@article{GubertPuntelLehmenetal.2016, author = {Gubert, Priscila and Puntel, Bruna and Lehmen, Tassia and Bornhorst, Julia and Avila, Daiana Silva and Aschner, Michael A. and Soares, Felix A. A.}, title = {Reversible reprotoxic effects of manganese through DAF-16 transcription factor activation and vitellogenin downregulation in Caenorhabditis elegans}, series = {Life sciences : molecular, cellular and functional basis of therapy}, volume = {151}, journal = {Life sciences : molecular, cellular and functional basis of therapy}, publisher = {Elsevier}, address = {Oxford}, issn = {0024-3205}, doi = {10.1016/j.lfs.2016.03.016}, pages = {218 -- 223}, year = {2016}, abstract = {Aims Vitellogenesis is the yolk production process which provides the essential nutrients for the developing embryos. Yolk is a lipoprotein particle that presents lipids and lipid-binding proteins, referred to as vitellogenins (VIT). The Caenorhabditis elegans nematode has six genes encoding VIT lipoproteins. Several pathways are known to regulate vitellogenesis, including the DAF-16 transcription factor. Some reports have shown that heavy metals, such as manganese (Mn), impair brood size in C. elegans; however the mechanisms associated with this effect have yet to be identified. Our aim was to evaluate Mn\&\#8242;s effects on C. elegans reproduction and better understand the pathways related to these effects. Main methods. Young adult larval stage worms were treated for 4 h with Mn in 85 mM NaCl and Escherichia coli OP50 medium. Key findings. Mn reduced egg-production and egg-laying during the first 24 h after the treatment, although the total number of progenies were indistinguishable from the control group levels. This delay may have occurred due to DAF-16 activation, which was noted only after the treatment and was not apparent 24 h later. Moreover, the expression, protein levels and green fluorescent protein (GFP) fluorescence associated with VIT were decreased soon after Mn treatment and recovered after 24 h. Significance Combined, these data suggest that the delay in egg-production is likely regulated by DAF-16 and followed by the inhibition of VIT transport activity. Further studies are needed to clarify the mechanisms associated with Mn-induced DAF-16 activation.}, language = {en} } @article{AvilaBenedettoAuetal.2016, author = {Avila, Daiana Silva and Benedetto, Alexandre and Au, Catherine and Bornhorst, Julia and Aschner, Michael A.}, title = {Involvement of heat shock proteins on Mn-induced toxicity in Caenorhabditis elegans}, series = {Plant Methods}, volume = {17}, journal = {Plant Methods}, publisher = {BioMed Central}, address = {London}, issn = {2050-6511}, doi = {10.1186/s40360-016-0097-2}, pages = {9}, year = {2016}, abstract = {Background: All living cells display a rapid molecular response to adverse environmental conditions, and the heat shock protein family reflects one such example. Hence, failing to activate heat shock proteins can impair the cellular response. In the present study, we evaluated whether the loss of different isoforms of heat shock protein (hsp) genes in Caenorhabditis elegans would affect their vulnerability to Manganese (Mn) toxicity. Conclusions: Taken together, our data suggest that Mn exposure modulates heat shock protein expression, particularly HSP-70, in C. elegans. Furthermore, loss of hsp-70 increases protein oxidation and dopaminergic neuronal degeneration following manganese exposure, which is associated with the inhibition of pink1 increased expression, thus potentially exacerbating the vulnerability to this metal.}, language = {en} } @article{HenzeHomannRohnetal.2016, author = {Henze, Andrea and Homann, Thomas and Rohn, Isabelle and Aschner, Michael A. and Link, Christopher D. and Kleuser, Burkhard and Schweigert, Florian J. and Schwerdtle, Tanja and Bornhorst, Julia}, title = {Caenorhabditis elegans as a model system to study post-translational modifications of human transthyretin}, series = {Scientific reports}, volume = {6}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep37346}, pages = {12}, year = {2016}, abstract = {The visceral protein transthyretin (TTR) is frequently affected by oxidative post-translational protein modifications (PTPMs) in various diseases. Thus, better insight into structure-function relationships due to oxidative PTPMs of TTR should contribute to the understanding of pathophysiologic mechanisms. While the in vivo analysis of TTR in mammalian models is complex, time-and resource-consuming, transgenic Caenorhabditis elegans expressing hTTR provide an optimal model for the in vivo identification and characterization of drug-mediated oxidative PTPMs of hTTR by means of matrix assisted laser desorption/ionization - time of flight - mass spectrometry (MALDI-TOF-MS). Herein, we demonstrated that hTTR is expressed in all developmental stages of Caenorhabditis elegans, enabling the analysis of hTTR metabolism during the whole life-cycle. The suitability of the applied model was verified by exposing worms to D-penicillamine and menadione. Both drugs induced substantial changes in the oxidative PTPM pattern of hTTR. Additionally, for the first time a covalent binding of both drugs with hTTR was identified and verified by molecular modelling.