@phdthesis{Yan2019, author = {Yan, Runyu}, title = {Nitrogen-doped and porous carbons towards new energy storage mechanisms for supercapacitors with high energy density}, doi = {10.25932/publishup-43141}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-431413}, school = {Universit{\"a}t Potsdam}, pages = {152}, year = {2019}, abstract = {Supercapacitors are electrochemical energy storage devices with rapid charge/discharge rate and long cycle life. Their biggest challenge is the inferior energy density compared to other electrochemical energy storage devices such as batteries. Being the most widely spread type of supercapacitors, electrochemical double-layer capacitors (EDLCs) store energy by electrosorption of electrolyte ions on the surface of charged electrodes. As a more recent development, Na-ion capacitors (NICs) are expected to be a more promising tactic to tackle the inferior energy density due to their higher-capacity electrodes and larger operating voltage. The charges are simultaneously stored by ion adsorption on the capacitive-type cathode surface and via faradic process in the battery-type anode, respectively. Porous carbon electrodes are of great importance in these devices, but the paramount problems are the facile synthetic routes for high-performance carbons and the lack of fundamental understanding of the energy storage mechanisms. Therefore, the aim of the present dissertation is to develop novel synthetic methods for (nitrogen-doped) porous carbon materials with superior performance, and to reveal a deeper understanding energy storage mechanisms of EDLCs and NICs. The first part introduces a novel synthetic method towards hierarchical ordered meso-microporous carbon electrode materials for EDLCs. The large amount of micropores and highly ordered mesopores endow abundant sites for charge storage and efficient electrolyte transport, respectively, giving rise to superior EDLC performance in different electrolytes. More importantly, the controversial energy storage mechanism of EDLCs employing ionic liquid (IL) electrolytes is investigated by employing a series of porous model carbons as electrodes. The results not only allow to conclude on the relations between the porosity and ion transport dynamics, but also deliver deeper insights into the energy storage mechanism of IL-based EDLCs which is different from the one usually dominating in solvent-based electrolytes leading to compression double-layers. The other part focuses on anodes of NICs, where novel synthesis of nitrogen-rich porous carbon electrodes and their sodium storage mechanism are investigated. Free-standing fibrous nitrogen-doped carbon materials are synthesized by electrospinning using the nitrogen-rich monomer (hexaazatriphenylene-hexacarbonitrile, C18N12) as the precursor followed by condensation at high temperature. These fibers provide superior capacity and desirable charge/discharge rate for sodium storage. This work also allows insights into the sodium storage mechanism in nitrogen-doped carbons. Based on this mechanism, further optimization is done by designing a composite material composed of nitrogen-rich carbon nanoparticles embedded in conductive carbon matrix for a better charge/discharge rate. The energy density of the assembled NICs significantly prevails that of common EDLCs while maintaining the high power density and long cycle life.}, language = {en} } @misc{HeckKanehiraKneippetal.2019, author = {Heck, Christian and Kanehira, Yuya and Kneipp, Janina and Bald, Ilko}, title = {Amorphous Carbon Generation as a Photocatalytic Reaction on DNA-Assembled Gold and Silver Nanostructures}, series = {Mathematisch-Naturwissenschaftliche Reihe}, journal = {Mathematisch-Naturwissenschaftliche Reihe}, number = {732}, issn = {1866-8372}, doi = {10.25932/publishup-43081}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-430812}, pages = {10}, year = {2019}, abstract = {Background signals from in situ-formed amorphous carbon, despite not being fully understood, are known to be a common issue in few-molecule surface-enhanced Raman scattering (SERS). Here, discrete gold and silver nanoparticle aggregates assembled by DNA origami were used to study the conditions for the formation of amorphous carbon during SERS measurements. Gold and silver dimers were exposed to laser light of varied power densities and wavelengths. Amorphous carbon prevalently formed on silver aggregates and at high power densities. Time-resolved measurements enabled us to follow the formation of amorphous carbon. Silver nanolenses consisting of three differently-sized silver nanoparticles were used to follow the generation of amorphous carbon at the single-nanostructure level. This allowed observation of the many sharp peaks that constitute the broad amorphous carbon signal found in ensemble measurements. In conclusion, we highlight strategies to prevent amorphous carbon formation, especially for DNA-assembled SERS substrates.}, language = {en} } @phdthesis{Zimmermann2018, author = {Zimmermann, Marc}, title = {Multifunctional patchy silica particles via microcontact printing}, doi = {10.25932/publishup-42773}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427731}, school = {Universit{\"a}t Potsdam}, pages = {IX, 121, xiii}, year = {2018}, abstract = {This research addressed the question, if it is possible to simplify current microcontact printing systems for the production of anisotropic building blocks or patchy particles, by using common chemicals while still maintaining reproducibility, high precision and tunability of the Janus-balance Chapter 2 introduced the microcontact printing materials as well as their defined electrostatic interactions. In particular polydimethylsiloxane stamps, silica particles and high molecular weight polyethylenimine ink were mainly used in this research. All of these components are commercially available in large quantities and affordable, which gives this approach a huge potential for further up-scaling developments. The benefits of polymeric over molecular inks was described including its flexible influence on the printing pressure. With this alteration of the µCP concept, a new method of solvent assisted particle release mechanism enabled the switch from two-dimensional surface modification to three-dimensional structure printing on colloidal silica particles, without changing printing parameters or starting materials. This effect opened the way to use the internal volume of the achieved patches for incorporation of nano additives, introducing additional physical properties into the patches without alteration of the surface chemistry. The success of this system and its achievable range was further investigated in chapter 3 by giving detailed information about patch geometry parameters including diameter, thickness and yield. For this purpose, silica particles in a size range between 1µm and 5µm were printed with different ink concentrations to change the Janus-balance of these single patched particles. A necessary intermediate step, consisting of air-plasma treatment, for the production of trivalent particles using "sandwich" printing was discovered and comparative studies concerning the patch geometry of single and double patched particles were conducted. Additionally, the usage of structured PDMS stamps during printing was described. These results demonstrate the excellent precision of this approach and opens the pathway for even greater accuracy as further parameters can be finely tuned and investigated, e.g. humidity and temperature during stamp loading. The performance of these synthesized anisotropic colloids was further investigated in chapter 4, starting with behaviour studies in alcoholic and aqueous dispersions. Here, the stability of the applied patches was studied in a broad pH range, discovering a release mechanism by disabling the electrostatic bonding between particle surface and polyelectrolyte ink. Furthermore, the absence of strong attractive forces between divalent particles in water was investigated using XPS measurements. These results lead to the conclusion that the transfer of small PDMS oligomers onto the patch surface is shielding charges, preventing colloidal agglomeration. However, based on this knowledge, further patch modifications for particle self-assembly were introduced including physical approaches using magnetic nano additives, chemical patch functionalization with avidin-biotin or the light responsive cyclodextrin-arylazopyrazoles coupling as well as particle surface modification for the synthesis of highly amphiphilic colloids. The successful coupling, its efficiency, stability and behaviour in different solvents were evaluated to find a suitable coupling system for future assembly experiments. Based on these results the possibility of more sophisticated structures by colloidal self-assembly is given. Certain findings needed further analysis to understand their underlying mechanics, including the relatively broad patch diameter distribution and the decreasing patch thickness for smaller silica particles. Mathematical assumptions for both effects are introduced in chapter 5. First, they demonstrate the connection between the naturally occurring particle size distribution and the broadening of the patch diameter, indicating an even higher precision for this µCP approach. Second, explaining the increase of contact area between particle and ink surface due to higher particle packaging, leading to a decrease in printing pressure for smaller particles. These calculations ultimately lead to the development of a new mechanical microcontact printing approach, using centrifugal forces for high pressure control and excellent parallel alignment of printing substrates. First results with this device and the comparison with previously conducted by-hand experiments conclude this research. It furthermore displays the advantages of such a device for future applications using a mechanical printing approach, especially for accessing even smaller nano particles with great precision and excellent yield. In conclusion, this work demonstrates the successful adjustment of the µCP approach using commercially available and affordable silica particles and polyelectrolytes for high flexibility, reduced costs and higher scale-up value. Furthermore, its was possible to increase the modification potential by introducing three-dimensional patches for additional functionalization volume. While keeping a high colloidal stability, different coupling systems showed the self-assembly capabilities of this toolbox for anisotropic particles.}, language = {en} } @misc{AbbasVranicHoffmannetal.2019, author = {Abbas, Ioana M. and Vranic, Marija and Hoffmann, Holger and El-Khatib, Ahmed H. and Montes-Bay{\´o}n, Mar{\´i}a and M{\"o}ller, Heiko Michael and Weller, Michael G.}, title = {Investigations of the Copper Peptide Hepcidin-25 by LC-MS/MS and NMR⁺}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {701}, issn = {1866-8372}, doi = {10.25932/publishup-42792}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427926}, year = {2019}, abstract = {Hepcidin-25 was identified as themain iron regulator in the human body, and it by binds to the sole iron-exporter ferroportin. Studies showed that the N-terminus of hepcidin is responsible for this interaction, the same N-terminus that encompasses a small copper(II) binding site known as the ATCUN (amino-terminal Cu(II)- and Ni(II)-binding) motif. Interestingly, this copper-binding property is largely ignored in most papers dealing with hepcidin-25. In this context, detailed investigations of the complex formed between hepcidin-25 and copper could reveal insight into its biological role. The present work focuses on metal-bound hepcidin-25 that can be considered the biologically active form. The first part is devoted to the reversed-phase chromatographic separation of copper-bound and copper-free hepcidin-25 achieved by applying basic mobile phases containing 0.1\% ammonia. Further, mass spectrometry (tandemmass spectrometry (MS/MS), high-resolutionmass spectrometry (HRMS)) and nuclear magnetic resonance (NMR) spectroscopy were employed to characterize the copper-peptide. Lastly, a three-dimensional (3D)model of hepcidin-25with bound copper(II) is presented. The identification of metal complexes and potential isoforms and isomers, from which the latter usually are left undetected by mass spectrometry, led to the conclusion that complementary analytical methods are needed to characterize a peptide calibrant or referencematerial comprehensively. Quantitative nuclear magnetic resonance (qNMR), inductively-coupled plasma mass spectrometry (ICP-MS), ion-mobility spectrometry (IMS) and chiral amino acid analysis (AAA) should be considered among others.}, language = {en} } @phdthesis{Kumru2018, author = {Kumru, Baris}, title = {Utilization of graphitic carbon nitride in dispersed media}, doi = {10.25932/publishup-42733}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427339}, school = {Universit{\"a}t Potsdam}, pages = {III, 190}, year = {2018}, abstract = {Utilization of sunlight for energy harvesting has been foreseen as sustainable replacement for fossil fuels, which would also eliminate side effects arising from fossil fuel consumption such as drastic increase of CO2 in Earth atmosphere. Semiconductor materials can be implemented for energy harvesting, and design of ideal energy harvesting devices relies on effective semiconductor with low recombination rate, ease of processing, stability over long period, non-toxicity and synthesis from abundant sources. Aforementioned criteria have attracted broad interest for graphitic carbon nitride (g-CN) materials, metal-free semiconductor which can be synthesized from low cost and abundant precursors. Furthermore, physical properties such as band gap, surface area and absorption can be tuned. g-CN was investigated as heterogeneous catalyst, with diversified applications from water splitting to CO2 reduction and organic coupling reactions. However, low dispersibility of g-CN in water and organic solvents was an obstacle for future improvements. Tissue engineering aims to mimic natural tissues mechanically and biologically, so that synthetic materials can replace natural ones in future. Hydrogels are crosslinked networks with high water content, therefore are prime candidates for tissue engineering. However, the first requirement is synthesis of hydrogels with mechanical properties that are matching to natural tissues. Among different approaches for reinforcement, nanocomposite reinforcement is highly promising. This thesis aims to investigate aqueous and organic dispersions of g-CN materials. Aqueous g-CN dispersions were utilized for visible light induced hydrogel synthesis, where g-CN acts as reinforcer and photoinitiator. Varieties of methodologies were presented for enhancing g-CN dispersibility, from co-solvent method to prepolymer formation, and it was shown that hydrogels with diversified mechanical properties (from skin-like to cartilage-like) are accessible via g-CN utilization. One pot photografting method was introduced for functionalization of g-CN surface which provides functional groups towards enhanced dispersibility in aqueous and organic media. Grafting vinyl thiazole groups yields stable additive-free organodispersions of g-CN which are electrostatically stabilized with increased photophysical properties. Colloidal stability of organic systems provides transparent g-CN coatings and printing g-CN from commercial inkjet printers. Overall, application of g-CN in dispersed media is highly promising, and variety of materials can be accessible via utilization of g-CN and visible light with simple chemicals and synthetic conditions. g-CN in dispersed media will bridge emerging research areas from tissue engineering to energy harvesting in near future.}, language = {en} } @phdthesis{Heiden2018, author = {Heiden, Sophia L.