@misc{LoebnerJelkenYadavallietal.2017, author = {Loebner, Sarah and Jelken, Joachim and Yadavalli, Nataraja Sekhar and Sava, Elena and Hurduc, Nicolae and Santer, Svetlana}, title = {Motion of adsorbed nano-particles on azobenzene containing polymer films}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400423}, pages = {11}, year = {2017}, abstract = {We demonstrate in situ recorded motion of nano-objects adsorbed on a photosensitive polymer film. The motion is induced by a mass transport of the underlying photoresponsive polymer material occurring during irradiation with interference pattern. The polymer film contains azobenzene molecules that undergo reversible photoisomerization reaction from trans- to cis-conformation. Through a multi-scale chain of physico-chemical processes, this finally results in the macro-deformations of the film due to the changing elastic properties of polymer. The topographical deformation of the polymer surface is sensitive to a local distribution of the electrical field vector that allows for the generation of dynamic changes in the surface topography during irradiation with different light interference patterns. Polymer film deformation together with the motion of the adsorbed nano-particles are recorded using a homemade set-up combining an optical part for the generation of interference patterns and an atomic force microscope for acquiring the surface deformation. The particles undergo either translational or rotational motion. The direction of particle motion is towards the topography minima and opposite to the mass transport within the polymer film. The ability to relocate particles by photo-induced dynamic topography fluctuation offers a way for a non-contact simultaneous manipulation of a large number of adsorbed particles just in air at ambient conditions.}, language = {en} } @phdthesis{KianiAlibagheri2017, author = {Kiani Alibagheri, Bahareh}, title = {On structural properties of magnetosome chains}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-398849}, school = {Universit{\"a}t Potsdam}, pages = {XIV, 117}, year = {2017}, abstract = {Magnetotaktische Bakterien besitzen eine intrazellul{\"a}re Struktur, die Magnetosomenkette genannt wird. Magnetosomenketten enthalten Nanopartikel von Eisenkristallen, die von einer Membran umschlossen und entlang eines Zytoskelettfilaments ausgerichtet sind. Dank der Magnetosomenkette ist es magnetotaktischen Bakterien m{\"o}glich sich in Magnetfeldern auszurichten und entlang magnetischer Feldlinien zu schwimmen. Die ausf{\"u}hrliche Untersuchung der strukturellen Eigenschaften der Magnetosomenkette in magnetotaktischen Bakterien sind von grundlegendem wissenschaftlichen Interesse, weil sie Einblicke in die Anordnung des Zytoskeletts von Bakterien erlauben. In dieser Studie haben wir ein neues theoretisches Modell entwickelt, dass sich dazu eignet, die strukturellen Eigenschaften der Magnetosomenketten in magnetotaktischen Bakterien zu erforschen. Zuerst wenden wir uns der Biegesteifigkeit von Magnetosomenketten zu, die von zwei Faktoren beeinflusst wird: Die magnetische Wechselwirkung der Magnetosomenpartikel und der Biegesteifigkeit des Zytoskelettfilaments auf welchem die Magnetosome verankert sind. Unsere Analyse zeigt, dass sich die lineare Konfiguration von Magnetosomenpartikeln ohne die Stabilisierung durch das Zytoskelett zu einer ring{\"o}rmigen Struktur biegen w{\"u}rde, die kein magnetisches Moment aufweist und daher nicht die Funktion eines Kompass in der zellul{\"a}ren Navigation einnehmen k{\"o}nnte. Wir schlussfolgern, dass das Zytoskelettfilament eine stabilisierende Wirkung auf die lineare Konfiguration hat und eine ringf{\"o}rmige Anordnung verhindert. Wir untersuchen weiter die Gleichgewichtskonfiguration der Magnetosomenpartikel in einer linearen Kette und in einer geschlossenen ringf{\"o}rmigen Struktur. Dabei beobachteten wir ebenfalls, dass f{\"u}r eine stabile lineare Anordnung eine Bindung an ein Zytoskelettfilament notwendig ist. In einem externen magnetischen Feld wird die Stabilit{\"a}t der Magnetosomenketten durch die Dipol-Dipol-Wechselwirkung, {\"u}ber die Steifheit und die Bindungsenergie der Proteinstruktur, die die Partikel des Magnetosomen mit dem Filament verbinden, erreicht. Durch Beobachtungen w{\"a}hrend und nach der Behandlung einer Magnetosomenkette mit einem externen magnetischen Feld, l{\"a}sst sich begr{\"u}nden, dass die Stabilisierung von Magnetosomenketten durch Zytoskelettfilamente {\"u}ber proteinhaltige Bindeglieder und die dynamischen Eigenschaften dieser Strukturen realisiert wird. Abschließend wenden wir unser Modell bei der Untersuchung von ferromagnetischen Resonanz-Spektren von Magnetosomenketten in einzelnen Zellen von magnetotaktischen Bakterien an. Wir erforschen den Effekt der magnetokristallinen Anistropie in ihrer dreifach-Symmetrie, die in ferromagnetischen Ressonanz Spektren beobachtet wurden und die Besonderheit von verschiedenen Spektren, die bei Mutanten dieser Bakterien auftreten.