}, language = {en} } @article{MarschallBornhorstKuehneltetal.2016, author = {Marschall, Talke Anu and Bornhorst, Julia and Kuehnelt, Doris and Schwerdtle, Tanja}, title = {Differing cytotoxicity and bioavailability of selenite, methylselenocysteine, selenomethionine, selenosugar 1 and trimethylselenonium ion and their underlying metabolic transformations in human cells}, series = {Applied computing review : the publication of the ACM Special Interest Group on Applied Computing}, volume = {60}, journal = {Applied computing review : the publication of the ACM Special Interest Group on Applied Computing}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1613-4125}, doi = {10.1002/mnfr.201600422}, pages = {2622 -- 2632}, year = {2016}, abstract = {Scope: The trace element selenium (Se) is an integral component of our diet. However, its metabolism and toxicity following elevated uptake are not fully understood. Since the either adverse or beneficial health effects strongly depend on the ingested Se species, five low molecular weight species were investigated regarding their toxicological effects, cellular bioavailability and species-specific metabolism in human cells. Methods and results: For the first time, the urinary metabolites methyl-2-acetamido-2-deoxy1- seleno-beta-D-galactopyranoside (selenosugar 1) and trimethylselenonium ion (TMSe) were toxicologically characterised in comparison to the food relevant species methylselenocysteine (MeSeCys), selenomethionine (SeMet) and selenite in human urothelial, astrocytoma and hepatoma cells. In all cell lines selenosugar 1 and TMSe showed no cytotoxicity. Selenite, MeSeCys and SeMet exerted substantial cytotoxicity, which was strongest in the urothelial cells. There was no correlation between the potencies of the respective toxic effects and the measured cellular Se concentrations. Se speciation indicated that metabolism of the respective species is likely to affect cellular toxicity. Conclusion: Despite being taken up, selenosugar 1 and TMSe are non-cytotoxic to urothelial cells, most likely because they are not metabolically activated. The absent cytotoxicity of selenosugar 1 and TMSe up to supra-physiological concentrations, support their importance as metabolites for Se detoxification.}, language = {en} } @article{LohrenBornhorstFitkauetal.2016, author = {Lohren, Hanna and Bornhorst, Julia and Fitkau, Romy and Pohl, Gabriele and Galla, Hans-Joachim and Schwerdtle, Tanja}, title = {Effects on and transfer across the blood-brain barrier in vitro-Comparison of organic and inorganic mercury species}, series = {BMC pharmacology \& toxicology}, volume = {17}, journal = {BMC pharmacology \& toxicology}, publisher = {BioMed Central}, address = {London}, issn = {2050-6511}, doi = {10.1186/s40360-016-0106-5}, pages = {422 -- 433}, year = {2016}, abstract = {Background: Transport of methylmercury (MeHg) across the blood-brain barrier towards the brain side is well discussed in literature, while ethylmercury (EtHg) and inorganic mercury are not adequately characterized regarding their entry into the brain. Studies investigating a possible efflux out of the brain are not described to our knowledge. Methods: This study compares, for the first time, effects of organic methylmercury chloride (MeHgCl), EtHg-containing thiomersal and inorganic Hg chloride (HgCl2) on as well as their transfer across a primary porcine in vitro model of the blood-brain barrier. Results: With respect to the barrier integrity, the barrier model exhibited a much higher sensitivity towards HgCl2 following basolateral incubation (brain-facing side) as compared to apical application (blood-facing side). These HgCl2 induced effects on the barrier integrity after brain side incubation are comparable to that of the organic species, although MeHgCl and thiomersal exerted much higher cytotoxic effects in the barrier building cells. Hg transfer rates following exposure to organic species in both directions argue for diffusion as transfer mechanism. Inorganic Hg application surprisingly resulted in a Hg transfer out of the brain-facing compartment. Conclusions: In case of MeHgCl and thiomersal incubation, mercury crossed the barrier in both directions, with a slight accumulation in the basolateral, brain-facing compartment, after simultaneous incubation in both compartments. For HgCl2, our data provide first evidence that the blood-brain barrier transfers mercury out of the brain.}, language = {en} } @article{HenzeHomannRohnetal.2016, author = {Henze, Andrea and Homann, Thomas and Rohn, Isabelle and Aschner, Michael A. and Link, Christopher D. and Kleuser, Burkhard and Schweigert, Florian J. and Schwerdtle, Tanja and Bornhorst, Julia}, title = {Caenorhabditis elegans as a model system to study post-translational modifications of human transthyretin}, series = {Scientific reports}, volume = {6}, journal = {Scientific reports}, publisher = {Nature Publishing Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep37346}, pages = {12}, year = {2016}, abstract = {The visceral protein transthyretin (TTR) is frequently affected by oxidative post-translational protein modifications (PTPMs) in various diseases. Thus, better insight into structure-function relationships due to oxidative PTPMs of TTR should contribute to the understanding of pathophysiologic mechanisms. While the in vivo analysis of TTR in mammalian models is complex, time- and resource-consuming, transgenic Caenorhabditis elegans expressing hTTR provide an optimal model for the in vivo identification and characterization of drug-mediated oxidative PTPMs of hTTR by means of matrix assisted laser desorption/ionization - time of flight - mass spectrometry (MALDI-TOF-MS). Herein, we demonstrated that hTTR is expressed in all developmental stages of Caenorhabditis elegans, enabling the analysis of hTTR metabolism during the whole life-cycle. The suitability of the applied model was verified by exposing worms to D-penicillamine and menadione. Both drugs induced substantial changes in the oxidative PTPM pattern of hTTR. Additionally, for the first time a covalent binding of both drugs with hTTR was identified and verified by molecular modelling.}, language = {en} }