs.}, language = {en} } @article{TietjenJeltschZeheetal.2010, author = {Tietjen, Britta and Jeltsch, Florian and Zehe, Erwin and Classen, Nikolaus and Groengroeft, Alexander and Schiffers, Katja and Oldeland, Jens}, title = {Effects of climate change on the coupled dynamics of water and vegetation in drylands}, issn = {1936-0584}, doi = {10.1002/Eco.70}, year = {2010}, abstract = {Drylands worldwide are exposed to a highly variable environment and face a high risk of degradation. The effects of global climate change such as altered precipitation patterns and increased temperature leading to reduced water availability will likely increase this risk. At the same time, an elevated atmospheric CO2 level could mitigate the effects of reduced water availability by increasing the water use efficiency of plants. To prevent degradation of drylands, it is essential to understand the underlying processes that affect water availability and vegetation cover. Since water and vegetation are strongly interdependent in water-limited ecosystems, changes can lead to highly non- linear effects. We assess these effects by developing an ecohydrological model of soil moisture and vegetation cover. The water component of the model simulates the daily dynamics of surface water and water contents in two soil layers. Vegetation is represented by two functional types: shrubs and grasses. These compete for soil water and strongly influence hydrological processes. We apply the model to a Namibian thornbush savanna and evaluate the separate and combined effects of decreased annual precipitation, increased temperature, more variable precipitation and elevated atmospheric CO2 on soil moisture and on vegetation cover. The results show that two main factors control the response of plant types towards climate change, namely a change in water availability and a change in water allocation to a specific plant type. Especially, reduced competitiveness of grasses can lead to a higher risk of shrub encroachment in these systems.}, language = {en} } @article{PetruTielboergerBelkinetal.2006, author = {Petru, Martina and Tielb{\"o}rger, Katja and Belkin, Ruthie and Sternberg, Marcelo and Jeltsch, Florian}, title = {Life history variation in an annual plant under two opposing environmental constraints along an aridity gradient}, doi = {10.1111/j.2005.0906-7590.04310.x}, year = {2006}, abstract = {Environmental gradients represent an ideal framework for studying adaptive variation in the life history of plant species. However, on very steep gradients, largely contrasting conditions at the two gradient ends often limit the distribution of the same species across the whole range of environmental conditions. Here, we study phenotypic variation in a winter annual crucifer Biscutella didyma persisting along a steep gradient of increasing rainfall in Israel. In particular, we explored whether the life history at the arid end of the gradient indicates adaptations to drought and unpredictable conditions, while adaptations to the highly competitive environment prevail at the mesic Mediterranean end. We examined several morphological and reproductive traits in four natural populations and in populations cultivated in standard common environment. Plants from arid environments were faster in phenological development, more branched in architecture and tended to maximize reproduction, while the Mediterranean plants invested mainly in vertical vegetative growth. Differences between cultivation and field in diaspore production were very large for arid populations as opposed to Mediterranean ones, indicating a larger potential to increase reproduction under favorable conditions. Our overall findings indicate two strongly opposing selective forces at the two extremes of the aridity gradient, which result in contrasting strategies within the studied annual plant species}, language = {en} } @article{WasiolkaBlaumJeltschetal.2009, author = {Wasiolka, Bernd and Blaum, Niels and Jeltsch, Florian and Henschel, Joh}, title = {Behavioural responses of the lizard "Pedioplanis l. lineoocellata" to overgrazing}, issn = {1146-609X}, doi = {10.1016/j.actao.2008.09.009}, year = {2009}, abstract = {We studied the effects of overgrazing on the foraging behaviour of the lizard Pedioplanis l. lineoocellata (Spotted Sand Lizard), a sit-and-wait forager, in habitats of differing vegetation states to determine the effects of habitat degradation on this species. At high grazing intensity where vegetation cover and diversity is low, the lizard P. lineoocellata moves more frequently, spends more time moving and covers larger distances than in habitats where vegetation cover and diversity is high. These behavioural changes in movement patterns can be explained by less abundant prey in habitats with low vegetation cover and diversity. Although morphology, phylogeny and physiology of P. lineoocellata should constrain the change in foraging behaviour, the species has modified its foraging strategy from sit- and-wait to actively foraging. We assume that this behavioural flexibility of P. lineoocellata is a buffer mechanism enabling the species to use and survive in degraded (unfavourable) habitats.}, language = {en} }