@misc{NiedlBerensteinBeta2016, author = {Niedl, Robert Raimund and Berenstein, Igal and Beta, Carsten}, title = {How imperfect mixing and differential diffusion accelerate the rate of nonlinear reactions in microfluidic channels}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95810}, pages = {6451 -- 6457}, year = {2016}, abstract = {In this paper, we show experimentally that inside a microfluidic device, where the reactants are segregated, the reaction rate of an autocatalytic clock reaction is accelerated in comparison to the case where all the reactants are well mixed. We also find that, when mixing is enhanced inside the microfluidic device by introducing obstacles into the flow, the clock reaction becomes slower in comparison to the device where mixing is less efficient. Based on numerical simulations, we show that this effect can be explained by the interplay of nonlinear reaction kinetics (cubic autocatalysis) and differential diffusion, where the autocatalytic species diffuses slower than the substrate.}, language = {en} } @article{NiedlBerensteinBeta2016, author = {Niedl, Robert Raimund and Berenstein, Igal and Beta, Carsten}, title = {How imperfect mixing and differential diffusion accelerate the rate of nonlinear reactions in microfluidic channels}, series = {Physical chemistry, chemical physics : PCCP ; a journal of European Chemical Societies}, volume = {18}, journal = {Physical chemistry, chemical physics : PCCP ; a journal of European Chemical Societies}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c6cp00224b}, pages = {6451 -- 6457}, year = {2016}, abstract = {In this paper, we show experimentally that inside a microfluidic device, where the reactants are segregated, the reaction rate of an autocatalytic clock reaction is accelerated in comparison to the case where all the reactants are well mixed. We also find that, when mixing is enhanced inside the microfluidic device by introducing obstacles into the flow, the clock reaction becomes slower in comparison to the device where mixing is less efficient. Based on numerical simulations, we show that this effect can be explained by the interplay of nonlinear reaction kinetics (cubic autocatalysis) and differential diffusion, where the autocatalytic species diffuses slower than the substrate.}, language = {en} } @phdthesis{Ulaganathan2016, author = {Ulaganathan, Vamseekrishna}, title = {Molecular fundamentals of foam fractionation}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-94263}, school = {Universit{\"a}t Potsdam}, pages = {ix, 136}, year = {2016}, abstract = {Foam fractionation of surfactant and protein solutions is a process dedicated to separate surface active molecules from each other due to their differences in surface activities. The process is based on forming bubbles in a certain mixed solution followed by detachment and rising of bubbles through a certain volume of this solution, and consequently on the formation of a foam layer on top of the solution column. Therefore, systematic analysis of this whole process comprises of at first investigations dedicated to the formation and growth of single bubbles in solutions, which is equivalent to the main principles of the well-known bubble pressure tensiometry. The second stage of the fractionation process includes the detachment of a single bubble from a pore or capillary tip and its rising in a respective aqueous solution. The third and final stage of the process is the formation and stabilization of the foam created by these bubbles, which contains the adsorption layers formed at the growing bubble surface, carried up and gets modified during the bubble rising and finally ends up as part of the foam layer. Bubble pressure tensiometry and bubble profile analysis tensiometry experiments were performed with protein solutions at different bulk concentrations, solution pH and ionic strength in order to describe the process of accumulation of protein and surfactant molecules at the bubble surface. The results obtained from the two complementary methods allow understanding the mechanism of adsorption, which is mainly governed by the diffusional transport