}, language = {en} } @misc{CherstvyVinodAghionetal.2017, author = {Cherstvy, Andrey G. and Vinod, Deepak and Aghion, Erez and Chechkin, Aleksei V. and Metzler, Ralf}, title = {Time averaging, ageing and delay analysis of financial time series}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400541}, pages = {11}, year = {2017}, abstract = {We introduce three strategies for the analysis of financial time series based on time averaged observables. These comprise the time averaged mean squared displacement (MSD) as well as the ageing and delay time methods for varying fractions of the financial time series. We explore these concepts via statistical analysis of historic time series for several Dow Jones Industrial indices for the period from the 1960s to 2015. Remarkably, we discover a simple universal law for the delay time averaged MSD. The observed features of the financial time series dynamics agree well with our analytical results for the time averaged measurables for geometric Brownian motion, underlying the famed Black-Scholes-Merton model. The concepts we promote here are shown to be useful for financial data analysis and enable one to unveil new universal features of stock market dynamics.}, language = {en} } @phdthesis{Qiu2017, author = {Qiu, Xunlin}, title = {Ferroelectrets: heterogenous polymer electrets with high electromechanical response}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-398425}, school = {Universit{\"a}t Potsdam}, pages = {viii, 172}, year = {2017}, abstract = {Ferroelectrets are internally charged polymer foams or cavity-containing polymer-_lm systems that combine large piezoelectricity with mechanical flexibility and elastic compliance. The term "ferroelectret" was coined based on the fact that it is a space-charge electret that also shows ferroic behavior. In this thesis, comprehensive work on ferroelectrets, and in particular on their preparation, their charging, their piezoelectricity and their applications is reported. For industrial applications, ferroelectrets with well-controlled distributions or even uniform values of cavity size and cavity shape and with good thermal stability of the piezoelectricity are very desirable. Several types of such ferroelectrets are developed using techniques such as straightforward thermal lamination, sandwiching sticky templates with electret films, and screen printing. In particular, uoroethylenepropylene (FEP) _lm systems with tubular-channel openings, prepared by means of the thermal lamination technique, show piezoelectric d33 coefficients of up to 160 pC/N after charging through dielectric barrier discharges (DBDs) . For samples charged at suitable elevated temperatures, the piezoelectricity is stable at temperatures of at least 130°C. These preparation methods are easy to implement at laboratory or industrial scales, and are quite flexible in terms of material selection and cavity geometry design. Due to the uniform and well-controlled cavity structures, samples are also very suitable for fundamental studies on ferroelectrets. Charging of ferroelectrets is achieved via a series of dielectric barrier discharges (DBDs) inside the cavities. In the present work, the DBD charging process is comprehensively studied by means of optical, electrical and electro-acoustic methods. The spectrum of the transient light from the DBDs in cellular polypropylene (PP) ferroelectrets directly confirms the ionization of molecular nitrogen, and allows the determination of the electric field in the discharge. Detection of the light emission reveals not only DBDs under high applied voltage but also back discharges when the applied voltage is reduced to sufficiently low values. Back discharges are triggered by the internally deposited charges, as the breakdown inside the cavities is controlled by the sum of the applied electric field and the electric field of the deposited charges. The remanent effective polarization is determined by the breakdown strength of the gas-filled cavities. These findings form the basis of more efficient charging techniques for ferroelectrets such as charging with high-pressure air, thermal poling and charging assisted by gas exchange. With the proposed charging strategies, the charging efficiency of ferroelectrets can be enhanced significantly. After charging, the cavities can be considered as man-made macroscopic dipoles whose direction can be reversed by switching the polarity of the applied voltage. Polarization-versus-electric-field (P(E)) hysteresis loops in ferroelectrets are observed by means of an electro-acoustic method combined with dielectric resonance spectroscopy. P(E) hysteresis loops in ferrroelectrets are also obtained by more direct measurements using a modified Sawyer-Tower circuit. Hysteresis loops prove the ferroic behavior of ferroelectrets. However, repeated switching of the macroscopic dipoles involves complex physico-chemical processes. The DBD charging process generates a cold plasma with numerous active species and thus modifies the inner polymer surfaces of the cavities. Such treatments strongly affect the