}, title = {Water at α-alumina surfaces}, doi = {10.25932/publishup-42636}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-426366}, school = {Universit{\"a}t Potsdam}, pages = {124}, year = {2018}, abstract = {The (0001) surface of α-Al₂O₃ is the most stable surface cut under UHV conditions and was studied by many groups both theoretically and experimentally. Reaction barriers computed with GGA functionals are known to be underestimated. Based on an example reaction at the (0001) surface, this work seeks to improve this rate by applying a hybrid functional method and perturbation theory (LMP2) with an atomic orbital basis, rather than a plane wave basis. In addition to activation barriers, we calculate the stability and vibrational frequencies of water on the surface. Adsorption energies were compared to PW calculations and confirmed PBE+D2/PW stability results. Especially the vibrational frequencies with the B3LYP hybrid functional that have been calculated for the (0001) surface are in good agreement with experimental findings. Concerning the barriers and the reaction rate constant, the expectations are fully met. It could be shown that recalculation of the transition state leads to an increased barrier, and a decreased rate constant when hybrid functionals or LMP2 are applied. Furthermore, the molecular beam scattering of water on (0001) surface was studied. In a previous work by Hass the dissociation was studied by AIMD of molecularly adsorbed water, referring to an equilibrium situation. The experimental method to obtaining this is pinhole dosing. In contrast to this earlier work, the dissociation process of heavy water that is brought onto the surface from a molecular beam source was modeled in this work by periodic ab initio molecular dynamics simulations. This experimental method results in a non-equilibrium situation. The calculations with different surface and beam models allow us to understand the results of the non-equilibrium situation better. In contrast to a more equilibrium situation with pinhole dosing, this gives an increase in the dissociation probability, which could be explained and also understood mechanistically by those calculations. In this work good progress was made in understanding the (1120) surface of α-Al₂O₃ in contact with water in the low-coverage regime. This surface cut is the third most stable one under UHV conditions and has not been studied to a great extent yet. After optimization of the clean, defect free surface, the stability of different adsorbed species could be classified. One molecular minimum and several dissociated species could be detected. Starting from these, reaction rates for various surface reactions were evaluated. A dissociation reaction was shown to be very fast because the molecular minimum is relatively unstable, whereas diffusion reactions cover a wider range from fast to slow. In general, the (112‾0) surface appears to be much more reactive against water than the (0001) surface. In addition to reactivity, harmonic vibrational frequencies were determined for comparison with the findings of the experimental "Interfacial Molecular Spectroscopy" group from Fritz-Haber institute in Berlin. Especially the vibrational frequencies of OD species could be assigned to vibrations from experimental SFG spectra with very good agreement. Also, lattice vibrations were studied in close collaboration with the experimental partners. They perform SFG spectra at very low frequencies to get deep into the lattice vibration region. Correspondingly, a bigger slab model with greater expansion perpendicular to the surface was applied, considering more layers in the bulk. Also with the lattice vibrations we could obtain reasonably good agreement in terms of energy differences between the peaks.}, language = {en} } @phdthesis{Cheng2018, author = {Cheng, Xiao}, title = {Controlled solvent vapor annealing of block copolymer films}, doi = {10.25932/publishup-42417}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-424179}, school = {Universit{\"a}t Potsdam}, pages = {X, 166}, year = {2018}, abstract = {This project was focused on exploring the phase behavior of poly(styrene)187000-block-poly(2-vinylpyridine)203000 (SV390) with high molecular weight (390 kg/mol) in thin films, in which the self-assembly of block copolymers (BCPs) was realized via thermo-solvent annealing. The advanced processing technique of solvent vapor treatment provides controlled and stable conditions. In Chapter 3, the factors to influence the annealing process and the swelling behavior of homopolymers are presented and discussed. The swelling behavior of BCP in films is controlled by the temperature of the vapor and of the substrate, on one hand, and variation of the saturation of the solvent vapor atmosphere (different solvents), on the other hand. Additional factors like the geometry and material of the chamber, the type of flow inside the chamber etc. also influence the reproducibility and stability of the processing. The slightly selective solvent vapor of chloroform gives 10\% more swelling of P2VP than PS in films with thickness of ~40 nm. The tunable morphology in ultrathin films of high molecular weight BCP (SV390) was investigated in Chapter 4. First, the swelling behavior can be precisely tuned by temperature and/or vapor flow separately, which provided information for exploring the multiple-parameter-influenced segmental chain mobility of polymer films. The equilibrium state of SV390 in thin films influenced by temperature was realized at various temperatures with the same degree of swelling. Various methods including characterization with SFM, metallization and RIE were used to identify the morphology of films as porous half-layer with PS dots and P2VP matrix. The kinetic investigations demonstrate that on substrates with either weak or strong interaction the original morphology of the BCP with high molecular weight is changed very fast within 5 min, and the further annealing serves for annihilation of defects. The morphological development of symmetric BCP in films with thickness increasing from half-layer to one-layer influenced by confinement factors of gradient film thicknesses and various surface properties of substrates was studied in Chapter 5. SV390 and SV99 films show bulk lamella-forming morphology after slightly selective solvent vapor (chloroform) treatment. SV99 films show cylinder-forming morphology under strongly selective solvent vapor (toluene) treatment since the asymmetric structure (caused by toluene uptake in PS blocks only) of SV99 block copolymer during annealing. Both kinds of morphology (lamella and cylinder) are influenced by the film thickness. The annealed morphology of SV390 and SV99 influenced by the combination of confined film and substrate property is similar to the morphology on flat silicon wafers. In this chapter the gradients in the film thickness and surface properties of the substrates with regard to their influence on the morphological development in thin BCP films are presented. Directed self-assembly (graphoepitaxy) of this SV390 was also investigated to compare with systematically reported SV99. In Chapter 6 an approach to induced oriented microphase separation in thick block copolymer films via treatment with the oriented vapor flow using mini-extruder is envisaged to be an alternative to existing methodologies, e.g. via non-solvent-induced phase separation. The preliminary tests performed in this study confirm potential perspective of this method, which alters the structure through the bulk of the film (as revealed by SAXS measurements), but more detailed studies have to be conducted in order to optimize the preparation.}, language = {en} } @phdthesis{Vogel2018, author = {Vogel, Stefanie}, title = {Sequence dependency of photon and electron induced DNA strand breaks}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-419669}, school = {Universit{\"a}t Potsdam}, pages = {xii, 117}, year = {2018}, abstract = {Deoxyribonucleic acid (DNA) is the carrier of human genetic information and is exposed to environmental influences such as the ultraviolet (UV) fraction of sunlight every day. The photostability of the DNA against UV light is astonishing. Even if the DNA bases have a strong absorption maximum at around 260 nm/4.77 eV, their quantum yield of photoproducts remains very low 1. If the photon energies exceed the ionization energy (IE) of the nucleobases ( ̴ 8-9 eV) 2, the DNA can be severely damaged. Photoexcitation and -ionization reactions occur, which can induce strand breaks in the DNA. The efficiency of the excitation and ionization induced strand breaks in the target DNA sequences are represented by cross sections. If Si as a substrate material is used in the VUV irradiation experiments, secondary electrons with an energy below 3.6 eV are generated from the substrate. This low energy electrons (LEE) are known to induce dissociative electron attachment (DEA) in DNA and with it DNA strand breakage very efficiently. LEEs play an important role in cancer radiation therapy, since they are generated secondarily along the radiation track of ionizing radiation. In the framework of this thesis, different single stranded DNA sequences were irradiated with 8.44 eV vacuum UV (VUV) light and cross sections for single strand breaks (SSB) were determined. Several sequences were also exposed to secondary LEEs, which additionally contributed to the SSBs. First, the cross sections for SSBs depending on the type of nucleobases were determined. Both types of DNA sequences, mono-nucleobase and mixed sequences showed very similar results upon VUV radiation. The additional influence of secondarily generated LEEs resulted in contrast in a clear trend for the SSB cross sections. In this, the polythymine sequence had the highest cross section for SSBs, which can be explained by strong anionic resonances in this energy range. Furthermore, SSB cross sections were determined as a function of sequence length. This resulted in an increase in the strand breaks to the same extent as the increase in the geometrical cross section. The longest DNA sequence (20 nucleotides) investigated in this series, however, showed smaller cross section values for SSBs, which can be explained by conformational changes in the DNA. Moreover, several DNA sequences that included the radiosensitizers 5-Bromouracil (5BrU) and 8-Bromoadenine (8BrA) were investigated and the corresponding SSB cross sections were determined. It was shown that 5BrU reacts very strongly to VUV radiation leading to high strand break yields, which showed in turn a strong sequence-dependency. 8BrA, on the other hand, showed no sensitization to the applied VUV radiation, since almost no increase in strand breakage yield was observed in comparison to non-modified DNA sequences. In order to be able to identify the mechanisms of radiation damage by photons, the IEs of certain DNA sequences were further explored using photoionization tandem mass spectrometry. By varying the DNA sequence, both the IEs depending on the type of nucleobase as well as on the DNA strand length could be identified and correlated to the SSB cross sections. The influence of the IE on the photoinduced reaction in the brominated DNA sequences could be excluded.}, language = {en} } @phdthesis{Choi2018, author = {Choi, Youngeun}, title = {DNA origami structures as versatile platforms for nanophotonics}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-421483}, school = {Universit{\"a}t Potsdam}, pages = {125}, year = {2018}, abstract = {Nanophotonics is the field of science and engineering aimed at studying the light-matter interactions on the nanoscale. One of the key aspects in studying such optics at the nanoscale is the ability to assemble the material components in a spatially controlled manner. In this work, DNA origami nanostructures were used to self-assemble dye molecules and DNA coated plasmonic nanoparticles. Optical properties of dye nanoarrays, where the dyes were arranged at distances where they can interact by F{\"o}rster resonance energy transfer (FRET), were systematically studied according to the size and arrangement of the dyes using fluorescein (FAM) as the donor and cyanine 3 (Cy 3) as the acceptor. The optimized design, based on steady-state and time-resolved fluorometry, was utilized in developing a ratiometric pH sensor with pH-inert coumarin 343 (C343) as the donor and pH-sensitive FAM as the acceptor. This design was further applied in developing a ratiometric toxin sensor, where the donor C343 is unresponsive and FAM is responsive to thioacetamide (TAA) which is a well-known hepatotoxin. The results indicate that the sensitivity of the ratiometric sensor can be improved by simply arranging the dyes into a well-defined array. The ability to assemble multiple fluorophores without dye-dye aggregation also provides a strategy to amplify the signal measured from a fluorescent reporter, and was utilized here to develop a reporter for sensing oligonucleotides. By incorporating target capturing sequences and multiple fluorophores (ATTO 647N dye molecules), a reporter for microbead-based assay for non-amplified target oligonucleotide sensing was developed. Analysis of the assay using VideoScan, a fluorescence microscope-based technology capable of conducting multiplex analysis, showed the DNA origami nanostructure based reporter to have a lower limit of detection than a single stranded DNA reporter. Lastly, plasmonic nanostructures were assembled on DNA origami nanostructures as substrates to study interesting optical behaviors of molecules in the near-field. Specifically, DNA coated gold nanoparticles, silver nanoparticles, and gold nanorods, were placed on the DNA origami nanostructure aiming to study surface-enhanced fluorescence (SEF) and surface-enhanced Raman scattering (SERS) of molecules placed in the hotspot of coupled plasmonic structures.}, language = {en} } @phdthesis{Jensen2018, author = {Jensen, Anders Christian Solberg}, title = {Structure and dynamics of amorphous carbonates related to biomineralization}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-421691}, school = {Universit{\"a}t Potsdam}, pages = {138}, year = {2018}, abstract = {Amorphous calcium carbonate(ACC) is a wide spread biological material found in many organisms, such as sea Urchins and mollusks, where it serves as either a precursor phase for the crystalline biominerals or is stabilized and used in the amorphous state. As ACC readily crystallizes, stabilizers such as anions, cations or macromolecules are often present to avoid or delay unwanted crystallization. Furthermore, additives often control the properties of the materials to suit the specific function needed for the organism. E.g. cystoliths in leaves that scatter light to optimize energy uptake from the sun or calcite/aragonite crystals used in protective shells in mussels and gastropods. Lifetime of the amorphous phase is controlled by the kinetic stability against crystallization. This has often been linked to water which plays a role in the mobility of ions and hence the probability of forming crystalline nuclei to initiate crystallization. However, it is unclear how the water molecules are incorporated within the amorphous phase, either as liquid confined in pores, as structural water binding to the ions or as a mixture of both. It is also unclear how this is perturbed when additives are added, especially Mg2+, one the most common additives found in biogenic samples. Mg2+ are expected to have a strong influence on the water incorporated into ACC, given the high energy barrier to dehydration of magnesium ions compared to calcium ions in solution. During the last 10-15 years, there has been a large effort to understand the local environment of the ions/molecules and how this affects the properties of the amorphous phase. But only a few aspects of the structure have so far been well-described in literature. The reason for this is partly caused by the low stability of ACC if exposed to air, where it tends to crystallize within minutes and by the limited quantities of ACC produced in traditional synthesis routes. A further obstacle has been the difficulty in modeling the local structure based on experimental data. To solve the problem of stability and sample size, a few studies have used stabilizers such as Mg2+ or OH- and severely dehydrated samples so as to stabilize the amorphous state, allowing for combined neutron and x-ray analysis to be performed. However, so far, a clear description of the local environments of water present in the structure has not been reported. In this study we show that ACC can be synthesized without any stabilizing additives in quantities necessary for neutron measurements and that accurate models can be derived with the help of empirical-potential structural refinement. These analyses have shown that there is a wide range of local environments for all of the components in the system suggesting that the amorphous phase is highly inhomogeneous, without any phase separation between ions and water. We also showed that the water in ACC is mainly structural and that there is no confined or liquid-like water present in the system. Analysis of amorphous magnesium carbonate also showed that there is a large difference in the local structure of the two cations and that Mg2+ surprisingly interacts with significantly less water molecules then Ca2+ despite the higher dehydration energy. All in all, this shows that the role of water molecules as a structural component of ACC, with a strong binding to cat- and anions probably retard or prevents the crystallization of the amorphous phase.}, language = {en} } @phdthesis{Karras2018, author = {Karras, Manfred}, title = {Synthesis of enantiomerically pure helical aromatics such as NHC ligands and their use in asymmetric catalysis}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-421497}, school = {Universit{\"a}t Potsdam}, pages = {121}, year = {2018}, abstract = {Diese Arbeit besch{\"a}ftigt sich mit der enantiomerenreinen Synthese helikaler, aromatischer Verbindungen. Verschiedene Verbindungen dieses Typs wurden erfolgreich hergestellt und charakterisiert. Desweiteren wurden einige der neuen Verbindungen in {\"U}bergangsmetallkomplexe eingebaut und diese dann als Katalysatoren f{\"u}r Metathese und Kreuzkupplungen getestet. Einer der getesteten Katalysatoren zeigte vielversprechende Ergebnisse in der asymmetrischen Olefinmetathese. Die Struktur des neuen Katalysators wurde untersucht. Anhand der Struktur des neuen Katalysators wurden R{\"u}ckschl{\"u}sse auf einen m{\"o}glichen Mechanismus gezogen.