of the adsorbing protein molecules to the bubble surface. This mechanism is the same as generally discussed for surfactant molecules. However, interesting peculiarities have been observed for protein adsorption kinetics at sufficiently short adsorption times. First of all, at short adsorption times the surface tension remains constant for a while before it decreases as expected due to the adsorption of proteins at the surface. This time interval is called induction time and it becomes shorter with increasing protein bulk concentration. Moreover, under special conditions, the surface tension does not stay constant but even increases over a certain period of time. This so-called negative surface pressure was observed for BCS and BLG and discussed for the first time in terms of changes in the surface conformation of the adsorbing protein molecules. Usually, a negative surface pressure would correspond to a negative adsorption, which is of course impossible for the studied protein solutions. The phenomenon, which amounts to some mN/m, was rather explained by simultaneous changes in the molar area required by the adsorbed proteins and the non-ideality of entropy of the interfacial layer. It is a transient phenomenon and exists only under dynamic conditions. The experiments dedicated to the local velocity of rising air bubbles in solutions were performed in a broad range of BLG concentration, pH and ionic strength. Additionally, rising bubble experiments were done for surfactant solutions in order to validate the functionality of the instrument. It turns out that the velocity of a rising bubble is much more sensitive to adsorbing molecules than classical dynamic surface tension measurements. At very low BLG or surfactant concentrations, for example, the measured local velocity profile of an air bubble is changing dramatically in time scales of seconds while dynamic surface tensions still do not show any measurable changes at this time scale. The solution's pH and ionic strength are important parameters that govern the measured rising velocity for protein solutions. A general theoretical description of rising bubbles in surfactant and protein solutions is not available at present due to the complex situation of the adsorption process at a bubble surface in a liquid flow field with simultaneous Marangoni effects. However, instead of modelling the complete velocity profile, new theoretical work has been started to evaluate the maximum values in the profile as characteristic parameter for dynamic adsorption layers at the bubble surface more quantitatively. The studies with protein-surfactant mixtures demonstrate in an impressive way that the complexes formed by the two compounds change the surface activity as compared to the original native protein molecules and therefore lead to a completely different retardation behavior of rising bubbles. Changes in the velocity profile can be interpreted qualitatively in terms of increased or decreased surface activity of the formed protein-surfactant complexes. It was also observed that the pH and ionic strength of a protein solution have strong effects on the surface activity of the protein molecules, which however, could be different on the rising bubble velocity and the equilibrium adsorption isotherms. These differences are not fully understood yet but give rise to discussions about the structure of protein adsorption layer under dynamic conditions or in the equilibrium state. The third main stage of the discussed process of fractionation is the formation and characterization of protein foams from BLG solutions at different pH and ionic strength. Of course a minimum BLG concentration is required to form foams. This minimum protein concentration is a function again of solution pH and ionic strength, i.e. of the surface activity of the protein molecules. Although at the isoelectric point, at about pH 5 for BLG, the hydrophobicity and hence the surface activity should be the highest, the concentration and ionic strength effects on the rising velocity profile as well as on the foamability and foam stability do not show a maximum. This is another remarkable