@article{ShojaeiFard2014, author = {Shojaei-Fard, Ali}, title = {Counterterms in the context of the universal Hopf algebra of renormalization}, series = {International journal of modern physics : A, Particles and fields, gravitation, cosmology, nuclear physics}, volume = {29}, journal = {International journal of modern physics : A, Particles and fields, gravitation, cosmology, nuclear physics}, number = {8}, publisher = {World Scientific}, address = {Singapore}, issn = {0217-751X}, doi = {10.1142/S0217751X14500456}, pages = {15}, year = {2014}, abstract = {The manuscript discovers a new interpretation of counterterms of renormalizable Quantum Field Theories in terms of formal expansions of decorated rooted trees.}, language = {en} } @article{GuoPaychaZhang2014, author = {Guo, Li and Paycha, Sylvie and Zhang, Bin}, title = {Conical zeta values and their double subdivision relations}, series = {Advances in mathematics}, volume = {252}, journal = {Advances in mathematics}, publisher = {Elsevier}, address = {San Diego}, issn = {0001-8708}, doi = {10.1016/j.aim.2013.10.022}, pages = {343 -- 381}, year = {2014}, abstract = {We introduce the concept of a conical zeta value as a geometric generalization of a multiple zeta value in the context of convex cones. The quasi-shuffle and shuffle relations of multiple zeta values are generalized to open cone subdivision and closed cone subdivision relations respectively for conical zeta values. In order to achieve the closed cone subdivision relation, we also interpret linear relations among fractions as subdivisions of decorated closed cones. As a generalization of the double shuffle relation of multiple zeta values, we give the double subdivision relation of conical zeta values and formulate the extended double subdivision relation conjecture for conical zeta values.}, language = {en} } @article{ShebalinNarteauZecharetal.2014, author = {Shebalin, Peter N. and Narteau, Clement and Zechar, Jeremy Douglas and Holschneider, Matthias}, title = {Combining earthquake forecasts using differential probability gains}, series = {Earth, planets and space}, volume = {66}, journal = {Earth, planets and space}, publisher = {Springer}, address = {Heidelberg}, issn = {1880-5981}, doi = {10.1186/1880-5981-66-37}, pages = {14}, year = {2014}, abstract = {We describe an iterative method to combine seismicity forecasts. With this method, we produce the next generation of a starting forecast by incorporating predictive skill from one or more input forecasts. For a single iteration, we use the differential probability gain of an input forecast relative to the starting forecast. At each point in space and time, the rate in the next-generation forecast is the product of the starting rate and the local differential probability gain. The main advantage of this method is that it can produce high forecast rates using all types of numerical forecast models, even those that are not rate-based. Naturally, a limitation of this method is that the input forecast must have some information not already contained in the starting forecast. We illustrate this method using the Every Earthquake a Precursor According to Scale (EEPAS) and Early Aftershocks Statistics (EAST) models, which are currently being evaluated at the US testing center of the Collaboratory for the Study of Earthquake Predictability. During a testing period from July 2009 to December 2011 (with 19 target earthquakes), the combined model we produce has better predictive performance - in terms of Molchan diagrams and likelihood - than the starting model (EEPAS) and the input model (EAST). Many of the target earthquakes occur in regions where the combined model has high forecast rates. Most importantly, the rates in these regions are substantially higher than if we had simply averaged the models.}, language = {en} } @phdthesis{Supaporn2014, author = {Supaporn, Worakrit}, title = {Categorical equivalence of clones}, pages = {89}, year = {2014}, language = {en} } @article{HolschneiderZoellerClementsetal.2014, author = {Holschneider, Matthias and Z{\"o}ller, Gert and Clements, R. and Schorlemmer, Danijel}, title = {Can we test for the maximum possible earthquake magnitude?}, series = {Journal of geophysical research : Solid earth}, volume = {119}, journal = {Journal of geophysical research : Solid earth}, number = {3}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9313}, doi = {10.1002/2013JB010319}, pages = {2019 -- 2028}, year = {2014}, language = {en} } @unpublished{ConfortiLeonardMurretal.2014, author = {Conforti, Giovanni and L{\´e}onard, Christian and Murr, R{\"u}diger and Roelly, Sylvie}, title = {Bridges of Markov counting processes : reciprocal classes and duality formulas}, volume = {3}, number = {9}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2193-6943}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-71855}, pages = {12}, year = {2014}, abstract = {Processes having the same bridges are said to belong to the same reciprocal class. In this article we analyze reciprocal classes of Markov counting processes by identifying their reciprocal invariants and we characterize them as the set of counting processes satisfying some duality formula.}, language = {en} } @article{BaerenzungHolschneiderLesur2014, author = {Baerenzung, Julien and Holschneider, Matthias and Lesur, Vincent}, title = {Bayesian inversion for the filtered flow at the Earth's core-mantle boundary}, series = {Journal of geophysical research : Solid earth}, volume = {119}, journal = {Journal of geophysical research : Solid earth}, number = {4}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9313}, doi = {10.1002/2013JB010358}, pages = {2695 -- 2720}, year = {2014}, abstract = {The inverse problem of determining the flow at the Earth's core-mantle boundary according to an outer core magnetic field and secular variation model has been investigated through a Bayesian formalism. To circumvent the issue arising from the truncated nature of the available fields, we combined two modeling methods. In the first step, we applied a filter on the magnetic field to isolate its large scales by reducing the energy contained in its small scales, we then derived the dynamical equation, referred as filtered frozen flux equation, describing the spatiotemporal evolution of the filtered part of the field. In the second step, we proposed a statistical parametrization of the filtered magnetic field in order to account