}, language = {en} } @phdthesis{VillatoroLeal2018, author = {Villatoro Leal, Jos{\´e} Andr{\´e}s}, title = {A combined approach for the analysis of biomolecules using IR-MALDI ion mobility spectrometry and molecular dynamics simulations of peptide ions in the gas phase}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-419723}, school = {Universit{\"a}t Potsdam}, pages = {133}, year = {2018}, abstract = {The aim of this doctoral thesis was to establish a technique for the analysis of biomolecules with infrared matrix-assisted laser dispersion (IR-MALDI) ion mobility (IM) spectrometry. The main components of the work were the characterization of the IR-MALDI process, the development and characterization of different ion mobility spectrometers, the use of IR-MALDI-IM spectrometry as a robust, standalone spectrometer and the development of a collision cross-section estimation approach for peptides based on molecular dynamics and thermodynamic reweighting. First, the IR-MALDI source was studied with atmospheric pressure ion mobility spectrometry and shadowgraphy. It consisted of a metal capillary, at the tip of which a self-renewing droplet of analyte solution was met by an IR laser beam. A relationship between peak shape, ion desolvation, diffusion and extraction pulse delay time (pulse delay) was established. First order desolvation kinetics were observed and related to peak broadening by diffusion, both influenced by the pulse delay. The transport mechanisms in IR-MALDI were then studied by relating different laser impact positions on the droplet surface to the corresponding ion mobility spectra. Two different transport mechanisms were determined: phase explosion due to the laser pulse and electrical transport due to delayed ion extraction. The velocity of the ions stemming from the phase explosion was then measured by ion mobility and shadowgraphy at different time scales and distances from the source capillary, showing an initially very high but rapidly decaying velocity. Finally, the anatomy of the dispersion plume was observed in detail with shadowgraphy and general conclusions over the process were drawn. Understanding the IR-MALDI process enabled the optimization of the different IM spectrometers at atmospheric and reduced pressure (AP and RP, respectively). At reduced pressure, both an AP and an RP IR-MALDI source were used. The influence of the pulsed ion extraction parameters (pulse delay, width and amplitude) on peak shape, resolution and area was systematically studied in both AP and RP IM spectrometers and discussed in the context of the IR-MALDI process. Under RP conditions, the influence of the closing field and of the pressure was also examined for both AP and RP sources. For the AP ionization RP IM spectrometer, the influence of the inlet field (IF) in the source region was also examined. All of these studies led to the determination of the optimal analytical parameters as well as to a better understanding of the initial ion cloud anatomy. The analytical performance of the spectrometer was then studied. Limits of detection (LOD) and linear ranges were determined under static and pulsed ion injection conditions and interpreted in the context of the IR-MALDI mechanism. Applications in the separation of simple mixtures were also illustrated, demonstrating good isomer separation capabilities and the advantages of singly charged peaks. The possibility to couple high performance liquid chromatography (HPLC) to IR-MALDI-IM spectrometry was also demonstrated. Finally, the reduced pressure spectrometer was used to study the effect of high reduced field strength on the mobility of polyatomic ions in polyatomic gases. The last focus point was on the study of peptide ions. A dataset obtained with electrospray IM spectrometry was characterized and used for the calibration of a collision cross-section (CCS) determination method based on molecular dynamics (MD) simulations at high temperature. Instead of producing candidate structures which are evaluated one by one, this semi-automated method uses the simulation as a whole to determine a single average collision cross-section value by reweighting the CCS of a few representative structures. The method was compared to the intrinsic size parameter (ISP) method and to experimental results. Additional MD data obtained from the simulations was also used to further analyze the peptides and understand the experimental results, an advantage with regard to the ISP method. Finally, the CCS of peptide ions analyzed by IR-MALDI were also evaluated with both ISP and MD methods and the results compared to experiment, resulting in a first validation of the MD method. Thus, this thesis brings together the soft ionization technique that is IR-MALDI, which produces mostly singly charged peaks, with ion mobility spectrometry, which can distinguish between isomers, and a collision cross-section determination method which also provides structural information on the analyte at hand.}, language = {en} } @phdthesis{Dai2018, author = {Dai, Xiaolin}, title = {Synthesis of artificial building blocks for sortase-mediated ligation and their enzymatic linkage}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-420060}, school = {Universit{\"a}t Potsdam}, pages = {XIV, 125}, year = {2018}, abstract = {Das Enzym Sortase A katalysiert die Bildung einer Peptidbindung zwischen der Erkennungssequenz LPXTG und einem Oligoglycin. W{\"a}hrend vielf{\"a}ltige Ligationen zwischen Proteinen und verschiedenen Biomolek{\"u}len, Proteinen und kleinen synthetischen Molek{\"u}len, sowie Proteinen und Oberfl{\"a}chen durchgef{\"u}hrt wurden, besteht das Ziel dieser Arbeit darin, die Sortase-katalysierte Verlinkung von synthetischen Bausteinen zu untersuchen. Dies k{\"o}nnte den Weg bereiten f{\"u}r die Anwendung von Sortase A f{\"u}r chemische Aufgabenstellungen und eventuell sogar in den Materialwissenschaften. F{\"u}r diese grunds{\"a}tzliche Untersuchung wurden die verwendeten Bausteine zun{\"a}chst so einfach wie m{\"o}glich gehalten und leicht zug{\"a}ngliche SiO2 Nanopartikel und kommerziell erh{\"a}ltliche Polymerbl{\"o}cke ausgew{\"a}hlt. Die Bausteine wurden als erstes mit den Peptidsequenzen f{\"u}r Sortase-vermittelte Ligationen funktionalisiert. SiO2 Nanopartikel wurden mit Durchmessern von 60 und 200 nm hergestellt und mit C=C Doppelbindungen oberfl{\"a}chenmodifiziert. Dann wurden Peptide mit einem terminalen Cystein kovalent durch eine Thiol-en Reaktion angebunden. An die 60 nm NP wurden Peptide mit einem Pentaglycin und an die 200 nm Partikel Peptide mit LPETG Sequenz gebunden. Auf die gleiche Art und Weise wurden Peptide mit terminalem Cystein an die Polymere Polyethylenglykol (PEG) und Poly(N Isopropylacrylamid) (PNIPAM), die beide {\"u}ber C=C Endgruppen verf{\"u}gen, gebunden und G5-PEG und PNIPAM-LPETG Konjugate erhalten. Mit den vier Bausteinen wurden nun durch Sortase-vermittelte Ligation NP-Polymer Hybride, NP-NP und Polymer-Polymer Strukturen hergestellt und die Produkte u. a. durch Transmissionselektronen-mikroskopie, MALDI-ToF Massenspektrometrie sowie Dynamische Lichtstreuung charakterisiert. Die Verlinkung dieser synthetischen Bausteine konnte eindeutig gezeigt werden. Das Verwenden von kommerziell erh{\"a}ltlichen Polymeren hat jedoch zu einem Gemisch der Polymer-Peptid Konjugate mit unmodifiziertem Polymer gef{\"u}hrt, welches nicht gereinigt werden konnte. Deswegen wurden anschließend Synthesestrategien f{\"u}r reine Peptid-Polymer und Polymer-Peptid Konjugate als Bausteine f{\"u}r Sortase-vermittelte Ligationen entwickelt. Diese basieren auf der RAFT Polymerisation mit CTAs, die entweder an N- oder C-Terminus eines Peptids gebunden sind. GG-PNIPAM wurde durch das Anbinden eines geeigneten RAFT CTAs an Fmoc-GG in einer Veresterungsreaktion, Polymerisation von NIPAM und Abspalten der Fmoc Schutzgruppe synthetisiert. Weiterhin wurden mehrere Peptide durch Festphasen-Peptidsynthese erhalten. Die Anbindung eines RAFT CTAs (oder eines Polymerisationsinitiators) an den N-Terminus eines Peptids kann automatisiert als letzter Schritt in einem Peptid-Synthetisierer erfolgen. Die Synthese eines solchen Konjugats konnte in dem Zeithorizont dieser Arbeit noch nicht erreicht werden. Jedoch existieren mehrere vielversprechende Strategien, um diesen Ansatz mit verschiedenen Kopplungsreagenzien zur Anbindung des CTAs fortzusetzen. Solche Polymer Bausteine k{\"o}nnen in Zukunft f{\"u}r die Synthese von Protein-Polymer Konjugaten durch Sortase-Katalyse verwendet werden. Außerdem kann der Ansatz auch f{\"u}r die Synthese von Block-Copolymeren aus Polymerbl{\"o}cken mit Peptidmotiven an beiden Enden ausgebaut werden. Auch wenn bei der grunds{\"a}tzlichen Untersuchung im Rahmen dieser Arbeit Hybridstrukturen hergestellt wurden, die auch durch traditionelle chemische Synthesen erhalten werden k{\"o}nnten, wird ein Bausatz solcher Bausteine in Zukunft die Synthese neuer Materialien erm{\"o}glichen und kann auch den Weg f{\"u}r die Anwendung von Enzymen in den Materialwissenschaften ebnen. In Erg{\"a}nzung zu Nanopartikeln und Block-Copolymeren k{\"o}nnen dann auch Hybridmaterialien unter Einbezug von Protein-basierten Bausteinen hergestellt werden. Daher k{\"o}nnten Sortase Enzyme zu einem Werkzeug werden, welches etablierte chemische Verlinkungstechniken erg{\"a}nzt und mit den hoch spezifischen Peptidmotiven {\"u}ber funktionale Einheiten verf{\"u}gt, die orthogonal zu allen chemischen Gruppen sind.}, language = {en} } @phdthesis{Abouserie2018, author = {Abouserie, Ahed}, title = {Ionic liquid precursors for multicomponent inorganic nanomaterials}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-418950}, school = {Universit{\"a}t Potsdam}, pages = {xx, 193}, year = {2018}, abstract = {Health effects, attributed to the environmental pollution resulted from using solvents such as benzene, are relatively unexplored among petroleum workers, personal use, and laboratory researchers. Solvents can cause various health problems, such as neurotoxicity, immunotoxicity, and carcinogenicity. As such it can be absorbed via epidermal or respiratory into the human body resulting in interacting with molecules that are responsible for biochemical and physiological processes of the brain. Owing to the ever-growing demand for finding a solution, an Ionic liquid can use as an alternative solvent. Ionic liquids are salts in a liquid state at low temperature (below 100 C), or even at room temperature. Ionic liquids impart a unique architectural platform, which has been interesting because of their unusual properties that can be tuned by simple ways such as mixing two ionic liquids. Ionic liquids not only used as reaction solvents but they became a key developing for novel applications based on their thermal stability, electric conductivity with very low vapor pressure in contrast to the conventional solvents. In this study, ionic liquids were used as a solvent and reactant at the same time for the novel nanomaterials synthesis for different applications including solar cells, gas sensors, and water splitting. The field of ionic liquids continues to grow, and become one of the most important branches of science. It appears to be at a point where research and industry can work together in a new way of thinking for green chemistry and sustainable production.}, language = {en} } @phdthesis{Behrendt2018, author = {Behrendt, Felix Nicolas}, title = {New bio-based polymers}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-418316}, school = {Universit{\"a}t Potsdam}, pages = {vii, 153}, year = {2018}, abstract = {Redox-responsive polymers, such as poly(disulfide)s, are a versatile class of polymers with potential applications including gene- and drug-carrier systems. Their degradability under reductive conditions allows for a controlled response to the different redox states that are present throughout the body. Poly(disulfide)s are typically synthesized by step growth polymerizations. Step growth polymerizations, however, may suffer from low conversions and therefore low molar masses, limiting potential applications. The purpose of this thesis was therefore to find and investigate new synthetic routes towards the synthesis of amino acid-based poly(disulfide)s. The different routes in this thesis include entropy-driven ring opening polymerizations of novel macrocyclic monomers, derived from cystine derivatives. These monomers were obtained with overall yields of up to 77\% and were analyzed by mass spectrometry as well as by 1D and 2D NMR spectroscopy. The kinetics of the entropy-driven ring-opening metathesis polymerization (ED-ROMP) were thoroughly investigated in dependence of temperature, monomer concentration, and catalyst concentration. The polymerization was optimized to yield poly(disulfide)s with weight average molar masses of up to 80 kDa and conversions of ~80\%, at the thermodynamic equilibrium. Additionally, an alternative metal free polymerization, namely the entropy-driven ring-opening disulfide metathesis polymerization (ED-RODiMP) was established for the polymerization of the macrocyclic monomers. The effect of different solvents, concentrations and catalyst loadings on the polymerization process and its kinetics were studied. Polymers with very high weight average molar masses of up to 177 kDa were obtained. Moreover, various post-polymerization reactions were successfully performed. This work provides the first example of the homopolymerization of endo-cyclic disulfides by ED-ROMP and the first substantial study into the kinetics of the ED-RODiMP process.}, language = {en} } @phdthesis{Xiong2018, author = {Xiong, Tao}, title = {Vibrationally resolved absorption, emission, resonance Raman and photoelectron spectra of selected organic molecules, associated radicals and cations}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-418105}, school = {Universit{\"a}t Potsdam}, pages = {iv, 100}, year = {2018}, abstract = {Time-dependent correlation function based methods to study optical spectroscopy involving electronic transitions can be traced back to the work of Heller and coworkers. This intuitive methodology can be expected to be computationally efficient and is applied in the current work to study the vibronic absorption, emission, and resonance Raman spectra of selected organic molecules. Besides, the "non-standard" application of this approach to photoionization processes is also explored. The application section consists of four chapters as described below. In Chapter 4, the molar absorptivities and vibronic absorption/emission spectra of perylene and several of its N-substituted derivatives are investigated. By systematically varying the number and position of N atoms, it is shown that the presence of nitrogen heteroatoms has a negligible effect on the molecular structure and geometric distortions upon electronic transitions, while spectral properties are more sensitive: In particular the number of N atoms is important while their position is less decisive. Thus, N-substitution can be used to fine-tune the optical properties of perylene-based molecules. In Chapter 5, the same methods are applied to study the vibronic absorption/emission and resonance Raman spectra of a newly synthesized donor-acceptor type molecule. The simulated absorption/emission spectra agree fairly well with experimental data, with discrepancies being attributed to solvent effects. Possible modes which may dominate the fine-structure in the vibronic spectra are proposed by analyzing the correlation function with the aid of Raman and resonance Raman spectra. In the next two chapters, besides the above types of spectra, the methods are extended to study photoelectron spectra of several small diamondoid-related systems (molecules, radicals, and cations). Comparison of the photoelectron spectra with available experimental data suggests that the correlation function based approach can describe ionization processes reasonably well. Some of these systems, cationic species in particular, exhibit somewhat peculiar optical behavior, which presents them as possible candidates for functional devices. Correlation function based methods in a more general sense can be very versatile. In fact, besides the above radiative processes, formulas for non-radiative processes such as internal conversion have been derived in literature. Further implementation of the available methods is among our next goals.