@article{BurgemeisterGvaramadzeStringfellowetal.2013, author = {Burgemeister, S. and Gvaramadze, Visily V. and Stringfellow, G. S. and Kniazev, Alexei Y. and Todt, Helge Tobias and Hamann, Wolf-Rainer}, title = {WR 120bb and WR 120bc: a pair of WN9h stars with possibly interacting circumstellar shells}, series = {Monthly notices of the Royal Astronomical Society}, volume = {429}, journal = {Monthly notices of the Royal Astronomical Society}, number = {4}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/sts588}, pages = {3305 -- 3315}, year = {2013}, abstract = {Two optically obscured Wolf-Rayet (WR) stars have been recently discovered by means of their infrared (IR) circumstellar shells, which show signatures of interaction with each other. Following the systematics of the WR star catalogues, these stars obtain the names WR 120bb and WR 120bc. In this paper, we present and analyse new near-IR, J-, H- and K-band spectra using the Potsdam Wolf-Rayet model atmosphere code. For that purpose, the atomic data base of the code has been extended in order to include all significant lines in the near-IR bands. The spectra of both stars are classified as WN9h. As their spectra are very similar the parameters that we obtained by the spectral analyses hardly differ. Despite their late spectral subtype, we found relatively high stellar temperatures of 63 kK. The wind composition is dominated by helium, while hydrogen is depleted to 25 per cent by mass. Because of their location in the Scutum-Centaurus Arm, WR 120bb and WR 120bc appear highly reddened, A(Ks) approximate to 2 mag. We adopt a common distance of 5.8 kpc to both stars, which complies with the typical absolute K-band magnitude for the WN9h subtype of -6.5 mag, is consistent with their observed extinction based on comparison with other massive stars in the region, and allows for the possibility that their shells are interacting with each other. This leads to luminosities of log(L/L-circle dot) = 5.66 and 5.54 for WR 120bb and WR 120bc, with large uncertainties due to the adopted distance. The values of the luminosities of WR 120bb and WR 120bc imply that the immediate precursors of both stars were red supergiants (RSG). This implies in turn that the circumstellar shells associated with WR 120bb and WR 120bc were formed by interaction between the WR wind and the dense material shed during the preceding RSG phase.}, language = {en} } @article{TodtKniazevGvaramadzeetal.2013, author = {Todt, Helge Tobias and Kniazev, A. Y. and Gvaramadze, V. V. and Hamann, Wolf-Rainer and Buckley, D. and Crause, L. and Crawford, S. M. and Gulbis, A. A. S. and Hettlage, C. and Hooper, E. and Husser, T. -O. and Kotze, P. and Loaring, N. and Nordsieck, K. H. and O'Donoghue, D. and Pickering, T. and Potter, S. and Romero-Colmenero, E. and Vaisanen, P. and Williams, T. and Wolf, M.}, title = {Abell 48-a rare WN-type central star of a planetary nebula}, series = {Monthly notices of the Royal Astronomical Society}, volume = {430}, journal = {Monthly notices of the Royal Astronomical Society}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stt056}, pages = {2302 -- 2312}, year = {2013}, abstract = {A considerable fraction of the central stars of planetary nebulae (CSPNe) are hydrogen-deficient. Almost all of these H-deficient central stars (CSs) display spectra with strong carbon and helium lines. Most of them exhibit emission-line spectra resembling those of massive WC stars. Therefore these stars are classed as CSPNe of spectral type [WC]. Recently, quantitative spectral analysis of two emission-line CSs, PB 8 and IC 4663, revealed that these stars do not belong to the [WC] class. Instead PB 8 has been classified as [WN/WC] type and IC 4663 as [WN] type. In this work we report the spectroscopic identification of another rare [WN] star, the CS of Abell 48. We performed a spectral analysis of Abell 48 with the Potsdam Wolf-Rayet (PoWR) models for expanding atmospheres. We find that the expanding atmosphere of Abell 48 is mainly composed of helium (85 per cent by mass), hydrogen (10 per cent) and nitrogen (5 per cent). The residual hydrogen and the enhanced nitrogen abundance make this object different from the other [WN] star IC 4663. We discuss the possible origin of this atmospheric composition.}, language = {en} }