chargeability of the cavities. At least for cellular PP ferroelectrets, repeated DBDs in atmospheric conditions lead to considerable fatigue of the effective polarization and of the resulting piezoelectricity. The macroscopic dipoles in ferroelectrets are highly compressible, and hence the piezoelectricity is essentially the primary effect. It is found that the piezoelectric d33 coefficient is proportional to the polarization and the elastic compliance of the sample, providing hints for developing materials with higher piezoelectric sensitivity in the future. Due to their outstanding electromechanical properties, there has been constant interest in the application of ferroelectrets. The antiresonance frequencies (fp) of ferroelectrets are sensitive to the boundary conditions during measurement. A tubular-channel FEP ferroelectret is conformably attached to a self-organized minimum-energy dielectric elastomer actuator (DEA). It turns out that the antiresonance frequency (fp) of the ferroelectret film changes noticeably with the bending angle of the DEA. Therefore, the actuation of DEAs can be used to modulate the fp value of ferroelectrets, but fp can also be exploited for in-situ diagnosis and for precise control of the actuation of the DEA. Combination of DEAs and ferroelectrets opens up various new possibilities for application.}, language = {en} } @phdthesis{Roland2017, author = {Roland, Steffen}, title = {Charge carrier recombination and open circuit voltage in organic solar cells}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-397721}, school = {Universit{\"a}t Potsdam}, pages = {VI, 145}, year = {2017}, abstract = {Tremendous progress in the development of thin film solar cell techniques has been made over the last decade. The field of organic solar cells is constantly developing, new material classes like Perowskite solar cells are emerging and different types of hybrid organic/inorganic material combinations are being investigated for their physical properties and their applicability in thin film electronics. Besides typical single-junction architectures for solar cells, multi-junction concepts are also being investigated as they enable the overcoming of theoretical limitations of a single-junction. In multi-junction devices each sub-cell operates in different wavelength regimes and should exhibit optimized band-gap energies. It is exactly this tunability of the band-gap energy that renders organic solar cell materials interesting candidates for multi-junction applications. Nevertheless, only few attempts have been made to combine inorganic and organic solar cells in series connected multi-junction architectures. Even though a great diversity of organic solar cells exists nowadays, their open circuit voltage is usually low compared to the band-gap of the active layer. Hence, organic low band-gap solar cells in particular show low open circuit voltages and the key factors that determine the voltage losses are not yet fully understood. Besides open circuit voltage losses the recombination of charges in organic solar cells is also a prevailing research topic, especially with respect to the influence of trap states. The exploratory focus of this work is therefore set, on the one hand, on the development of hybrid organic/inorganic multi-junctions and, on the other hand, on gaining a deeper understanding of the open circuit voltage and the recombination processes of organic solar cells. In the first part of this thesis, the development of a hybrid organic/inorganic triple-junction will be discussed which showed at that time (Jan. 2015) a record power conversion efficiency of 11.7\%. The inorganic sub-cells of these devices consist of hydrogenated amorphous silicon and were delivered by the Competence Center Thin-Film and Nanotechnology for Photovoltaics in Berlin. Different recombination contacts and organic sub-cells were tested in conjunction with these inorganic sub-cells on the basis of optical modeling predictions for the optimal layer thicknesses to finally reach record efficiencies for this type of solar cells. In the second part, organic model systems will be investigated to gain a better understanding of the fundamental loss mechanisms that limit the open circuit voltage of organic solar cells. First, bilayer systems with different orientation of the donor and acceptor molecules were investigated to study the influence of the donor/acceptor orientation on non-radiative voltage loss. Secondly, three different bulk heterojunction solar cells all comprising the same amount of fluorination and the same polymer backbone in the donor component were examined to study the influence of long range electrostatics on the open circuit voltage. Thirdly, the device performance of two bulk heterojunction solar cells was compared which consisted of the same donor polymer but used different fullerene acceptor molecules. By this means, the influence of changing the energetics of the acceptor component on the open circuit voltage was investigated and a full analysis of the charge carrier dynamics was presented to unravel the reasons for the worse performance of the solar cell with the higher open circuit voltage. In the third part, a new recombination model for organic solar cells will be introduced and its applicability shown for a typical low band-gap cell. This model sheds new light on the recombination process in organic solar cells in a broader context as it re-evaluates the recombination pathway of charge carriers in devices which show the presence of trap states. Thereby it addresses a current research topic and helps to resolve alleged discrepancies which can arise from the interpretation of data derived by different measurement techniques.