}, language = {en} } @phdthesis{Tan2018, author = {Tan, Li}, title = {Synthesis, assembly and thermo-responsivity of polymer-functionalized magnetic cobalt nanoparticles}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-418153}, school = {Universit{\"a}t Potsdam}, pages = {X, 111}, year = {2018}, abstract = {This thesis mainly covers the synthesis, surface modification, magnetic-field-induced assembly and thermo-responsive functionalization of superparamagnetic Co NPs initially stabilized by hydrophobic small molecules oleic acid (OA) and trioctylphosphine oxide (TOPO), as well as the synthesis of both superparamagnetic and ferromagnetic Co NPs by using end-functionalized-polystyrene as stabilizer. Co NPs, due to their excellent magnetic and catalytic properties, have great potential application in various fields, such as ferrofluids, catalysis, and magnetic resonance imaging (MRI). Superparamagnetic Co NPs are especially interesting, since they exhibit zero coercivity. They get magnetized in an external magnetic field and reach their saturation magnetization rapidly, but no magnetic moment remains after removal of the applied magnetic field. Therefore, they do not agglomerate in the body when they are used in biomedical applications. Normally, decomposition of metallic precursors at high temperature is one of the most important methods in preparation of monodisperse magnetic NPs, providing tunability in size and shape. Hydrophobic ligands like OA, TOPO and oleylamine are often used to both control the growth of NPs and protect them from agglomeration. The as-prepared magnetic NPs can be used in biological applications as long as they are transferred into water. Moreover, their supercrystal assemblies have the potential for high density data storage and electronic devices. In addition to small molecules, polymers can also be used as surfactants for the synthesis of ferromagnetic and superparamagnetic NPs by changing the reaction conditions. Therefore, chapter 2 gives an overview on the basic concept of synthesis, surface modification and self-assembly of magnetic nanoparticles. Various examples were used to illustrate the recent work. The hydrophobic Co NPs synthesized with small molecules as surfactants limit their biological applications, which require a hydrophilic or aqueous environment. Surface modification (e.g., ligand exchange) is a general idea for either phase transition or surface-functionalization. Therefore, in chapter 3, a ligand exchange process was conducted to functionalize the surface of Co NPs. PNIPAM is one of the most popular smart polymers and its lower critical solution temperature (LCST) is around 32 °C, with a reversible change in the conformation structure between hydrophobic and hydrophilic. The novel nanocomposites of superparamagnetic Co NPs and thermo-responsive PNIPAM are of great interest. Thus, well-defined superparamagnetic Co NPs were firstly synthesized through the thermolysis of cobalt carbonyl by using OA and TOPO as surfactants. A functional ATRP initiator, containing an amine (as anchoring group) and a 2-bromopropionate group (SI-ATRP initiator), was used to replace the original ligands. This process is rapid and facial for efficient surface functionalization and afterwards the Co NPs can be dispersed into polar solvent DMF without aggregation. FT-IR spectroscopy showed that the TOPO was completely replaced, but a small amount of OA remained on the surface. A TGA measurement allowed the calculation of the grafting density of the initiator as around 3.2 initiator/nm2. Then, the surface-initiated ATRP was conducted for the polymerization of NIPAM on the surface of Co NPs and rendered the nanocomposites water-dispersible. A temperature-dependent dynamic light scattering study showed the aggregation behavior of PNIPAM-coated Co NPs upon heating and this process was proven to be reversible. The combination of superparamagnetic and thermo-responsive properties in these hybrid nanoparticles is promising for future applications e.g. in biomedicine. In chapter 4, the magnetic-field-induced assembly of superparamagnetic cobalt nanoparticles both on solid substrates and at liquid-air interface was investigated. OA- and TOPO-coated Co NPs were synthesized via the thermolysis of cobalt carbonyl and dispersed into either hexane or toluene. The Co NP dispersion was dropped onto substrates (e.g., TEM grid, silicon wafer) and at liquid-air (water-air or ethylene glycol-air) interface. Due to the attractive dipolar interaction, 1-D chains formed in the presence of an external magnetic field. It is known that the concentration and the strength of the magnetic field can affect the assembly behavior of superparamagnetic Co NPs. Therefore, the influence of these two parameters on the morphology of the assemblies was studied. The formed 1-D chains were shorter and flexible at either lower concentration of the Co NP dispersion or lower strength of the external magnetic field due to thermal fluctuation. However, by increasing either the concentration of the NP dispersion or the strength of the applied magnetic field, these chains became longer, thicker and straighter. The reason could be that a high concentration led to a high fraction of short dipolar chains, and their interaction resulted in longer and thicker chains under applied magnetic field. On the other hand, when the magnetic field increased, the induced moments of the magnetic nanoparticles became larger, which dominated over the thermal fluctuation. Thus, the formed short chains connected to each other and grew in length. Thicker chains were also observed through chain-chain interaction. Furthermore, the induced moments of the NPs tended to direct into one direction with increased magnetic field, thus the chains were straighter. In comparison between the assembly on substrates, at water-air interface and at ethylene glycol-air interface, the assembly of Co NPs in hexane dispersion at ethylene glycol-air interface showed the most regular and homogeneous chain structures due to the better spreading of the dispersion on ethylene glycol subphase than on water subphase and substrates. The magnetic-field-induced assembly of superparamagnetic nanoparticles could provide a powerful approach for applications in data storage and electronic devices. Chapter 5 presented the synthesis of superparamagnetic and ferromagnetic cobalt nanoparticles through a dual-stage thermolysis of cobalt carbonyl (Co2(CO)8) by using polystyrene as surfactant. The amine end-functionalized polystyrene surfactants with different molecular weight were prepared via atom transfer radical polymerization technique. The molecular weight determination of polystyrene was conducted by gel permeation chromatography (GPC) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) mass spectrometry techniques. The results showed that, when the molecular weight distribution is low (Mw/Mn < 1.2), the measurement by GPC and MALDI-ToF MS provided nearly similar results. For example, the molecular weight of 10600 Da was obtained by MALDI-ToF MS, while GPC gave 10500 g/mol (Mw/Mn = 1.17). However, if the polymer is poly distributed, MALDI-ToF MS cannot provide an accurate value. This was exemplified for a polymer with a molecular weight of 3130 Da measured by MALDI-TOF MS, while GPC showed 2300 g/mol (Mw/Mn = 1.38). The size, size distribution and magnetic properties of the hybrid particles were different by changing either the molecular weight or concentration of the polymer surfactants. The analysis from TEM characterization showed that the size of cobalt nanoparticles stabilized with polystyrene of lower molecular weight (Mn = 2300 g/mol) varied from 12-22 nm, while the size with middle (Mn = 4500 g/mol) and higher molecular weight (Mn = 10500 g/mol) of polystyrene-coated cobalt nanoparticles showed little change. Magnetic measurements exhibited that the small cobalt particles (12 nm) were superparamagnetic, while larger particles (21 nm) were ferromagnetic and assembled into 1-D chains. The grafting density calculated from thermogravimetric analysis showed that a higher grafting density of polystyrene was obtained with lower molecular weight (Mn = 2300 g/mol) than those with higher molecular weight (Mn = 10500 g/mol). Due to the larger steric hindrance, polystyrene with higher molecular weight cannot form a dense shell on the surface of the nanoparticles, which resulted in a lower grafting density. Wide angle X-ray scattering measurements revealed the epsilon cobalt crystalline phases of both superparamagnetic Co NPs coated with polystyrene (Mn = 2300 g/mol) and ferromagnetic Co NPs coated with polystyrene (Mn = 10500 g/mol). Furthermore, a stability study showed that PS-Co NPs prepared with higher polymer concentration and polymer molecular weight exhibited a better stability.}, language = {en} } @phdthesis{Lama2018, author = {Lama, Sandy M. G.}, title = {Functionalization of Porous Carbon Materials with Heteroatoms and Application as Supports in Industrial Heterogeneous Catalysis}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-415797}, school = {Universit{\"a}t Potsdam}, pages = {124}, year = {2018}, abstract = {Due to a challenging population growth and environmental changes, a need for new routes to provide required chemicals for human necessities arises. An effective solution discussed in this thesis is industrial heterogeneous catalysis. The development of an advanced industrial heterogeneous catalyst is investigated herein by considering porous carbon nano-material as supports and modifying their surface chemistry structure with heteroatoms. Such modifications showed a significant influence on the performance of the catalyst and provided a deeper insight regarding the interaction between the surface structure of the catalyst and the surrounding phase. This thesis contributes to the few present studies about heteroatoms effect on the catalyst performance and emphasizes on the importance of understanding surface structure functionalization in a catalyst in different phases (liquid and gaseous) and for different reactions (hydrogenolysis, oxidation, and hydrogenation/ polymerization). Herein, the heteroatoms utilized for the modifications are hydrogen (H), oxygen (O), and nitrogen (N). The heteroatoms effect on the metal particle size, on the polarity of the support/ the catalyst, on the catalytic performance (activity, selectivity, and stability), and on the interaction with the surrounding phase has been explored. First hierarchical porous carbon nanomaterials functionalized with heteroatoms (N) is synthesized and applied as supports for nickel nanoparticles for hydrogenolysis process of kraft lignin in liquid phase. This reaction has been performed in batch and flow reactors for three different catalysts, two of comparable hierarchical porosity, yet one is modified with N and the other is not, and a third is a prepared catalyst from a commercial carbon support. The reaction production and analyses show that the catalysts with hierarchical porosity perform catalytically much better than in presence of a commercial carbon support with lower surface area. Moreover, the modification with N-heteroatoms enhanced the catalytic performance because the heteroatom modified porous carbon material with nickel nanoparticles catalyst (Ni-NDC) performed highest among the other catalysts. In the flow reactor, Ni-NDC selectively degraded the ether bonds (β-O-4) in kraft lignin with an activity of 2.2 x10^-4 mg lignin mg Ni-1 s-1 for 50 h at 350°C and 3.5 mL min-1 flow, providing ~99 \% conversion to shorter chained chemicals (mainly guaiacol derivatives). Then, the functionalization of carbon surface was further studied in selective oxidation of glucose to gluconic acid using < 1 wt. \% of gold (Au) deposited on the previously-mentioned synthesized carbon (C) supports with different functionalities (Au-CGlucose, Au-CGlucose-H, Au-CGlucose-O, Au-CGlucoseamine). Except for Au-CGlucose-O, the other catalysts achieved full glucose conversion within 40-120 min and 100\% selectivity towards gluconic acid with a maximum activity of 1.5 molGlucose molAu-1 s-1 in an aqueous phase at 45 °C and pH 9. Each heteroatom influenced the polarity of the carbon differently, affecting by that the deposition of Au on the support and thus the activity of the catalyst and its selectivity. The heteroatom effect was further investigated in a gas phase. The Fischer-Tropsch reaction was applied to convert synthetic gas (CO and H2) to short olefins and paraffins using surface-functionalized carbon nanotubes (CNTs) with heteroatoms as supports for ion (Fe) deposition in presence and absence of promoters (Na and S). The results showed the promoted Fe-CNT doped with nitrogen catalyst to be stable up to 180 h and selective to the formation of olefins (~ 47 \%) and paraffins (~6 \%) with a conversion of CO ~ 92 \% at a maximum activity of 94 *10^-5 mol CO g Fe-1 s-1. The more information given regarding this topic can open wide range of applications not only in catalysis, but in other approaches as well. In conclusion, incorporation of heteroatoms can be the next approach for an advanced industrial heterogeneous catalyst, but also for other applications (e.g. electrocatalysis, gas adsorption, or supercapacitors).}, language = {en} } @phdthesis{Lee2018, author = {Lee, Hui-Chun}, title = {Toward ultimate control of polymerization and catalytic property}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-414973}, school = {Universit{\"a}t Potsdam}, pages = {vii, iii, 150}, year = {2018}, abstract = {Reversible-deactivation radical polymerization (RDRP) is without any doubt one of the most prevalent and powerful strategies for polymer synthesis, by which well-defined living polymers with targeted molecular weight (MW), low molar dispersity (Ɖ) and diverse morphologies can be prepared in a controlled fashion. Atom transfer radical polymerization (ATRP) as one of the most extensive studied types of RDRP has been particularly emphasized due to the high accessibility to hybrid materials, multifunctional copolymers and diverse end group functionalities via commercially available precursors. However, due to catalyst-induced side reactions and chain-chain coupling termination in bulk environment, synthesis of high MW polymers with uniform chain length (low Ɖ) and highly-preserved chain-end fidelity is usually challenging. Besides, owing to the inherited radical nature, the control of microstructure, namely tacticity control, is another laborious task. Considering the applied catalysts, the utilization of large amounts of non-reusable transition metal ions which lead to cumbersome purification process, product contamination and complicated reaction procedures all delimit the scope ATRP techniques. Metal-organic frameworks (MOFs) are an emerging type of porous materials combing the properties of both organic polymers and inorganic crystals, characterized with well-defined crystalline framework, high specific surface area, tunable porous structure and versatile nanochannel functionalities. These promising properties of MOFs have thoroughly revolutionized academic research and applications in tremendous aspects, including gas processing, sensing, photoluminescence, catalysis and compartmentalized polymerization. Through functionalization, the microenvironment of MOF nanochannel can be precisely devised and tailored with specified functional groups for individual host-guest interactions. Furthermore, properties of high transition metal density, accessible catalytic sites and crystalline particles all indicate MOFs as prominent heterogeneous catalysts which open a new avenue towards unprecedented catalytic performance. Although beneficial properties in catalysis, high agglomeration and poor dispersibility restrain the potential catalytic capacity to certain degree. Due to thriving development of MOF sciences, fundamental polymer science is undergoing a significant transformation, and the advanced polymerization strategy can eventually refine the intrinsic drawbacks of MOF solids reversely. Therefore, in the present thesis, a combination of low-dimensional polymers with crystalline MOFs is demonstrated as a robust and comprehensive approach to gain the bilateral advantages from polymers (flexibility, dispersibility) and MOFs (stability, crystallinity). The utilization of MOFs for in-situ polymerizations and catalytic purposes can be realized to synthesize intriguing polymers in a facile and universal process to expand the applicability of conventional ATRP methodology. On the other hand, through the formation of MOF/polymer composites by surface functionalization, the MOF particles with environment-adjustable dispersibility and high catalytic property can be as-prepared. In the present thesis, an approach via combination of confined porous textures from MOFs and controlled radical polymerization is proposed to advance synthetic polymer chemistry. Zn2(bdc)2(dabco) (Znbdc) and the initiator-functionalized Zn MOFs, ZnBrbdc, are utilized as a reaction environment for in-situ polymerization of various size-dependent methacrylate monomers (i.e. methyl, ethyl, benzyl and isobornyl methacrylate) through (surface-initiated) activators regenerated by electron transfer (ARGET/SI-ARGET) ATRP, resulting in polymers with control over dispersity, end functionalities and tacticity with respect to distinct molecular size. While the functionalized MOFs are applied, due to the strengthened compartmentalization effect, the accommodated polymers with molecular weight up to 392,000 can be achieved. Moreover, a significant improvement in end-group fidelity and stereocontrol can be observed. The results highlight a combination of MOFs and ATRP is a promising and universal methodology to synthesize versatile well-defined polymers with high molecular weight, increment in isotactic trial and the preserved chain-end functionality. More than being a host only, MOFs can act as heterogeneous catalysts for metal-catalyzed polymerizations. A Cu(II)-based MOF, Cu2(bdc)2(dabco), is demonstrated as a heterogeneous, universal catalyst for both thermal or visible light-triggered ARGET ATRP with expanded monomer range. The accessible catalytic metal sites enable the Cu(II) MOF to polymerize various monomers, including benzyl methacrylate (BzMA), styrene, methyl methacrylate (MMA), 2-(dimethylamino)ethyl methacrylate (DMAEMA) in the fashion of ARGET ATRP. Furthermore, due to the robust frameworks, surpassing the conventional homogeneous catalyst, the Cu(II) MOF can tolerate strongly coordinating monomers and polymerize challenging monomers (i.e. 4-vinyl pyridine, 2-vinyl pyridine and isoprene), in a well-controlled fashion. Therefore, a synthetic procedure can be significantly simplified, and catalyst-resulted chelation can be avoided as well. Like other heterogeneous catalysts, the Cu(II) MOF catalytic complexes can be easily collected by centrifugation and recycled for an arbitrary amount of times. The Cu(II) MOF, composed of photostimulable metal sites, is further used to catalyze controlled photopolymerization under visible light and requires no external photoinitiator, dye sensitizer or ligand. A simple light trigger allows the photoreduction of Cu(II) to the active Cu(I) state, enabling controlled polymerization in the form of ARGET ATRP. More than polymerization application, the synergic effect between MOF frameworks and incorporated nucleophilic monomers/molecules is also observed, where the formation of associating complexes is able to adjust the photochemical and electrochemical properties of the Cu(II) MOF, altering the band gap and light harvesting behavior. Owing to the tunable photoabsorption property resulting from the coordinating guests, photoinduced Reversible-deactivation radical polymerization (PRDRP) can be achieved to further simplify and fasten the polymerization. More than the adjustable photoabsorption ability, the synergistic strategy via a combination of controlled/living polymerization technique and crystalline MOFs can be again evidenced as demonstrated in the MOF-based heterogeneous catalysts with enhanced dispersibility in solution. Through introducing hollow pollen pivots with surface immobilized environment-responsive polymer, PDMAEMA, highly dispersed MOF nanocrystals can be prepared after associating on polymer brushes via the intrinsic amine functionality in each DMAEMA monomer. Intriguingly, the pollen-PDMAEMA composite can serve as a "smart" anchor to trap nanoMOF particles with improved dispersibility, and thus to significantly enhance liquid-phase photocatalytic performance. Furthermore, the catalytic activity can be switched on and off via stimulable coil-to-globule transition of the PDMAEMA chains exposing or burying MOF catalytic sites, respectively.