argument for the fact that the interfacial structure and behavior of BLG layers under dynamic conditions and at equilibrium are rather different. These differences are probably caused by the time required for BLG molecules to adapt respective conformations once they are adsorbed at the surface. All bubble studies described in this work refer to stages of the foam fractionation process. Experiments with different systems, mainly surfactant and protein solutions, were performed in order to form foams and finally recover a solution representing the foamed material. As foam consists to a large extent of foam lamella - two adsorption layers with a liquid core - the concentration in a foamate taken from foaming experiments should be enriched in the stabilizing molecules. For determining the concentration of the foamate, again the very sensitive bubble rising velocity profile method was applied, which works for any type of surface active materials. This also includes technical surfactants or protein isolates for which an accurate composition is unknown.}, language = {en} } @phdthesis{Ledendecker2016, author = {Ledendecker, Marc}, title = {En route towards advanced catalyst materials for the electrocatalytic water splitting reaction}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-93296}, school = {Universit{\"a}t Potsdam}, pages = {II, 148}, year = {2016}, abstract = {The thesis on hand deals with the development of new types of catalysts based on pristine metals and ceramic materials and their application as catalysts for the electrocatalytic water splitting reaction. In order to breathe life into this technology, cost-efficient, stable and efficient catalysts are imploringly desired. In this manner, the preparation of Mn-, N-, S-, P-, and C-containing nickel materials has been investigated together with the theoretical and electrochemical elucidation of their activity towards the hydrogen (and oxygen) evolution reaction. The Sabatier principle has been used as the principal guideline towards successful tuning of catalytic sites. Furthermore, two pathways have been chosen to ameliorate the electrocatalytic performance, namely, the direct improvement of intrinsic properties through appropriate material selection and secondly the increase of surface area of the catalytic material with an increased amount of active sites. In this manner, bringing materials with optimized hydrogen adsorption free energy onto high surface area support, catalytic performances approaching the golden standards of noble metals were feasible. Despite varying applied synthesis strategies (wet chemistry in organic solvents, ionothermal reaction, gas phase reaction), one goal has been systematically pursued: to understand the driving mechanism of the growth. Moreover, deeper understanding of inherent properties and kinetic parameters of the catalytic materials has been gained.}, language = {en} } @phdthesis{Audoersch2016, author = {Aud{\"o}rsch, Stephan}, title = {Die Synthese von (2Z,4E)-Diencarbons{\"a}ureestern und ihre Anwendung in der Totalsynthese von Polyacetylenen}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-92366}, school = {Universit{\"a}t Potsdam}, pages = {139}, year = {2016}, abstract = {Z,E-Diene sind ein h{\"a}ufig auftretendes Strukturmerkmal in Naturstoffen. Aus diesem Grund ist die einfache Darstellung dieser Struktureinheit von großen Interesse in der organischen Chemie. Das erste Ziel der vorliegenden Arbeit war daher die Weiterentwicklung der Ringschlussmetathese-/ baseninduzierten Ring{\"o}ffnungs-/ Veresterungssequenz (RBRV-Sequenz) zur Synthese von (2Z,4E)-Diencarbons{\"a}ureethylestern ausgehend von Butenoaten. Dazu wurde zun{\"a}chst die RBRV-Sequenz optimiert. Diese aus drei Schritten bestehende Sequenz konnte in einem Eintopf-Verfahren angewendet werden. Die Ringschlussmetathese gelang mit einer Katalysatorbeladung von 1 mol\% des GRUBBS-Katalysators der zweiten Generation in Dichlormethan. F{\"u}r die baseninduzierte Ring{\"o}ffnung des β,γ-unges{\"a}ttigten δ Valerolactons wurde NaHMDS verwendet. Die Alkylierung der Carboxylatspezies gelang mit dem MEERWEIN-Reagenz. Die Anwendbarkeit