}, language = {en} } @phdthesis{Hakansson2017, author = {H{\aa}kansson, Nils}, title = {A Dark Matter line search using 3D-modeling of Cherenkov showers below 10 TeV with VERITAS}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-397670}, school = {Universit{\"a}t Potsdam}, pages = {107, xxxvi}, year = {2017}, abstract = {Dark matter, DM, has not yet been directly observed, but it has a very solid theoretical basis. There are observations that provide indirect evidence, like galactic rotation curves that show that the galaxies are rotating too fast to keep their constituent parts, and galaxy clusters that bends the light coming from behind-lying galaxies more than expected with respect to the mass that can be calculated from what can be visibly seen. These observations, among many others, can be explained with theories that include DM. The missing piece is to detect something that can exclusively be explained by DM. Direct observation in a particle accelerator is one way and indirect detection using telescopes is another. This thesis is focused on the latter method. The Very Energetic Radiation Imaging Telescope Array System, V ERITAS, is a telescope array that detects Cherenkov radiation. Theory predicts that DM particles annihilate into, e.g., a γγ pair and create a distinctive energy spectrum when detected by such telescopes, e.i., a monoenergetic line at the same energy as the particle mass. This so called "smoking-gun" signature is sought with a sliding window line search within the sub-range ∼ 0.3 - 10 TeV of the VERITAS energy range, ∼ 0.01 - 30 TeV. Standard analysis within the VERITAS collaboration uses Hillas analysis and look-up tables, acquired by analysing particle simulations, to calculate the energy of the particle causing the Cherenkov shower. In this thesis, an improved analysis method has been used. Modelling each shower as a 3Dgaussian should increase the energy recreation quality. Five dwarf spheroidal galaxies were chosen as targets with a total of ∼ 224 hours of data. The targets were analysed individually and stacked. Particle simulations were based on two simulation packages, CARE and GrISU. Improvements have been made to the energy resolution and bias correction, up to a few percent each, in comparison to standard analysis. Nevertheless, no line with a relevant significance has been detected. The most promising line is at an energy of ∼ 422 GeV with an upper limit cross section of 8.10 · 10^-24 cm^3 s^-1 and a significance of ∼ 2.73 σ, before trials correction and ∼ 1.56 σ after. Upper limit cross sections have also been calculated for the γγ annihilation process and four other outcomes. The limits are in line with current limits using other methods, from ∼ 8.56 · 10^-26 - 6.61 · 10^-23 cm^3s^-1. Future larger telescope arrays, like the upcoming Cherenkov Telescope Array, CTA, will provide better results with the help of this analysis method.}, language = {en} } @phdthesis{Guidi2017, author = {Guidi, Giovanni}, title = {Connecting simulations and observations in galaxy formation studies}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-396876}, school = {Universit{\"a}t Potsdam}, pages = {141}, year = {2017}, abstract = {Observational and computational extragalactic astrophysics are two fields of research that study a similar subject from different perspectives. Observational extragalactic astrophysics aims, by recovering the spectral energy distribution of galaxies at different wavelengths, to reliably measure their properties at different cosmic times and in a large variety of environments. Analyzing the light collected by the instruments, observers try to disentangle the different processes occurring in galaxies at the scales of galactic physics, as well as the effect of larger scale processes such as mergers and accretion, in order to obtain a consistent picture of galaxy formation and evolution. On the other hand, hydrodynamical simulations of galaxy formation in cosmological context are able to follow the evolution of a galaxy along cosmic time, taking into account both external processes such as mergers, interactions and accretion, and internal mechanisms such as feedback from Supernovae and Active Galactic Nuclei. Due to the great advances in both fields of research, we have nowadays available spectral and photometric information for a large number of galaxies in the