}, language = {en} } @phdthesis{Nizardo2018, author = {Nizardo, Noverra Mardhatillah}, title = {Thermoresponsive block copolymers with UCST-behavior aimed at biomedical environments}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-412217}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 134}, year = {2018}, abstract = {Thermoresponsive block copolymers of presumably highly biocompatible character exhibiting upper critical solution temperature (UCST) type phase behavior were developed. In particular, these polymers were designed to exhibit UCST-type cloud points (Tcp) in physiological saline solution (9 g/L) within the physiologically interesting window of 30-50°C. Further, their use as carrier for controlled release purposes was explored. Polyzwitterion-based block copolymers were synthesized by atom transfer radical polymerization (ATRP) via a macroinitiator approach with varied molar masses and co-monomer contents. These block copolymers can self-assemble in the amphiphilic state to form micelles, when the thermoresponsive block experiences a coil-to-globule transition upon cooling. Poly(ethylene glycol) methyl ether (mPEG) was used as the permanently hydrophilic block to stabilize the colloids formed, and polyzwitterions as the thermoresponsive block to promote the temperature-triggered assembly-disassembly of the micellear aggregates at low temperature. Three zwitterionic monomers were used for this studies, namely 3-((2-(methacryloyloxy)ethyl)dimethylammonio)propane-1-sulfonate (SPE), 4-((2-(methacryloyl- oxy)ethyl)dimethylammonio)butane-1-sulfonate (SBE), and 3-((2-(methacryloyloxy)ethyl)- dimethylammonio)propane-1-sulfate) (ZPE). Their (co)polymers were characterized with respect to their molecular structure by proton nuclear magnetic resonance (1H-NMR) and gel permeation chromatography (GPC). Their phase behaviors in pure water as well as in physiological saline were studied by turbidimetry and dynamic light scattering (DLS). These (co)polymers are thermoresponsive with UCST-type phase behavior in aqueous solution. Their phase transition temperatures depend strongly on the molar masses and the incorporation of co-monomers: phase transition temperatures increased with increasing molar masses and content of poorly water-soluble co-monomer. In addition, the presence of salt influenced the phase transition dramatically. The phase transition temperature decreased with increasing salt content in the solution. While the PSPE homopolymers show a phase transition only in pure water, the PZPE homopolymers are able to exhibit a phase transition only in high salinity, as in physiological saline. Although both polyzwitterions have similar chemical structures that differ only in the anionic group (sulfonate group in SPE and sulfate group in ZPE), the water solubility is very different. Therefore, the phase transition temperatures of targeted block copolymers were modulated by using statistical copolymer of SPE and ZPE as thermoresponsive block, and varying the ratio of SPE to ZPE. Indeed, the statistical copolymers of P(SPE-co-ZPE) show phase transitions both in pure water as well as in physiological saline. Surprisingly, it was found that mPEG-b-PSBE block copolymer can display "schizophrenic" behavior in pure water, with the UCST-type cloud point occurring at lower temperature than the LCST-type one. The block copolymer, which satisfied best the boundary conditions, is block copolymer mPEG114-b-P(SPE43-co-ZPE39) with a cloud point of 45°C in physiological saline. Therefore, it was chosen for solubilization studies of several solvatochromic dyes as models of active agents, using the thermoresponsive block copolymer as "smart" carrier. The uptake and release of the dyes were explored by UV-Vis and fluorescence spectroscopy, following the shift of the wavelength of the absorbance or emission maxima at low and high temperature. These are representative for the loaded and released state, respectively. However, no UCST-transition triggered uptake and release of these dyes could be observed. Possibly, the poor affinity of the polybetaines to the dyes in aqueous environtments may be related to the widely reported antifouling properties of zwitterionic polymers.}, language = {en} } @phdthesis{ChaleawlertUmpon2018, author = {Chaleawlert-Umpon, Saowaluk}, title = {Sustainable electrode materials based on lignin}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-411793}, school = {Universit{\"a}t Potsdam}, pages = {114}, year = {2018}, abstract = {The utilization of lignin as renewable electrode material for electrochemical energy storage is a sustainable approach for future batteries and supercapacitors. The composite electrode was fabricated from Kraft lignin and conductive carbon and the charge storage contribution was determined in terms of electrical double layer (EDL) and redox reactions. The important factors at play for achieving high faradaic charge storage capacity contribute to high surface area, accessibility of redox sites in lignin and their interaction with conductive additives. A thinner layer of lignin covering the high surface area of carbon facilitates the electron transfer process with a shorter pathway from the active sites of nonconductive lignin to the current collector leading to the improvement of faradaic charge storage capacity. Composite electrodes from lignin and carbon would be even more sustainable if the fluorinated binder can be omitted. A new route to fabricate a binder-free composite electrode from Kraft lignin and high surface area carbon has been proposed by crosslinking lignin with glyoxal. A high molecular weight of lignin is obtained to enhance both electroactivity and binder capability in composite electrodes. The order of the processing step of crosslinking lignin on the composite electrode plays a crucial role in achieving a stable electrode and high charge storage capacity. The crosslinked lignin based electrodes are promising since they allow for more stable, sustainable, halogen-free and environmentally benign devices for energy storage applications. Furthermore, improvement of the amount of redox active groups (quinone groups) in lignin is useful to enhance the capacity in lithium battery applications. Direct oxidative demethylation by cerium ammonium nitrate has been carried out under mild conditions. This proves that an increase of quinone groups is able to enhance the performance of lithium battery. Thus, lignin is a promising material and could be a good candidate for application in sustainable energy storage devices.}, language = {en} } @phdthesis{Doriti2017, author = {Doriti, Afroditi}, title = {Sustainable bio-based poly-N-glycines and polyesters}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-411286}, school = {Universit{\"a}t Potsdam}, pages = {vi, 117}, year = {2017}, abstract = {Nowadays, the need to protect the environment becomes more urgent than ever. In the field of chemistry, this translates to practices such as waste prevention, use of renewable feedstocks, and catalysis; concepts based on the principles of green chemistry. Polymers are an important product in the chemical industry and are also in the focus of these changes. In this thesis, more sustainable approaches to make two classes of polymers, polypeptoids and polyesters, are described. Polypeptoids or poly(alkyl-N-glycines) are isomers of polypeptides and are biocompatible, as well as degradable under biologically relevant conditions. In addition to that, they can have interesting properties such as lower critical solution temperature (LCST) behavior. They are usually synthesized by the ring opening polymerization (ROP) of N-carboxy anhydrides (NCAs), which are produced with the use of toxic compounds (e.g. phosgene) and which are highly sensitive to humidity. In order to avoid the direct synthesis and isolation of the NCAs, N-phenoxycarbonyl-protected N-substituted glycines are prepared, which can yield the NCAs in situ. The conditions for the NCA synthesis and its direct polymerization are investigated and optimized for the simplest N-substituted glycine, sarcosine. The use of a tertiary amine in less than stoichiometric amounts compared to the N-phenoxycarbonyl--sarcosine seems to accelerate drastically the NCA formation and does not affect the efficiency of the polymerization. In fact, well defined polysarcosines that comply to the monomer to initiator ratio can be produced by this method. This approach was also applied to other N-substituted glycines. Dihydroxyacetone is a sustainable diol produced from glycerol, and has already been used for the synthesis of polycarbonates. Here, it was used as a comonomer for the synthesis of polyesters. However, the polymerization of dihydroxyacetone presented difficulties, probably due to the insolubility of the macromolecular chains. To circumvent the problem, the dimethyl acetal protected dihydroxyacetone was polymerized with terephthaloyl chloride to yield a soluble polymer. When the carbonyl was recovered after deprotection, the product was insoluble in all solvents, showing that the carbonyl in the main chain hinders the dissolution of the polymers. The solubility issue can be avoided, when a 1:1 mixture of dihydroxyacetone/ ethylene glycol is used to yield a soluble copolyester.}, language = {en} } @phdthesis{Li2018, author = {Li, Lina}, title = {Preparation of novel photoactive materials}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-410952}, school = {Universit{\"a}t Potsdam}, pages = {105}, year = {2018}, abstract = {Photocatalysis is considered significant in this new energy era, because the inexhaustibly abundant, clean, and safe energy of the sun can be harnessed for sustainable, nonhazardous, and economically development of our society. In the research of photocatalysis, the current focus was held by the design and modification of photocatalyst. As one of the most promising photocatalysts, g-C3N4 has gained considerable attention for its eye-catching properties. It has been extensively explored in photocatalysis applications, such as water splitting, organic pollutant degradation, and CO2 reduction. Even so, it also has its own drawbacks which inhibit its further application. Inspired by that, this thesis will mainly present and discuss the process and achievement on the preparation of some novel photocatalysts and their photocatalysis performance. These materials were all synthesized via the alteration of classic g-C3N4 preparation method, like using different pre-compositions for initial supramolecular complex and functional group post-modification. By taking place of cyanuric acid, 2,5-Dihydroxy-1,4-benzoquinone and chloranilic acid can form completely new supramolecular complex with melamine. After heating, the resulting products of the two complex shown 2D sheet-like and 1D fiber-like morphologies, respectively, which maintain at even up to high temperature of 800 °C. These materials cover crystals, polymers and N-doped carbons with the increase of synthesis temperature. Based on their different pre-compositions, they show different dye degradation performances. For CLA-M-250, it shows the highest photocatalytic activity and strong oxidation capacity. It shows not only great photo-performance in RhB degradation, but also oxygen production in water splitting. In the post-modification method, a novel photocatalysis solution was proposed to modify carbon nitride scaffold with cyano group, whose content can be well controlled by the input of sodium thiocyanate. The cyanation modification leads to narrowed band gap as well as improved photo-induced charges separation. Cyano group grafted carbon nitride thus shows dramatically enhanced performance in the photocatalytic coupling reaction between styrene and sodium benzenesulfinate under green light irradiation, which is in stark contrast with the inactivity of pristine g-C3N4.}, language = {en} } @phdthesis{Braun2017, author = {Braun, Max}, title = {Heterogeneous Catalysis for the Conversion of Fructose to Chemicals and Fuel in a Continuous Flow Process}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-410370}, school = {Universit{\"a}t Potsdam}, pages = {151}, year = {2017}, abstract = {Die Umsetzung von Zucker (Kohlenhydrate) in einem kontinuierlichen Prozess er{\"o}ffnet M{\"o}glichkeiten der Synthese diverser Chemikalien und Treibstoff aus erneuerbaren Ressourcen, welche heute {\"u}berwiegend aus fossilen Quellen stammen. Passend zum Konzept der Bioraffinerie und der „gr{\"u}nen Chemie", liegt der Fokus dieser Arbeit auf der Umsetzung von in Ethanol gel{\"o}ster Fruktose in einem kontinuierlichen Verfahren, mit Hilfe eigens entwickelter heterogener Katalysatoren. Die Dehydratisierung von Fruktose wird mit einem heterogenen S{\"a}urekatalysator realisiert, w{\"a}hrend die Folgeprodukte mittels einer Hydrodesoxygenierung umgesetzt werden. F{\"u}r den zweiten Schritt kommen Metallkatalysatoren auf Basis von Nickel und Wolframcarbid (WC) zum Einsatz, wodurch der Einsatz teurer Edelmetalle vermieden werden kann. Hauptprodukte des zweistufigen Verfahrens sind 2,5-Dimethylfuran (DMF) und Ethyllevulinat (EL). Beide Molek{\"u}le sind vielversprechende alternative Treibstoffe, bzw. k{\"o}nnen gebr{\"a}uchlichen Treibstoffen beigemischt werden, um deren Einsatz zu reduzieren und schrittweise zu substituieren. Alternativ k{\"o}nnen die Zwischenprodukte der Dehydratisierung, sowie DMF und EL weiter zu Chemikalien umgesetzt werden, welche in der Polymersynthese, als L{\"o}sungsmittel oder als Grundchemikalien eingesetzt werden k{\"o}nnen. Die Entwicklung der jeweiligen Katalysatoren f{\"u}r Dehydratisierungs- und Hydrodesoxygenierungsreaktionen erfolgt auf Basis von karbonisierter Biomasse, sowie Wolframcarbid. Die jeweiligen Reaktivit{\"a}ten werden durch Standardreaktionen getestet, wobei sich Wolframcarbid in Nanopartikelform, in Kombination mit Wasserstoff als sehr aktiv erwiesen hat. Der selbst entwickelte aktivierte Kohlenstoff, das kommerzielle Amberlyst 15, sowie Wolframcarbid mit zus{\"a}tzlichen Nickel-Nanopartikeln werden f{\"u}r weiterf{\"u}hrende Reaktionen in einem kontinuierlichen Prozess herangezogen und kombiniert. Um den Umsatz von Fruktose zu DMF in einer „zwei Reaktoren Anlage" zu erm{\"o}glichen, wird eine Erweiterung eines kommerziellen Reaktorsystems um einen weiteren Reaktor vorgenommen. Die Verweilzeit in der Reaktoranlage betr{\"a}gt somit ca. 14 Minuten, wobei 11 Minuten auf die erste S{\"a}ule (Dehydratisierung) und 3 Minuten auf die zweite S{\"a}ule (Hydrodesoxygenierung) entfallen. In diesem kontinuierlichen und zweistufigen System lassen sich Ausbeuten von 38.5 \% DMF und 47 \% EL erzielen. Ein kontinuierlicher Lauf von sieben Stunden zeigt die Stabilit{\"a}t der eingesetzten Katalysatoren, auch wenn eine geringe Deaktivierung des Dehydratisierungskatalysators beobachtet werden kann. Der Ni@WC Katalysator zeigte hingegen keine Abnahme der Nickel Konzentration und somit kommt es zu keiner Auswaschung des Metalls. Das gebildete EL wurde hingegen nicht umgesetzt und verbleibt unver{\"a}ndert in L{\"o}sung. Das zweistufige System wurde schließlich in einem Mischkatalysatorsystem kombiniert, wobei auf aktivierten und sulfonierten Kohlenstoff zur{\"u}ckgegriffen wurde. Dieser zeigte bereits eine Transferhydrodesoxygenierungsaktivit{\"a}t. Diese Beobachtung ist deshalb bemerkenswert, da erst seit kurzem bekannt ist, dass Graphenstrukturen an sich katalytisch aktiv sein k{\"o}nnen. Um diese Aktivit{\"a}t weiter zu steigern, wurde der aktivierte Kohlenstoff mit 10 wt\% Ni@WC gemischt, sodass beide Katalysatoren in einer S{\"a}ule vorliegen. Die urspr{\"u}nglichen 2 \% DMF Ausbeute mit reinem aktivierten Kohlenstoff k{\"o}nnen somit auf 12 \% gesteigert werden, da das Folgeprodukt EL hierbei vermieden wird und das Zwischenprodukt „HMF Derivat" direkt zu DMF weiter reagieren kann. Dieses Ergebnis zeigt das Potential der „ein Reaktor Umsetzung", weshalb eine kontinuierliche Durchflussreaktoranlage im Litermaßstab als Scale-Up des vorhergehenden Labormaßstabs realisiert wurde. Der 800 mm x 28.5 mm Reaktor bedient eine maximale Flussrate von 50 mL min-1, Dr{\"u}cke von 100 bar und Temperaturen bis zu 500 °C.