der Sequenz wurde f{\"u}r verschiedene Substrate demonstriert. Die Erweiterung der Methode auf α-substituierte Butenoate unterlag starken Einschr{\"a}nkungen. So konnte der Zugang f{\"u}r α Hydroxyderivate realisiert werden. Bei der Anwendung der RBRV-Sequenz auf die α-substituierten Butenoate wurde festgestellt, dass diese sich nur in moderaten Ausbeuten umsetzen ließen und zudem nicht selektiv zu den (2E,4E)-konfigurierten α-substituierten-Dienestern reagierten. Der Einsatz von Eninen unter den Standardbedingungen der RBRV-Sequenz gelang nicht. Erst nach Modifizierung der Sequenz (h{\"o}here Katalysatorbeladung, Wechsel des L{\"o}sungsmittels) konnten die [3]Dendralen-Produkte in geringen Ausbeuten erhalten werden. Im zweiten Teil der Arbeit wurde der Einsatz von (2Z,4E)-Diencarbons{\"a}ureethylestern in der Totalsynthese von Naturstoffen untersucht. Dazu wurden zun{\"a}chst die Transformationsm{\"o}glichkeiten der Ester gepr{\"u}ft. Es konnte gezeigt werden, dass sich (2Z,4E)-Diencarbons{\"a}ureethylester insbesondere zur Synthese von (2Z,4E)-Aldehyden sowie zum Aufbau der (3Z,5E)-Dien-1-in-Struktur eignen. Anhand dieser Ergebnisse wurde im Anschluss die RBRV-Sequenz in der Totalsynthese eingesetzt. Dazu wurde zun{\"a}chst der (2Z,4E)-Dienester Microsphaerodiolin in seiner ersten Totalsynthese auf drei verschiedene Routen hergestellt. Im Anschluss wurden sechs verschiedene Polyacetylene mit einer (3Z,5E)-Dien-1-in-Einheit hergestellt. Schl{\"u}sselschritte in ihrer Synthese waren immer die RBRV-Sequenz zum Aufbau der Z,E-Dien-Einheit, die Transformation des Esters in ein terminales Alkin sowie die CADIOT-CHODKIEWICZ-Kupplung zum Aufbau unsymmetrischer Polyine. Alle sechs Polyacetylene wurden zum ersten Mal in einer Totalsynthese synthetisiert. Drei Polyacetylene wurden ausgehend von (S)-Butantriol enantiomerenrein dargestellt. Anhand ihrer Drehwerte konnte eine Revision der von YAO und Mitarbeitern vorgenommen Zuordnung der Absolutkonfiguration der Naturstoffe vorgenommen werden.}, language = {de} } @phdthesis{Pape2016, author = {Pape, Simon}, title = {Entwicklung und Evaluierung von Methoden zur Synthese neuartiger Additive f{\"u}r die außenstromlose Nickel-Phosphor-Abscheidung}, school = {Universit{\"a}t Potsdam}, pages = {223}, year = {2016}, language = {de} } @misc{ZabelWinterKellingetal.2016, author = {Zabel, Andr{\´e} and Winter, Alette and Kelling, Alexandra and Schilde, Uwe and Strauch, Peter}, title = {Tetrabromidocuprates(II)-Synthesis, Structure and EPR}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-91470}, pages = {14}, year = {2016}, abstract = {Metal-containing ionic liquids (ILs) are of interest for a variety of technical applications, e.g., particle synthesis and materials with magnetic or thermochromic properties. In this paper we report the synthesis of, and two structures for, some new tetrabromidocuprates(II) with several "onium" cations in comparison to the results of electron paramagnetic resonance (EPR) spectroscopic analyses. The sterically demanding cations were used to separate the paramagnetic Cu(II) ions for EPR measurements. The EPR hyperfine structure in the spectra of these new compounds is not resolved, due to the line broadening resulting from magnetic exchange between the still-incomplete separated paramagnetic Cu(II) centres. For the majority of compounds, the principal g values (g|| and gK) of the tensors could be determined and information on the structural changes in the [CuBr4]2- anions can be obtained. The complexes have high potential, e.g., as ionic liquids, as precursors for the synthesis of copper bromide particles, as catalytically active or paramagnetic ionic liquids.