Universe at different cosmic times, which has in turn provided important knowledge about the evolution of the Universe; at the same time, we are able to realistically simulate galaxy formation and evolution in large volumes of the Universe, taking into account the most relevant physical processes occurring in galaxies. As these two approaches are intrinsically different in their methodology and in the information they provide, the connection between simulations and observations is still not fully established, although simulations are often used in galaxies' studies to interpret observations and assess the effect of the different processes acting on galaxies on the observable properties, and simulators usually test the physical recipes implemented in their hydrodynamical codes through the comparison with observations. In this dissertation we aim to better connect the observational and computational approaches in the study of galaxy formation and evolution, using the methods and results of one field to test and validate the methods and results of the other. In a first work we study the biases and systematics in the derivation of the galaxy properties in observations. We post-process hydrodynamical cosmological simulations of galaxy formation to calculate the galaxies' Spectral Energy Distributions (SEDs) using different approaches, including radiative transfer techniques. Comparing the direct results of the simulations with the quantities obtained applying observational techniques to these synthetic SEDs, we are able to make an analysis of the biases intrinsic in the observational algorithms, and quantify their accuracy in recovering the galaxies' properties, as well as estimating the uncertainties affecting a comparison between simulations and observations when different approaches to obtain the observables are followed. Our results show that for some quantities such as the stellar ages, metallicities and gas oxygen abundances large differences can appear, depending on the technique applied in the derivation. In a second work we compare a set of fifteen galaxies similar in mass to the Milky Way and with a quiet merger history in the recent past (hence expected to have properties close to spiral galaxies), simulated in a cosmological context, with data from the Sloan Digital Sky Survey (SDSS). We use techniques to obtain the observables as similar as possible to the ones applied in SDSS, with the aim of making an unbiased comparison between our set of hydrodynamical simulations and SDSS observations. We quantify the differences in the physical properties when these are obtained directly from the simulations without post-processing, or mimicking the SDSS observational techniques. We fit linear relations between the values derived directly from the simulations and following SDSS observational procedures, which in most of the cases have relatively high correlation, that can be easily used to more reliably compare simulations with SDSS data. When mimicking SDSS techniques, these simulated galaxies are photometrically similar to galaxies in the SDSS blue sequence/green valley, but have in general older ages, lower SFRs and metallicities compared to the majority of the spirals in the observational dataset. In a third work, we post-process hydrodynamical simulations of galaxies with radiative transfer techniques, to generate synthetic data that mimic the properties of the CALIFA Integral Field Spectroscopy (IFS) survey. We reproduce the main characteristics of the CALIFA observations in terms of field of view and spaxel physical size, data format, point spread functions and detector noise. This 3-dimensional dataset is suited to be analyzed by the same algorithms applied to the CALIFA dataset, and can be used as a tool to test the ability of the observational algorithms in recovering the properties of the CALIFA galaxies. To this purpose, we also generate the resolved maps of the simulations' properties, calculated directly from the hydrodynamical snapshots, or from the simulated spectra prior to the addition of the noise. Our work shows that a reliable connection between the models and the data is of crucial importance both to judge the output of galaxy formation codes and to accurately test the observational algorithms used in the analysis of galaxy surveys' data. A correct interpretation of observations will be particularly important in the future, in light of the several ongoing and planned large galaxy surveys that will provide the community with large datasets of properties of galaxies (often spatially-resolved) at different cosmic times, allowing to study galaxy formation physics at a higher level of detail than ever before. We have shown that neglecting the observational biases in the comparison between simulations and an observational dataset may move the simulations to different regions in the planes of the observables, strongly affecting the assessment of the correctness of the sub-resolution physical models implemented in galaxy formation codes, as well as the interpretation of given observational results using simulations.