}, language = {en} } @phdthesis{Meiling2017, author = {Meiling, Till Thomas}, title = {Development of a reliable and environmentally friendly synthesis for fluorescence carbon nanodots}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-410160}, school = {Universit{\"a}t Potsdam}, pages = {198}, year = {2017}, abstract = {Carbon nanodots (CNDs) have generated considerable attention due to their promising properties, e.g. high water solubility, chemical inertness, resistance to photobleaching, high biocompatibility and ease of functionalization. These properties render them ideal for a wide range of functions, e.g. electrochemical applications, waste water treatment, (photo)catalysis, bio-imaging and bio-technology, as well as chemical sensing, and optoelectronic devices like LEDs. In particular, the ability to prepare CNDs from a wide range of accessible organic materials makes them a potential alternative for conventional organic dyes and semiconductor quantum dots (QDs) in various applications. However, current synthesis methods are typically expensive and depend on complex and time-consuming processes or severe synthesis conditions and toxic chemicals. One way to reduce overall preparation costs is the use of biological waste as starting material. Hence, natural carbon sources such as pomelo peal, egg white and egg yolk, orange juice, and even eggshells, to name a few; have been used for the preparation of CNDs. While the use of waste is desirable, especially to avoid competition with essential food production, most starting-materials lack the essential purity and structural homogeneity to obtain homogeneous carbon dots. Furthermore, most synthesis approaches reported to date require extensive purification steps and have resulted in carbon dots with heterogeneous photoluminescent properties and indefinite composition. For this reason, among others, the relationship between CND structure (e.g. size, edge shape, functional groups and overall composition) and photophysical properties is yet not fully understood. This is particularly true for carbon dots displaying selective luminescence (one of their most intriguing properties), i.e. their PL emission wavelength can be tuned by varying the excitation wavelength. In this work, a new reliable, economic, and environmentally-friendly one-step synthesis is established to obtain CNDs with well-defined and reproducible photoluminescence (PL) properties via the microwave-assisted hydrothermal treatment of starch, carboxylic acids and Tris-EDTA (TE) buffer as carbon- and nitrogen source, respectively. The presented microwave-assisted hydrothermal precursor carbonization (MW-hPC) is characterized by its cost-efficiency, simplicity, short reaction times, low environmental footprint, and high yields of approx. 80\% (w/w). Furthermore, only a single synthesis step is necessary to obtain homogeneous water-soluble CNDs with no need for further purification. Depending on starting materials and reaction conditions different types of CNDs have been prepared. The as-prepared CNDs exhibit reproducible, highly homogeneous and favourable PL properties with narrow emission bands (approx. 70nm FWHM), are non-blinking, and are ready to use without need for further purification, modification or surface passivation agents. Furthermore, the CNDs are comparatively small (approx. 2.0nm to 2.4nm) with narrow size distributions; are stable over a long period of time (at least one year), either in solution or as a dried solid; and maintain their PL properties when re-dispersed in solution. Depending on CND type, the PL quantum yield (PLQY) can be adjusted from as low as 1\% to as high as 90\%; one of the highest reported PLQY values (for CNDs) so far. An essential part of this work was the utilization of a microwave synthesis reactor, allowing various batch sizes and precise control over reaction temperature and -time, pressure, and heating- and cooling rate, while also being safe to operate at elevated reaction conditions (e.g. 230 ±C and 30 bar). The hereby-achieved high sample throughput allowed, for the first time, the thorough investigation of a wide range of synthesis parameters, providing valuable insight into the CND formation. The influence of carbon- and nitrogen source, precursor concentration and -combination, reaction time and -temperature, batch size, and post-synthesis purification steps were carefully investigated regarding their influence on the optical properties of as-synthesized CNDs. In addition, the change in photophysical properties resulting from the conversion of CND solution into solid and back into the solution was investigated. Remarkably, upon freeze-drying the initial brown CND-solution turns into a non-fluorescent white/slightly yellow to brown solid which recovers PL in aqueous solution. Selected CND samples were also subject to EDX, FTIR, NMR, PL lifetime (TCSPC), particle size (TEM), TGA and XRD analysis. Besides structural characterization, the pH- and excitation dependent PL characteristics (i.e. selective luminescence) were examined; giving inside into the origin of photophysical properties and excitation dependent behaviour of CNDs. The obtained results support the notion that for CNDs the nature of the surface states determines the PL properties and that excitation dependent behaviour is caused by the "Giant Red-Edge Excitation Shift" (GREES).}, language = {en} } @phdthesis{Heck2017, author = {Heck, Christian}, title = {Gold and silver nanolenses self-assembled by DNA origami}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-409002}, school = {Universit{\"a}t Potsdam}, pages = {ix, 125}, year = {2017}, abstract = {Nanolenses are linear chains of differently-sized metal nanoparticles, which can theoretically provide extremely high field enhancements. The complex structure renders their synthesis challenging and has hampered closer analyses so far. Here, the technique of DNA origami was used to self-assemble DNA-coated 10 nm, 20 nm, and 60 nm gold or silver nanoparticles into gold or silver nanolenses. Three different geometrical arrangements of gold nanolenses were assembled, and for each of the three, sets of single gold nanolenses were investigated in detail by atomic force microscopy, scanning electron microscopy, dark-field scattering and Raman spectroscopy. The surface-enhanced Raman scattering (SERS) capabilities of the single nanolenses were assessed by labelling the 10 nm gold nanoparticle selectively with dye molecules. The experimental data was complemented by finite-difference time-domain simulations. For those gold nanolenses which showed the strongest field enhancement, SERS signals from the two different internal gaps were compared by selectively placing probe dyes on the 20 nm or 60 nm gold particles. The highest enhancement was found for the gap between the 20 nm and 10 nm nanoparticle, which is indicative of a cascaded field enhancement. The protein streptavidin was labelled with alkyne groups and served as a biological model analyte, bound between the 20 nm and 10 nm particle of silver nanolenses. Thereby, a SERS signal from a single streptavidin could be detected. Background peaks observed in SERS measurements on single silver nanolenses could be attributed to amorphous carbon. It was shown that the amorphous carbon is generated in situ.}, language = {en} } @phdthesis{Willersinn2017, author = {Willersinn, Jochen}, title = {Self-Assembly of double hydrophilic block copolymers}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-408578}, school = {Universit{\"a}t Potsdam}, pages = {119, clxxiv}, year = {2017}, abstract = {The motivation of this work was to investigate the self-assembly of a block copolymer species that attended little attraction before, double hydrophilic block copolymers (DHBCs). DHBCs consist of two linear hydrophilic polymer blocks. The self-assembly of DHBCs towards suprastructures such as particles and vesicles is determined via a strong difference in hydrophilicity between the corresponding blocks leading to a microphase separation due to immiscibility. The benefits of DHBCs and the corresponding particles and vesicles, such as biocompatibility, high permeability towards water and hydrophilic compounds as well as the large amount of possible functionalizations that can be addressed to the block copolymers make the application of DHBC based structures a viable choice in biomedicine. In order to assess a route towards self-assembled structures from DHBCs that display the potential to act as cargos for future applications, several block copolymers containing two hydrophilic polymer blocks were synthesized. Poly(ethylene oxide)-b-poly(N-vinylpyrrolidone) (PEO-b-PVP) and Poly(ethylene oxide)-b-poly(N-vinylpyrrolidone-co-N-vinylimidazole) (PEO-b-P(VP-co-VIm) block copolymers were synthesized via reversible deactivation radical polymerization (RDRP) techniques starting from a PEO-macro chain transfer agent. The block copolymers displayed a concentration dependent self-assembly behavior in water which was determined via dynamic light scattering (DLS). It was possible to observe spherical particles via laser scanning confocal microscopy (LSCM) and cryogenic scanning electron microscopy (cryo SEM) at highly concentrated solutions of PEO-b-PVP. Furthermore, a crosslinking strategy with (PEO-b-P(VP-co-VIm) was developed applying a diiodo derived crosslinker diethylene glycol bis(2-iodoethyl) ether to form quaternary amines at the VIm units. The formed crosslinked structures proved stability upon dilution and transfer into organic solvents. Moreover, self-assembly and crosslinking in DMF proved to be more advantageous and the crosslinked structures could be successfully transferred to aqueous solution. The afforded spherical submicron particles could be visualized via LSCM, cryo SEM and Cryo TEM. Double hydrophilic pullulan-b-poly(acrylamide) block copolymers were synthesized via copper catalyzed alkyne azide cycloaddition (CuAAC) starting from suitable pullulan alkyne and azide functionalized poly(N,N-dimethylacrylamide) (PDMA) and poly(N-ethylacrylamide) (PEA) homopolymers. The conjugation reaction was confirmed via SEC and 1H-NMR measurements. The self-assembly of the block copolymers was monitored with DLS and static light scattering (SLS) measurements indicating the presence of hollow spherical structures. Cryo SEM measurements could confirm the presence of vesicular structures for Pull-b-PEA block copolymers. Solutions of Pull-b-PDMA displayed particles in cryo SEM. Moreover, an end group functionalization of Pull-b-PDMA with Rhodamine B allowed assessing the structure via LSCM and hollow spherical structures were observed indicating the presence of vesicles, too. An exemplified pathway towards a DHBC based drug delivery vehicle was demonstrated with the block copolymer Pull-b-PVP. The block copolymer was synthesized via RAFT/MADIX techniques starting from a pullulan chain transfer agent. Pull-b-PVP displayed a concentration dependent self-assembly in water with an efficiency superior to the PEO-b-PVP system, which could be observed via DLS. Cryo SEM and LSCM microscopy displayed the presence of spherical structures. In order to apply a reversible crosslinking strategy on the synthesized block copolymer, the pullulan block was selectively oxidized to dialdehydes with NaIO4. The oxidation of the block copolymer was confirmed via SEC and 1H-NMR measurements. The self-assembled and oxidized structures were subsequently crosslinked with cystamine dihiydrochloride, a pH and redox responsive crosslinker resulting in crosslinked vesicles which were observed via cryo SEM. The vesicular structures of crosslinked Pull-b-PVP could be disassembled by acid treatment or the application of the redox agent tris(2-carboxyethyl)-phosphin-hydrochloride. The successful disassembly was monitored with DLS measurements. To conclude, self-assembled structures from DHBCs such as particles and vesicles display a strong potential to generate an impact on biomedicine and nanotechnologies. The variety of DHBC compositions and functionalities are very promising features for future applications.}, language = {en} } @phdthesis{MbayaMani2017, author = {Mbaya Mani, Christian}, title = {Functional nanoporous carbon-based materials derived from oxocarbon-metal coordination complexes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407866}, school = {Universit{\"a}t Potsdam}, pages = {IV, 135}, year = {2017}, abstract = {Nanoporous carbon based materials are of particular interest for both science and industry due to their exceptional properties such as a large surface area, high pore volume, high electroconductivity as well as high chemical and thermal stability. Benefiting from these advantageous properties, nanoporous carbons proved to be useful in various energy and environment related applications including energy storage and conversion, catalysis, gas sorption and separation technologies. The synthesis of nanoporous carbons classically involves thermal carbonization of the carbon precursors (e.g. phenolic resins, polyacrylonitrile, poly(vinyl alcohol) etc.) followed by an activation step and/or it makes use of classical hard or soft templates to obtain well-defined porous structures. However, these synthesis strategies are complicated and costly; and make use of hazardous chemicals, hindering their application for large-scale production. Furthermore, control over the carbon materials properties is challenging owing to the relatively unpredictable processes at the high carbonization temperatures. In the present thesis, nanoporous carbon based materials are prepared by the direct heat treatment of crystalline precursor materials with pre-defined properties. This synthesis strategy does not require any additional carbon sources or classical hard- or soft templates. The highly stable and porous crystalline precursors are based on coordination compounds of the squarate and croconate ions with various divalent metal ions including Zn2+, Cu2+, Ni2+, and Co2+, respectively. Here, the structural properties of the crystals can be controlled by the choice of appropriate synthesis conditions such as the crystal aging temperature, the ligand/metal molar ratio, the metal ion, and the organic ligand system. In this context, the coordination of the squarate ions to Zn2+ yields porous 3D cube crystalline particles. The morphology of the cubes can be tuned from densely packed cubes with a smooth surface to cubes with intriguing micrometer-sized openings and voids which evolve on the centers of the low index faces as the crystal aging temperature is raised. By varying the molar ratio, the particle shape can be changed from truncated cubes to perfect cubes with right-angled edges. These crystalline precursors can be easily transformed into the respective carbon based materials by heat treatment at elevated temperatures in a nitrogen atmosphere followed by a facile washing step. The resulting carbons are obtained in good yields and possess a hierarchical pore structure with well-organized and interconnected micro-, meso- and macropores. Moreover, high surface areas and large pore volumes of up to 1957 m2 g-1 and 2.31 cm3 g-1 are achieved, respectively, whereby the macroscopic structure of the precursors is preserved throughout the whole synthesis procedure. Owing to these advantageous properties, the resulting carbon based materials represent promising supercapacitor electrode materials for energy storage applications. This is exemplarily demonstrated by employing the 3D hierarchical porous carbon cubes derived from squarate-zinc coordination compounds as electrode material showing a specific capacitance of 133 F g-1 in H2SO4 at a scan rate of 5 mV s-1 and retaining 67\% of this specific capacitance when the scan rate is increased to 200 mV s-1. In a further application, the porous carbon cubes derived from squarate-zinc coordination compounds are used as high surface area support material and decorated with nickel nanoparticles via an incipient wetness impregnation. The resulting composite material combines a high surface area, a hierarchical pore structure with high functionality and well-accessible pores. Moreover, owing to their regular micro-cube shape, they allow for a good packing of a fixed-bed flow reactor along with high column efficiency and a minimized pressure drop throughout the packed reactor. Therefore, the composite is employed as heterogeneous catalyst in the selective hydrogenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran showing good catalytic performance and overcoming the conventional problem of column blocking. Thinking about the rational design of 3D carbon geometries, the functions and properties of the resulting carbon-based materials can be further expanded by the rational introduction of heteroatoms (e.g. N, B, S, P, etc.) into the carbon structures in order to alter properties such as wettability, surface polarity as well as the electrochemical landscape. In this context, the use of crystalline materials based on oxocarbon-metal ion complexes can open a platform of highly functional materials for all processes that involve surface processes.