for both its remaining unresolved scales and its large-scale uncertainties. These two modeling techniques were then included in the Bayesian formulation of the inverse problem. To explore the complex posterior distribution of the velocity field resulting from this development, we numerically implemented an algorithm based on Markov chain Monte Carlo methods. After evaluating our approach on synthetic data and comparing it to previously introduced methods, we applied it to a magnetic field model derived from satellite data for the single epoch 2005.0. We could confirm the existence of specific features already observed in previous studies. In particular, we retrieved the planetary scale eccentric gyre characteristic of flow evaluated under the compressible quasi-geostrophy assumption although this hypothesis was not considered in our study. In addition, through the sampling of the velocity field posterior distribution, we could evaluate the reliability, at any spatial location and at any scale, of the flow we calculated. The flow uncertainties we determined are nevertheless conditioned by the choice of the prior constraints we applied to the velocity field.}, language = {en} } @book{Pilipenko2014, author = {Pilipenko, Andrey}, title = {An introduction to stochastic differential equations with reflection}, series = {Lectures in pure and applied mathematics}, journal = {Lectures in pure and applied mathematics}, number = {1}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-297-1}, issn = {2199-4951}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-70782}, publisher = {Universit{\"a}t Potsdam}, pages = {ix, 75}, year = {2014}, abstract = {These lecture notes are intended as a short introduction to diffusion processes on a domain with a reflecting boundary for graduate students, researchers in stochastic analysis and interested readers. Specific results on stochastic differential equations with reflecting boundaries such as existence and uniqueness, continuity and Markov properties, relation to partial differential equations and submartingale problems are given. An extensive list of references to current literature is included. This book has its origins in a mini-course the author gave at the University of Potsdam and at the Technical University of Berlin in Winter 2013.}, language = {en} } @unpublished{AizenbergTarkhanov2014, author = {Aizenberg, Lev A. and Tarkhanov, Nikolai Nikolaevich}, title = {An integral formula for the number of lattice points in a domain}, volume = {3}, number = {3}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2193-6943}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-70453}, pages = {7}, year = {2014}, abstract = {Using the multidimensional logarithmic residue we show a simple formula for the difference between the number of integer points in a bounded domain of R^n and the volume of this domain. The difference proves to be the integral of an explicit differential form over the boundary of the domain.}, language = {en} } @unpublished{FedchenkoTarkhanov2014, author = {Fedchenko, Dmitry and Tarkhanov, Nikolai Nikolaevich}, title = {An index formula for Toeplitz operators}, volume = {3}, number = {12}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2193-6943}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-72499}, pages = {24}, year = {2014}, abstract = {We prove a Fedosov index formula for the index of Toeplitz operators connected with the Hardy space of solutions to an elliptic system of first order partial differential equations in a bounded domain of Euclidean space with infinitely differentiable boundary.}, language = {en} } @article{KleinLeonardRosenberger2014, author = {Klein, Markus and Leonard, Christian and Rosenberger, Elke}, title = {Agmon-type estimates for a class of jump processes}, series = {Mathematische Nachrichten}, volume = {287}, journal = {Mathematische Nachrichten}, number = {17-18}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0025-584X}, doi = {10.1002/mana.201200324}, pages = {2021 -- 2039}, year = {2014}, abstract = {In the limit 0 we analyse the generators H of families of reversible jump processes in Rd associated with a class of symmetric non-local Dirichlet-forms and show exponential decay of the eigenfunctions. The exponential rate function is a Finsler distance, given as solution of a certain eikonal equation. Fine results are sensitive to the rate function being C2 or just Lipschitz. Our estimates are analogous to the semiclassical Agmon estimates for differential operators of second order. They generalize and strengthen previous results on the lattice Zd. Although our final interest is in the (sub)stochastic jump process, technically this is a pure analysis paper, inspired by PDE techniques.}, language = {en} } @unpublished{FlandoliHoegele2014, author = {Flandoli, Franco and H{\"o}gele, Michael}, title = {A solution selection problem with small stable perturbations}, volume = {3}, number = {8}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2193-6943}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-71205}, pages = {43}, year = {2014}, abstract = {The zero-noise limit of differential equations with singular coefficients is investigated for the first time in the case when the noise is a general alpha-stable process. It is proved that extremal solutions are selected and the probability of selection is computed. Detailed analysis of the characteristic function of an exit time form on the half-line is performed, with a suitable decomposition in small and large jumps adapted to the singular drift.}, language = {en} } @article{Wallenta2014, author = {Wallenta, Daniel}, title = {A Lefschetz fixed point formula for elliptic quasicomplexes}, series = {Integral equations and operator theor}, volume = {78}, journal = {Integral equations and operator theor}, number = {4}, publisher = {Springer}, address = {Basel}, issn = {0378-620X}, doi = {10.1007/s00020-014-2122-4}, pages = {577 -- 587}, year = {2014}, abstract = {In a recent paper, the Lefschetz number for endomorphisms (modulo trace class operators) of sequences of trace class curvature was introduced. We show that this is a well defined, canonical extension of the classical Lefschetz number and establish the homotopy invariance of this number. Moreover, we apply the results to show that the Lefschetz fixed point formula holds for geometric quasiendomorphisms of elliptic quasicomplexes.}, language = {en} }