}, language = {en} } @phdthesis{Anders2017, author = {Anders, Friedrich}, title = {Disentangling the chemodynamical history of the Milky Way disc with asteroseismology and spectroscopy}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-396681}, school = {Universit{\"a}t Potsdam}, pages = {121}, year = {2017}, abstract = {Galaxies are among the most complex systems that can currently be modelled with a computer. A realistic simulation must take into account cosmology and gravitation as well as effects of plasma, nuclear, and particle physics that occur on very different time, length, and energy scales. The Milky Way is the ideal test bench for such simulations, because we can observe millions of its individual stars whose kinematics and chemical composition are records of the evolution of our Galaxy. Thanks to the advent of multi-object spectroscopic surveys, we can systematically study stellar populations in a much larger volume of the Milky Way. While the wealth of new data will certainly revolutionise our picture of the formation and evolution of our Galaxy and galaxies in general, the big-data era of Galactic astronomy also confronts us with new observational, theoretical, and computational challenges. This thesis aims at finding new observational constraints to test Milky-Way models, primarily based on infra-red spectroscopy from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) and asteroseismic data from the CoRoT mission. We compare our findings with chemical-evolution models and more sophisticated chemodynamical simulations. In particular we use the new powerful technique of combining asteroseismic and spectroscopic observations that allows us to test the time dimension of such models for the first time. With CoRoT and APOGEE (CoRoGEE) we can infer much more precise ages for distant field red-giant stars, opening up a new window for Galactic archaeology. Another important aspect of this work is the forward-simulation approach that we pursued when interpreting these complex datasets and comparing them to chemodynamical models. The first part of the thesis contains the first chemodynamical study conducted with the APOGEE survey. Our sample comprises more than 20,000 red-giant stars located within 6 kpc from the Sun, and thus greatly enlarges the Galactic volume covered with high-resolution spectroscopic observations. Because APOGEE is much less affected by interstellar dust extinction, the sample covers the disc regions very close to the Galactic plane that are typically avoided by optical surveys. This allows us to investigate the chemo-kinematic properties of the Milky Way's thin disc outside the solar vicinity. We measure, for the first time with high-resolution data, the radial metallicity gradient of the disc as a function of distance from the Galactic plane, demonstrating that the gradient flattens and even changes its sign for mid-plane distances greater than 1 kpc. Furthermore, we detect a gap between the high- and low-[\$\alpha\$/Fe] sequences in the chemical-abundance diagram (associated with the thin and thick disc) that unlike in previous surveys can hardly be explained by selection effects. Using 6D kinematic information, we also present chemical-abundance diagrams cleaned from stars on kinematically hot orbits. The data allow us to confirm without doubt that the scale length of the (chemically-defined) thick disc is significantly shorter than that of the thin disc. In the second part, we present our results of the first combination of asteroseismic and spectroscopic data in the context of Galactic Archaeology. We analyse APOGEE follow-up observations of 606 solar-like oscillating red giants in two CoRoT fields close to the Galactic plane. These stars cover a large radial range of the Galactic disc (4.5 kpc \$\lesssim R_{\rm Gal}\lesssim15\$ kpc) and a large age baseline (0.5 Gyr \$\lesssim \tau\lesssim\$ 13 Gyr), allowing us to study the age- and radius-dependence of the [\$\alpha\$/Fe] vs. [Fe/H] distributions. We find that the age distribution of the high-[\$\alpha\$/Fe] sequence appears to be broader than expected from a monolithically-formed old thick disc that stopped to form stars 10 Gyr ago. In particular, we discover a significant population of apparently young, [\$\alpha\$/Fe]-rich stars in the CoRoGEE data whose existence cannot be explained by standard chemical-evolution models. These peculiar stars are much more abundant in the inner CoRoT field LRc01 than in the outer-disc field LRc01, suggesting that at least part of this population has a chemical-evolution rather than a stellar-evolution origin, possibly due to a peculiar chemical-enrichment history of the inner disc. We also find that strong radial migration is needed to explain the abundance of super-metal-rich stars in the outer disc. Finally, we use the CoRoGEE sample to study the time evolution of the radial metallicity gradient in the thin disc, an observable that has been the subject of observational and theoretical debate for