}, language = {en} } @phdthesis{Muzdalo2017, author = {Muzdalo, Anja}, title = {Thermal cis-trans isomerization of azobenzene studied by path sampling and QM/MM stochastic dynamics}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-405814}, school = {Universit{\"a}t Potsdam}, pages = {144}, year = {2017}, abstract = {Azobenzene-based molecular photoswitches have extensively been applied to biological systems, involving photo-control of peptides, lipids and nucleic acids. The isomerization between the stable trans and the metastable cis state of the azo moieties leads to pronounced changes in shape and other physico-chemical properties of the molecules into which they are incorporated. Fast switching can be induced via transitions to excited electronic states and fine-tuned by a large number of different substituents at the phenyl rings. But a rational design of tailor-made azo groups also requires control of their stability in the dark, the half-lifetime of the cis isomer. In computational chemistry, thermally activated barrier crossing on the ground state Born-Oppenheimer surface can efficiently be estimated with Eyring's transition state theory (TST) approach; the growing complexity of the azo moiety and a rather heterogeneous environment, however, may render some of the underlying simplifying assumptions problematic. In this dissertation, a computational approach is established to remove two restrictions at once: the environment is modeled explicitly by employing a quantum mechanical/molecular mechanics (QM/MM) description; and the isomerization process is tracked by analyzing complete dynamical pathways between stable states. The suitability of this description is validated by using two test systems, pure azo benzene and a derivative with electron donating and electron withdrawing substituents ("push-pull" azobenzene). Each system is studied in the gas phase, in toluene and in polar DMSO solvent. The azo molecules are treated at the QM level using a very recent, semi-empirical approximation to density functional theory (density functional tight binding approximation). Reactive pathways are sampled by implementing a version of the so-called transition path sampling method (TPS), without introducing any bias into the system dynamics. By analyzing ensembles of reactive trajectories, the change in isomerization pathway from linear inversion to rotation in going from apolar to polar solvent, predicted by the TST approach, could be verified for the push-pull derivative. At the same time, the mere presence of explicit solvation is seen to broaden the distribution of isomerization pathways, an effect TST cannot account for. Using likelihood maximization based on the TPS shooting history, an improved reaction coordinate was identified as a sine-cosine combination of the central bend angles and the rotation dihedral, r (ω,α,α′). The computational van't Hoff analysis for the activation entropies was performed to gain further insight into the differential role of solvent for the case of the unsubstituted and the push-pull azobenzene. In agreement with the experiment, it yielded positive activation entropies for azobenzene in the DMSO solvent while negative for the push-pull derivative, reflecting the induced ordering of solvent around the more dipolar transition state associated to the latter compound. Also, the dynamically corrected rate constants were evaluated using the reactive flux approach where an increase comparable to the experimental one was observed for a high polarity medium for both azobenzene derivatives.}, language = {en} } @phdthesis{Charan2017, author = {Charan, Himanshu}, title = {Self assembled transmembrane protein polymer conjugates for the generation of nano thin membranes and micro compartments}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-402060}, school = {Universit{\"a}t Potsdam}, pages = {xii, 138}, year = {2017}, abstract = {This project was focused on generating ultra thin stimuli responsive membranes with an embedded transmembrane protein to act as the pore. The membranes were formed by crosslinking of transmembrane protein polymer conjugates. The conjugates were self assembled on air water interface and the polymer chains crosslinked using a UV crosslinkable comonomer to engender the membrane. The protein used for the studies reported herein was one of the largest transmembrane channel proteins, ferric hydroxamate uptake protein component A (FhuA), found in the outer membrane of Escherichia coli (E. coli). The wild type protein and three genetic variants of FhuA were provided by the group of Prof. Schwaneberg in Aachen. The well known thermo responsive poly(N isopropylacrylamide) (PNIPAAm) and the pH and thermo responsive polymer poly((2-dimethylamino)ethyl methacrylate) (PDMAEMA) were conjugated to FhuA and the genetic variants via controlled radical polymerization (CRP) using grafting from technique. These polymers were chosen because they would provide stimuli handles in the resulting membranes. The reported polymerization was the first ever attempt to attach polymer chains onto a membrane protein using site specific modification. The conjugate synthesis was carried out in two steps - a) FhuA was first converted into a macroinitiator by covalently linking a water soluble functional CRP initiator to the lysine residues. b) Copper mediated CRP was then carried out in pure buffer conditions with and without sacrificial initiator to generate the conjugates. The challenge was carrying out the modifications on FhuA without denaturing it. FhuA, being a transmembrane protein, requires amphiphilic species to stabilize its highly hydrophobic transmembrane region. For the experiments reported in this thesis, the stabilizing agent was 2 methyl 2,4-pentanediol (MPD). Since the buffer containing MPD cannot be considered a purely aqueous system, and also because MPD might interfere with the polymerization procedure, the reaction conditions were first optimized using a model globular protein, bovine serum albumin (BSA). The optimum conditions were then used for the generation of conjugates with FhuA. The generated conjugates were shown to be highly interfacially active and this property was exploited to let them self assemble onto polar apolar interfaces. The emulsions stabilized by particles or conjugates are referred to as Pickering emulsions. Crosslinking conjugates with a UV crosslinkable co monomer afforded nano thin micro compartments. Interfacial self assembly at the air water interface and subsequent UV crosslinking also yielded nano thin, stimuli responsive membranes which were shown to be mechanically robust. Initial characterization of the flux and permeation of water through these membranes is also reported herein. The generated nano thin membranes with PNIPAAm showed reduced permeation at elevated temperatures owing to the resistance by the hydrophobic and thus water-impermeable polymer matrix, hence confirming the stimulus responsivity. Additionally, as a part of collaborative work with Dr. Changzhu Wu, TU Dresden, conjugates of three enzymes with current/potential industrial relevance (candida antarctica lipase B, benzaldehyde lyase and glucose oxidase) with stimuli responsive polymers were synthesized. This work aims at carrying out cascade reactions in the Pickering emulsions generated by self assembled enzyme polymer conjugate.}, language = {en} } @misc{GrunwaldKellingHoldtetal.2017, author = {Grunwald, Nicolas and Kelling, Alexandra and Holdt, Hans-J{\"u}rgen and Schilde, Uwe}, title = {The crystal structure of 1,1′-bisisoquinoline, C18H12N2}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-401952}, pages = {3}, year = {2017}, abstract = {C18H12N2, tetragonal, I41/a (no. 88), a=13.8885(6) {\AA}, c=13.6718(6) {\AA}, V =2637.2(3) {\AA}3, Z =8, Rgt(F)=0.0295, wRref(F2)=0.0854, T =210 K. CCDC no.: 631823}, language = {en} } @misc{SchildePazOrtiz2017, author = {Schilde, Uwe and Paz, Christian and Ortiz, Leandro}, title = {Crystal structure of erioflorin isolated from Podanthus mitiqui (L.)}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-401832}, pages = {4}, year = {2017}, abstract = {The title compound, erioflorin, C19H24O6 [systematic name: (1aR,3S,4Z,5aR,8aR,9R,10aR)-1a, 2,3,5a, 7,8,8a, 9,10,10a-decahydro-3-hydroxy-4,10a-dimethyl-8-methylidene-7-oxooxireno[5,6] cyclodeca[1,2-b]furan-9-yl methacrylate], is a tricyclic germacrane sesquiterpene lactone, which was isolated from Podanthus mitiqui (L.). The compound crystallizes in the space group P2(1)2(1)2(1), and its molecular structure consists of a methacrylic ester of a ten-membered ring sesquiterpenoid annelated with an epoxide and a butyrolactone. The structure is stabilized by one intramolecular C-H center dot center dot center dot O hydrogen bond. An O-H center dot center dot center dot O hydrogen bond and further C-H center dot center dot center dot O interactions can be observed in the packing.}, language = {en} } @misc{MirskovaAdamovichMirskovetal.2017, author = {Mirskova, Anna N. and Adamovich, Sergey N. and Mirskov, Rudolf G. and Schilde, Uwe}, title = {Reaction of pharmacological active tris-(2-hydroxyethyl)ammonium 4-chlorophenylsulfanylacetate with ZnCl2 or NiCl2}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-401099}, pages = {5}, year = {2017}, abstract = {The reaction of pharmacological active protic ionic liquid tris-(2-hydroxyethyl)ammonium 4-chlorophenylsulfanylacetate H + N(CH 2 CH 2 OH) 3 ∙ ( - OOCCH 2 SC 6 H 4 Cl-4) (1) with zinc or nickel chloride in a ratio of 2:1 affords stable at room temperature powder-like adducts [H + N(CH 2 CH 2 OH) 3 ] 2 ∙ [M(OOCCH 2 SC 6 H 4 Cl-4) 2 Cl 2 ] 2- , M = Zn (2), Ni (3). By recrystallization from aqueous alcohol compound 2 unexpectedly gives Zn(OOCCH 2 SC 6 H 4 Cl-4) 2 ∙ 2H 2 O (4). Unlike 2, compound 3 gives crystals [N(CH 2 CH 2 OH) 3 ] 2 Ni 2+ · [ - OOCCH 2 SC 6 H 4 Cl-4] 2 (5), which have a structure of metallated ionic liquid. The structure of 5 has been proved by X-ray diffraction analysis. It is the first example of the conversion of a protic ionic liquid into potentially biological active metallated ionic liquid (1 → 3 → 5).}, language = {en} } @misc{AdamovichMirskovaMirskovetal.2017, author = {Adamovich, Sergey N. and Mirskova, Anna N. and Mirskov, Rudolf G. and Schilde, Uwe}, title = {Synthesis and crystal structure of 1,4,10,13-tetraoxa-7,16-diazoniumcyclo-octadecane bis(4-chloro-2-methyl-phenoxyacetate)}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400905}, pages = {4}, year = {2017}, abstract = {The title compound was prepared by the reaction of 1,4,10,13-tetraoxa-7,16-diazacyclo-octadecane with 4-chloro-2-methyl-phenoxyacetic acid in a ratio of 1:2. The structure has been proved by the data of elemental analysis, IR spectroscopy, NMR ( 1 H, 13 C) technique and by X-ray diffraction analysis. Intermolecular hydrogen bonds between the azonium protons and oxygen atoms of the carboxylate groups were found. Immunoactive properties of the title compound have been screened. The compound has the ability to suppress spontaneous and Con A-stimulated cell proliferation in vitro and therefore can be considered as immunodepressant.}, language = {en} } @misc{EnzenbergLaschewskyBoeffeletal.2017, author = {Enzenberg, Anne and Laschewsky, Andr{\´e} and Boeffel, Christine and Wischerhoff, Erik}, title = {Influence of the near molecular vicinity on the temperature regulated fluorescence response of poly(N-vinylcaprolactam)}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400634}, pages = {21}, year = {2017}, abstract = {A series of new fluorescent dye bearing monomers, including glycomonomers, based on maleamide and maleic esteramide was synthesized. The dye monomers were incorporated by radical copolymerization into thermo-responsive poly(N-vinyl-caprolactam) that displays a lower critical solution temperature (LCST) in aqueous solution. The effects of the local molecular environment on the polymers' luminescence, in particular on the fluorescence intensity and the extent of solvatochromism, were investigated below as well as above the phase transition. By attaching substituents of varying size and polarity in the close vicinity of the fluorophore, and by varying the spacer groups connecting the dyes to the polymer backbone, we explored the underlying structure-property relationships, in order to establish rules for successful sensor designs, e.g., for molecular thermometers. Most importantly, spacer groups of sufficient length separating the fluorophore from the polymer backbone proved to be crucial for obtaining pronounced temperature regulated fluorescence responses.}, language = {en} } @misc{ZehbeKolloscheLardongetal.2017, author = {Zehbe, Kerstin and Kollosche, Matthias and Lardong, Sebastian and Kelling, Alexandra and Schilde, Uwe and Taubert, Andreas}, title = {Ionogels based on poly(methyl methacrylate) and metal-containing ionic liquids}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400607}, pages = {16}, year = {2017}, abstract = {Ionogels (IGs) based on poly(methyl methacrylate) (PMMA) and the metal-containing ionic liquids (ILs) bis-1-butyl-3-methlimidazolium tetrachloridocuprate(II), tetrachloride cobaltate(II), and tetrachlorido manganate(II) have been synthesized and their mechanical and electrical properties have been correlated with their microstructure. Unlike many previous examples, the current IGs show a decreasing stability in stress-strain experiments on increasing IL fractions. The conductivities of the current IGs are lower than those observed in similar examples in the literature. Both effects are caused by a two-phase structure with micrometer-sized IL-rich domains homogeneously dispersed an IL-deficient continuous PMMA phase. This study demonstrates that the IL-polymer miscibility and the morphology of the IGs are key parameters to control the (macroscopic) properties of IGs.}, language = {en} } @misc{KoenigKellingSchildeetal.2017, author = {K{\"o}nig, Jana and Kelling, Alexandra and Schilde, Uwe and Strauch, Peter}, title = {[µ2-O,O′,Oʺ,Oʺ′-Bis(1,2-dithiooxalato-S,S′)nickel(II)]bis[-O,O′-bis(1,2-dithiooxalato-S,S′)-nickel(II)pentaquaholmium(III)]hydrate, [Ho2Ni3(dto)6(H2O)10]}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400598}, pages = {5}, year = {2017}, abstract = {Planar bis(1,2-dithiooxalato)nickelate(II), [Ni(dto)]2- reacts in aqueous solutions with lanthanide ions (Ln3+) to form pentanuclear, hetero-bimetallic complexes of the general composition [{Ln(H2O)n}2{Ni(dto)2}3]·xH2O. (n = 4 or 5; x = 9-12). The complex [{Ho(H2O)5}2{Ni(dto)2}3]·10H2O, Ho2Ni3, was synthesized and characterized by single crystal X-ray structure analysis and powder diffraction. The Ho2Ni3 complex crystallizes as monoclinic crystals in the space group P21/c. The channels and cavities, appearing in the crystal packing of the complex molecules, are occupied by a varying amount of non-coordinated water molecules.}, language = {en} } @misc{HardyTorresRendonLealEganaetal.2017, author = {Hardy, John G. and Torres-Rendon, Jose Guillermo and Leal-Ega{\~n}a, Aldo and Walther, Andreas and Schlaad, Helmut and C{\"o}lfen, Helmut and Scheibel, Thomas R.}, title = {Biomineralization of engineered spider silk protein-based composite materials for bone tissue engineering}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400519}, pages = {13}, year = {2017}, abstract = {Materials based on biodegradable polyesters, such as poly(butylene terephthalate) (PBT) or poly(butylene terephthalate-co-poly(alkylene glycol) terephthalate) (PBTAT), have potential application as pro-regenerative scaffolds for bone tissue engineering. Herein, the preparation of films composed of PBT or PBTAT and an engineered spider silk protein, (eADF4(C16)), that displays multiple carboxylic acid moieties capable of binding calcium ions and facilitating their biomineralization with calcium carbonate or calcium phosphate is reported. Human mesenchymal stem cells cultured on films mineralized with calcium phosphate show enhanced levels of alkaline phosphatase activity suggesting that such composites have potential use for bone tissue engineering.}, language = {en} } @misc{TaubertBalischewskiHentrichetal.2017, author = {Taubert, Andreas and Balischewski, Christian and Hentrich, Doreen and Elschner, Thomas and Eidner, Sascha and G{\"u}nter, Christina and Behrens, Karsten and Heinze, Thomas}, title = {Water-soluble cellulose derivatives are sustainable additives for biomimetic calcium phosphate mineralization}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400453}, pages = {17}, year = {2017}, abstract = {The effect of cellulose-based polyelectrolytes on biomimetic calcium phosphate mineralization is described. Three cellulose derivatives, a polyanion, a polycation, and a polyzwitterion were used as additives. Scanning electron microscopy, X-ray diffraction, IR and Raman spectroscopy show that, depending on the composition of the starting solution, hydroxyapatite or brushite precipitates form. Infrared and Raman spectroscopy also show that significant amounts of nitrate ions are incorporated in the precipitates. Energy dispersive X-ray spectroscopy shows that the Ca/P ratio varies throughout the samples and resembles that of other bioinspired calcium phosphate hybrid materials. Elemental analysis shows that the carbon (i.e., polymer) contents reach 10\% in some samples, clearly illustrating the formation of a true hybrid material. Overall, the data indicate that a higher polymer concentration in the reaction mixture favors the formation of polymer-enriched materials, while lower polymer concentrations or high precursor concentrations favor the formation of products that are closely related to the control samples precipitated in the absence of polymer. The results thus highlight the potential of (water-soluble) cellulose derivatives for the synthesis and design of bioinspired and bio-based hybrid materials.