}, language = {en} } @article{ZabelWinterKellingetal.2016, author = {Zabel, Andr{\´e} and Winter, Alette and Kelling, Alexandra and Schilde, Uwe and Strauch, Peter}, title = {Tetrabromidocuprates(II)-Synthesis, Structure and EPR}, series = {International journal of molecular sciences}, volume = {17}, journal = {International journal of molecular sciences}, number = {4}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/ijms17040596}, pages = {14}, year = {2016}, abstract = {Metal-containing ionic liquids (ILs) are of interest for a variety of technical applications, e.g., particle synthesis and materials with magnetic or thermochromic properties. In this paper we report the synthesis of, and two structures for, some new tetrabromidocuprates(II) with several "onium" cations in comparison to the results of electron paramagnetic resonance (EPR) spectroscopic analyses. The sterically demanding cations were used to separate the paramagnetic Cu(II) ions for EPR measurements. The EPR hyperfine structure in the spectra of these new compounds is not resolved, due to the line broadening resulting from magnetic exchange between the still-incomplete separated paramagnetic Cu(II) centres. For the majority of compounds, the principal g values (g|| and gK) of the tensors could be determined and information on the structural changes in the [CuBr4]2- anions can be obtained. The complexes have high potential, e.g., as ionic liquids, as precursors for the synthesis of copper bromide particles, as catalytically active or paramagnetic ionic liquids.}, language = {en} } @phdthesis{Taeuber2016, author = {T{\"a}uber, Karoline}, title = {Porous Membranes from Imidazolium- and Pyridinium-based Poly(ionic liquid)s with Targeted Properties}, school = {Universit{\"a}t Potsdam}, pages = {115}, year = {2016}, language = {en} } @article{PrinzHeckElleriketal.2016, author = {Prinz, Julia and Heck, Christian and Ellerik, Lisa and Merk, Virginia and Bald, Ilko}, title = {DNA origami based Au-Ag-core-shell nanoparticle dimers with single-molecule SERS sensitivity}, series = {Nanoscale}, journal = {Nanoscale}, number = {8}, publisher = {RSC Publishing}, address = {Cambridge}, doi = {10.1039/C5NR08674D}, pages = {5612 -- 5620}, year = {2016}, abstract = {DNA origami nanostructures are a versatile tool to arrange metal nanostructures and other chemical entities with nanometer precision. In this way gold nanoparticle dimers with defined distance can be constructed, which can be exploited as novel substrates for surface enhanced Raman scattering (SERS). We have optimized the size, composition and arrangement of Au/Ag nanoparticles to create intense SERS hot spots, with Raman enhancement up to 1010, which is sufficient to detect single molecules by Raman scattering. This is demonstrated using single dye molecules (TAMRA and Cy3) placed into the center of the nanoparticle dimers. In conjunction with the DNA origami nanostructures novel SERS substrates are created, which can in the future be applied to the SERS analysis of more complex biomolecular targets, whose position and conformation within the SERS hot spot can be precisely controlled.}, language = {en} } @misc{PrinzHeckElleriketal.2016, author = {Prinz, Julia and Heck, Christian and Ellerik, Lisa and Merk, Virginia and Bald, Ilko}, title = {DNA origami based Au-Ag-core-shell nanoparticle dimers with single-molecule SERS sensitivity}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-89714}, pages = {5612 -- 5620}, year = {2016}, abstract = {DNA origami nanostructures are a versatile tool to arrange metal nanostructures and other chemical entities with nanometer precision. In this way gold nanoparticle dimers with defined distance can be constructed, which can be exploited as novel substrates for surface enhanced Raman scattering (SERS). We have optimized the size, composition and arrangement of Au/Ag nanoparticles to create intense SERS hot spots, with Raman enhancement up to 1010, which is sufficient to detect single molecules by Raman scattering. This is demonstrated using single dye molecules (TAMRA and Cy3) placed into the center of the nanoparticle dimers. In conjunction with the DNA origami nanostructures novel SERS substrates are created, which can in the future be applied to the SERS analysis of more complex biomolecular targets, whose position and conformation within the SERS hot spot can be precisely controlled.