more than 20 years. By dividing the CoRoGEE dataset into six age bins, performing a careful statistical analysis of the radial [Fe/H], [O/H], and [Mg/Fe] distributions, and accounting for the biases introduced by the observation strategy, we obtain reliable gradient measurements. The slope of the radial [Fe/H] gradient of the young red-giant population (\$-0.058\pm0.008\$ [stat.] \$\pm0.003\$ [syst.] dex/kpc) is consistent with recent Cepheid data. For the age range of \$1-4\$ Gyr, the gradient steepens slightly (\$-0.066\pm0.007\pm0.002\$ dex/kpc), before flattening again to reach a value of \$\sim-0.03\$ dex/kpc for stars with ages between 6 and 10 Gyr. This age dependence of the [Fe/H] gradient can be explained by a nearly constant negative [Fe/H] gradient of \$\sim-0.07\$ dex/kpc in the interstellar medium over the past 10 Gyr, together with stellar heating and migration. Radial migration also offers a new explanation for the puzzling observation that intermediate-age open clusters in the solar vicinity (unlike field stars) tend to have higher metallicities than their younger counterparts. We suggest that non-migrating clusters are more likely to be kinematically disrupted, which creates a bias towards high-metallicity migrators from the inner disc and may even steepen the intermediate-age cluster abundance gradient.}, language = {en} } @misc{MenzelPuhlmannHeuer2017, author = {Menzel, Ralf and Puhlmann, Dirk and Heuer, Axel}, title = {Complementarity in single photon interference - the role of the mode function and vacuum fields}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-395210}, pages = {7}, year = {2017}, abstract = {Background In earlier experiments the role of the vacuum fields could be demonstrated as the source of complementarity with respect to the temporal properties (Heuer et al., Phys. Rev. Lett. 114:053601, 2015). Methods Single photon first order interferences of spatially separated regions from the cone structure of spontaneous parametric down conversion allow for analyzing the role of the mode function in quantum optics regarding the complementarity principle. Results Here the spatial coherence properties of these vacuum fields are demonstrated as the physical reason for complementarity in these single photon quantum optical experiments. These results are directly connected to the mode picture in classical optics. Conclusion The properties of the involved vacuum fields selected via the measurement process are the physical background of the complementarity principle in quantum optics.}, language = {en} } @phdthesis{Shenar2017, author = {Shenar, Tomer}, title = {Comprehensive analyses of massive binaries and implications on stellar evolution}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-104857}, school = {Universit{\"a}t Potsdam}, pages = {187}, year = {2017}, abstract = {Via their powerful radiation, stellar winds, and supernova explosions, massive stars (Mini \& 8 M☉) bear a tremendous impact on galactic evolution. It became clear in recent decades that the majority of massive stars reside in binary systems. This thesis sets as a goal to quantify the impact of binarity (i.e., the presence of a companion star) on massive stars. For this purpose, massive binary systems in the Local Group, including OB-type binaries, high mass X-ray binaries (HMXBs), and Wolf-Rayet (WR) binaries, were investigated by means of spectral, orbital, and evolutionary analyses. The spectral analyses were performed with the non-local thermodynamic equillibrium (non-LTE) Potsdam Wolf-Rayet (PoWR) model atmosphere code. Thanks to critical updates in the calculation of the hydrostatic layers, the code became a state-of-the-art tool applicable for all types of hot massive stars (Chapter 2). The eclipsing OB-type triple system δ Ori served as an intriguing test-case for the new version of the PoWR code, and provided key insights regarding the formation of X-rays in massive stars (Chapter 3). We further analyzed two prototypical HMXBs, Vela X-1 and IGR J17544-2619, and obtained fundamental conclusions regarding the dichotomy of two basic classes of HMXBs (Chapter 4). We performed an exhaustive analysis of the binary R 145 in the Large Magellanic Cloud (LMC), which was claimed to host the most massive stars known. We were able to disentangle the spectrum of the system, and performed an orbital, polarimetric, and spectral analysis, as well as an analysis of the wind-wind collision region. The true masses of the binary components turned out to be significantly lower than suggested, impacting our understanding of the initial mass function and stellar evolution at low metallicity (Chapter 5). Finally, all known WR binaries in the Small Magellanic Cloud (SMC) were analyzed. Although it was theoretical predicted that virtually all WR stars in the SMC should be formed via mass-transfer in binaries, we find that binarity was not important for the formation of the known WR stars in the SMC, implying a strong discrepancy between theory and observations (Chapter 6).}, language = {en} }