}, language = {en} } @article{MondalMarquardtJaniaketal.2016, author = {Mondal, Suvendu Sekhar and Marquardt, Dorothea and Janiak, Christoph and Holdt, Hans-J{\"u}rgen}, title = {Use of a 4,5-dicyanoimidazolate anion based ionic liquid for the synthesis of iron and silver nanoparticles}, series = {Dalton transactions : an international journal of inorganic chemistry}, journal = {Dalton transactions : an international journal of inorganic chemistry}, number = {45}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1477-9226}, doi = {10.1039/C6DT00225K}, pages = {5476 -- 5483}, year = {2016}, abstract = {Sixteen new ionic liquids (ILs) with tetraethylammonium, 1-butyl-3-methylimidazolium, 3-methyl-1-octylimidazolium and tetrabutylphosphonium cations paired with 2-substituted 4,5-dicyanoimidazolate anions (substituent at C2 = methyl, trifluoromethyl, pentafluoroethyl, N,N′-dimethyl amino and nitro) have been synthesized and characterized by using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA). The effects of cation and anion type and structure of the resulting ILs, including several room temperature ionic liquids (RTILs), are reflected in the crystallization, melting points and thermal decomposition of the ILs. ILs exhibited large liquid and crystallization ranges and formed glasses on cooling with glass transition temperatures in the range of -22 to -71 °C. We selected one of the newly designed ILs due to its bigger size, compared to the common conventional IL anion and high electron-withdrawing nitrile group leads to an overall stabilization anion that may stabilize the metal nanoparticles. Stable and better separated iron and silver nanoparticles are obtained by the decomposition of corresponding Fe2(CO)9 and AgPF6, respectively, under N2-atmosphere in newly designed nitrile functionalized 4,5-dicyanoimidazolate anion based IL. Very small and uniform size for Fe-nanoparticles of about 1.8 ± 0.6 nm were achieved without any additional stabilizers or capping molecules. Comparatively bigger size of Ag-nanoparticles was obtained through the reduction of AgPF6 by hydrogen gas. Additionally, the AgPF6 precursor was decomposed under microwave irradiation (MWI), fabricating nut-in-shell-like, that is, core-separated-from-shell Ag-nano-structures.}, language = {en} } @phdthesis{Mai2016, author = {Mai, Tobias}, title = {Polymerunterst{\"u}tzte Calciumphosphatmineralisation}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-89056}, school = {Universit{\"a}t Potsdam}, year = {2016}, abstract = {Im Verlauf dieser Arbeit sind Blockcopolymere verschiedener Ladung auf Basis von PEO mit hohen Molekulargewichten durch lebendende freie radikalische Polymerisation hergestellt worden. Die Polymere sind einfach im Grammmaßstab herstellbar. Sie zeigen sowohl einen großen Einfluss auf die Nukleation als auch auf die Aufl{\"o}sung von Calciumphosphat. Gleichwohl scheint das Vorhandensein von positiven Gruppen (Kationen, Ampholyten und Betainen) keinen dramatischen Einfluss auf die Nukleation zu haben. So verursachen Polymere mit positiven Ladungen die gleiche Retentionwirkung wie solche, die ausschließlich anionische Gruppen enthalten. Aus der Verwendung der kationischen, ampholytischen und betainischen Copolymere resultiert allerdings eine andersartige Morphologie der Niederschl{\"a}ge, als aus der Verwendung der Anionischen hervorgeht. Bei der Stabilisierung einer HAP-Oberfl{\"a}che setzt sich dieser Trend fort, das heißt, rein anionische Copolymere wirken st{\"a}rker stabilisierend als solche, die positive Ladungen enthalten. Durch Inkubation von menschlichem Zahnschmelz mit anionischen Copolymeren konnte gezeigt werden, dass die Biofilmbildung verglichen mit einer unbehandelten Zahnoberfl{\"a}che eingeschr{\"a}nkt abl{\"a}uft. All dies macht die Polymere zu interessanten Additiven f{\"u}r Zahnpflegeprodukte. Zus{\"a}tzlich konnten auf Basis dieser rein anionischen Copolymere Polymerb{\"u}rsten, ebenfalls {\"u}ber lebendende freie radikalische Polymerisation, hergestellt werden. Diese zeichnen sich durch einen großen Einfluss auf die Kristallphase aus und bilden mit dem CHAP des AB-Types das Material, welches auch in Knochen und Z{\"a}hnen vorkommt. Erste Cytotoxizit{\"a}tstests lassen auf das große Potential dieser Polymerb{\"u}rsten f{\"u}r Beschichtungen in der Medizintechnik schließen.}, language = {de} }