}, language = {en} } @phdthesis{Jordan2017, author = {Jordan, Thomas}, title = {CxNy-materials from supramolecular precursors for "All-Carbon" composite materials}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-398855}, school = {Universit{\"a}t Potsdam}, pages = {157}, year = {2017}, abstract = {Among modern functional materials, the class of nitrogen-containing carbons combines non-toxicity and sustainability with outstanding properties. The versatility of this materials class is based on the opportunity to tune electronic and catalytic properties via the nitrogen content and -motifs: This ranges from the electronically conducting N-doped carbon, where few carbon atoms in the graphitic lattice are substituted by nitrogen, to the organic semiconductor graphitic carbon nitride (g-C₃N₄), with a structure based on tri-s-triazine units. In general, composites can reveal outstanding catalytic properties due to synergistic behavior, e.g. the formation of electronic heterojunctions. In this thesis, the formation of an "all-carbon" heterojunction was targeted, i.e. differences in the electronic properties of the single components were achieved by the introduction of different nitrogen motives into the carbon lattice. Such composites are promising as metal-free catalysts for the photocatalytic water splitting. Here, hydrogen can be generated from water by light irradiation with the use of a photocatalyst. As first part of the heterojunction, the organic semiconductor g-C₃N₄ was employed, because of its suitable band structure for photocatalytic water splitting, high stability and non-toxicity. The second part was chosen as C₂N, a recently discovered semiconductor. Compared to g-C₃N₄, the less nitrogen containing C₂N has a smaller band gap and a higher absorption coefficient in the visible light range, which is expected to increase the optical absorption in the composite eventually leading to an enhanced charge carrier separation due to the formation of an electronic heterojunction. The aim of preparing an "all-carbon" composite included the research on appropriate precursors for the respective components g-C₃N₄ and C₂N, as well as strategies for appropriate structuring. This was targeted by applying precursors which can form supramolecular pre-organized structures. This allows for more control over morphology and atom patterns during the carbonization process. In the first part of this thesis, it was demonstrated how the photocatalytic activity of g-C₃N₄ can be increased by the targeted introduction of defects or surface terminations. This was achieved by using caffeine as a "growth stopping" additive during the formation of the hydrogen-bonded supramolecular precursor complexes. The increased photocatalytic activity of the obtained materials was demonstrated with dye degradation experiments. The second part of this thesis was focused on the synthesis of the second component C₂N. Here, a deep eutectic mixture from hexaketocyclohexane and urea was structured using the biopolymer chitosan. This scaffolding resulted in mesoporous nitrogen-doped carbon monoliths and beads. CO₂- and dye-adsorption experiments with the obtained monolith material revealed a high isosteric heat of CO₂-adsorption and showed the accessibility of the monolithic pore system to larger dye molecules. Furthermore, a novel precursor system for C₂N was explored, based on organic crystals from squaric acid and urea. The respective C₂N carbon with an unusual sheet-like morphology could be synthesized by carbonization of the crystals at 550 °C. With this precursor system, also microporous C₂N carbon with a BET surface area of 865 m²/g was obtained by "salt-templating" with ZnCl₂. Finally, the preparation of a g-C₃N₄/C₂N "all carbon" composite heterojunction was attempted by the self-assembly of g-C₃N₄ and C₂N nanosheets and tested for photocatalytic water splitting. Indeed, the composites revealed high rates of hydrogen evolution when compared to bulk g-C₃N₄. However, the increased catalytic activity was mainly attributed to the high surface area of the nanocomposites rather than to the composition. With regard to alternative composite synthesis ways, first experiments indicated N-Methyl-2-pyrrolidon to be suitable for higher concentrated dispersion of C₂N nanosheets. Eventually, the results obtained in this thesis provide precious synthetic contributions towards the preparation and processing of carbon/nitrogen compounds for energy applications.}, language = {en} } @phdthesis{LorenteSanchez2017, author = {Lorente S{\´a}nchez, Alejandro Jose}, title = {Synthesis of side-chain polystyrenes for all organic solution processed OLEDs}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-398006}, school = {Universit{\"a}t Potsdam}, pages = {xiv, 131}, year = {2017}, abstract = {In the present work side-chain polystyrenes were synthesized and characterized, in order to be applied in multilayer OLEDs fabricated by solution process techniques. Manufacture of optoelectronic devices by solution process techniques is meant to decrease significantly fabrication cost and allow large scale production of such devices. This dissertation focusses in three series, enveloped in two material classes. The two classes differ to each other in the type of charge transport exhibited, either ambipolar transport or electron transport. All materials were applied in all-organic solution processed green Ir-based devices. In the first part, a series of ambipolar host materials were developed to transport both charge types, holes and electrons, and be applied especially as matrix for green Ir-based emitters. It was possible to increase devices efficacy by modulating the predominant charge transport type. This was achieved by modification of molecules electron transport part with more electron-deficient heterocycles or by extending the delocalization of the LUMO. Efficiencies up to 28.9 cd/A were observed for all-organic solution-process three layer devices. In the second part, suitability of triarylboranes and tetraphenylsilanes as electron transport materials was studied. High triplet energies were obtained, up to 2.95 eV, by rational combination of both molecular structures. Although the combination of both elements had a low effect in materials electron transport properties, high efficiencies around 24 cd/A were obtained for the series in all-organic solution-processed two layer devices. In the last part, benzene and pyridine were chosen as the series electron-transport motif. By controlling the relative pyridine content (RPC) solubility into methanol was induced for polystyrenes with bulky side-chains. Materials with RPC ≥ 0.5 could be deposited orthogonally from solution without harming underlying layers. From the best of our knowledge, this is the first time such materials are applied in this architecture showing moderate efficiencies around 10 cd/A in all-organic solution processed OLEDs. Overall, the outcome of these studies will actively contribute to the current research on materials for all-solution processed OLEDs.}, language = {en} } @phdthesis{Dippel2017, author = {Dippel, Sandor}, title = {Development of functional hydrogels for sensor applications}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-398252}, school = {Universit{\"a}t Potsdam}, pages = {127}, year = {2017}, abstract = {In this work, a sensor system based on thermoresponsive materials is developed by utilizing a modular approach. By synthesizing three different key monomers containing either a carboxyl, alkene or alkyne end group connected with a spacer to the methacrylic polymerizable unit, a flexible copolymerization strategy has been set up with oligo ethylene glycol methacrylates. This allows to tune the lower critical solution temperature (LCST) of the polymers in aqueous media. The molar masses are variable thanks to the excurse taken in polymerization in ionic liquids thus stretching molar masses from 25 to over 1000 kDa. The systems that were shown shown to be effective in aqueous solution could be immobilized on surfaces by copolymerizing photo crosslinkable units. The immobilized systems were formulated to give different layer thicknesses, swelling ratios and mesh sizes depending on the demand of the coupling reaction. The coupling of detector units or model molecules is approached via reactions of the click chemistry pool, and the reactions are evaluated on their efficiency under those aspects, too. These coupling reactions are followed by surface plasmon resonance spectroscopy (SPR) to judge efficiency. With these tools at hand, Salmonella saccharides could be selectively detected by SPR. Influenza viruses were detected in solution by turbidimetry in solution as well as by a copolymerized solvatochromic dye to track binding via the changes of the polymers' fluorescence by said binding event. This effect could also be achieved by utilizing the thermoresponsive behavior. Another demonstrator consists of the detection system bound to a quartz surface, thus allowing the virus detection on a solid carrier. The experiments show the great potential of combining the concepts of thermoresponsive materials and click chemistry to develop technically simple sensors for large biomolecules and viruses.}, language = {en} } @phdthesis{Pavashe2017, author = {Pavashe, Prashant}, title = {Synthesis and transformations of 2-thiocarbohydrates}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-397739}, school = {Universit{\"a}t Potsdam}, pages = {xi, 132}, year = {2017}, abstract = {I. Ceric ammonium nitrate (CAN) mediated thiocyanate radical additions to glycals In this dissertation, a facile entry was developed for the synthesis of 2-thiocarbohydrates and their transformations. Initially, CAN mediated thiocyanation of carbohydrates was carried out to obtain the basic building blocks (2-thiocyanates) for the entire studies. Subsequently, 2-thiocyanates were reduced to the corresponding thiols using appropriate reagents and reaction conditions. The screening of substrates, stereochemical outcome and the reaction mechanism are discussed briefly (Scheme I). Scheme I. Synthesis of the 2-thiocyanates II and reductions to 2-thiols III \& IV. An interesting mechanism was proposed for the reduction of 2-thiocyanates II to 2-thiols III via formation of a disulfide intermediate. The water soluble free thiols IV were obtained by cleaving the thiocyanate and benzyl groups in a single step. In the subsequent part of studies, the synthetic potential of the 2-thiols was successfully expanded by simple synthetic transformations. II. Transformations of the 2-thiocarbohydrates The 2-thiols were utilized for convenient transformations including sulfa-Michael additions, nucleophilic substitutions, oxidation to disulfides and functionalization at the anomeric position. The diverse functionalizations of the carbohydrates at the C-2 position by means of the sulfur linkage are the highlighting feature of these studies. Thus, it creates an opportunity to expand the utility of 2-thiocarbohydrates for biological studies. Reagents and conditions: a) I2, pyridine, THF, rt, 15 min; b) K2CO3, MeCN, rt, 1 h; c) MeI, K2CO3, DMF, 0 °C, 5 min; d) Ac2O, H2SO4 (1 drop), rt, 10 min; e) CAN, MeCN/H2O, NH4SCN, rt, 1 h; f) NaN3, ZnBr2, iPrOH/H2O, reflux, 15 h; g) NaOH (1 M), TBAI, benzene, rt, 2 h; h) ZnCl2, CHCl3, reflux, 3 h. Scheme II. Functionalization of 2-thiocarbohydrates. These transformations have enhanced the synthetic value of 2-thiocarbohydrates for the preparative scale. Worth to mention is the Lewis acid catalyzed replacement of the methoxy group by other nucleophiles and the synthesis of the (2→1) thiodisaccharides, which were obtained with complete β-selectivity. Additionally, for the first time, the carbohydrate linked thiotetrazole was synthesized by a (3 + 2) cycloaddition approach at the C-2 position. III. Synthesis of thiodisaccharides by thiol-ene coupling. In the final part of studies, the synthesis of thiodisaccharides by a classical photoinduced thiol-ene coupling was successfully achieved. Reagents and conditions: 2,2-Dimethoxy-2-phenylacetophenone (DPAP), CH2Cl2/EtOH, hv, rt. Scheme III. Thiol-ene coupling between 2-thiols and exo-glycals. During the course of investigations, it was found that the steric hindrance plays an important role in the addition of bulky thiols to endo-glycals. Thus, we successfully screened the suitable substrates for addition of various thiols to sterically less hindered alkenes (Scheme III). The photochemical addition of 2-thiols to three different exo-glycals delivered excellent regio- and diastereoselectivities as well as yields, which underlines the synthetic potential of this convenient methodology.}, language = {en} } @phdthesis{Olejko2017, author = {Olejko, Lydia}, title = {F{\"o}rster resonance energy transfer (FRET)-based nanophotonics using DNA origami structures}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-396747}, school = {Universit{\"a}t Potsdam}, year = {2017}, abstract = {The field of nanophotonics focuses on the interaction between electromagnetic radiation and matter on the nanometer scale. The elements of nanoscale photonic devices can transfer excitation energy non-radiatively from an excited donor molecule to an acceptor molecule by F{\"o}rster resonance energy transfer (FRET). The efficiency of this energy transfer is highly dependent on the donor-acceptor distance. Hence, in these nanoscale photonic devices it is of high importance to have a good control over the spatial assembly of used fluorophores. Based on molecular self-assembly processes, various nanostructures can be produced. Here, DNA nanotechnology and especially the DNA origami technique are auspicious self-assembling methods. By using DNA origami nanostructures different fluorophores can be introduced with a high local control to create a variety of nanoscale photonic objects. The applications of such nanostructures range from photonic wires and logic gates for molecular computing to artificial light harvesting systems for artificial photosynthesis. In the present cumulative doctoral thesis, different FRET systems on DNA origami structures have been designed and thoroughly analyzed. Firstly, the formation of guanine (G) quadruplex structures from G rich DNA sequences has been studied based on a two-color FRET system (Fluorescein (FAM)/Cyanine3 (Cy3)). Here, the influences of different cations (Na+ and K+), of the DNA origami structure and of the DNA sequence on the G-quadruplex formation have been analyzed. In this study, an ion-selective K+ sensing scheme based on the G-quadruplex formation on DNA origami structures has been developed. Subsequently, the reversibility of the G-quadruplex formation on DNA origami structures has been evaluated. This has been done for the simple two-color FRET system which has then been advanced to a switchable photonic wire by introducing additional fluorophores (FAM/Cy3/Cyanine5 (Cy5)/IRDye®700). In the last part, the emission intensity of the acceptor molecule (Cy5) in a three-color FRET cascade has been tuned by arranging multiple donor (FAM) and transmitter (Cy3) molecules around the central acceptor molecule. In such artificial light harvesting systems, the excitation energy is absorbed by several donor and transmitter molecules followed by an energy transfer to the acceptor leading to a brighter Cy5 emission. Furthermore, the range of possible excitation wavelengths is extended by using several different fluorophores (FAM/Cy3/Cy5). In this part of the thesis, the light harvesting efficiency (antenna effect) and the FRET efficiency of different donor/transmitter/acceptor assemblies have been analyzed and the artificial light harvesting complex has been optimized in this respect.}, language = {en} } @phdthesis{Vacogne2016, author = {Vacogne, Charlotte D.}, title = {New synthetic routes towards well-defined polypeptides, morphologies and hydrogels}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-396366}, school = {Universit{\"a}t Potsdam}, pages = {xii, 175}, year = {2016}, abstract = {Proteins are natural polypeptides produced by cells; they can be found in both animals and plants, and possess a variety of functions. One of these functions is to provide structural support to the surrounding cells and tissues. For example, collagen (which is found in skin, cartilage, tendons and bones) and keratin (which is found in hair and nails) are structural proteins. When a tissue is damaged, however, the supporting matrix formed by structural proteins cannot always spontaneously regenerate. Tailor-made synthetic polypeptides can be used to help heal and restore tissue formation. Synthetic polypeptides are typically synthesized by the so-called ring opening polymerization (ROP) of α-amino acid N-carboxyanhydrides (NCA). Such synthetic polypeptides are generally non-sequence-controlled and thus less complex than proteins. As such, synthetic polypeptides are rarely as efficient as proteins in their ability to self-assemble and form hierarchical or structural supramolecular assemblies in water, and thus, often require rational designing. In this doctoral work, two types of amino acids, γ-benzyl-L/D-glutamate (BLG / BDG) and allylglycine (AG), were selected to synthesize a series of (co)polypeptides of different compositions and molar masses. A new and versatile synthetic route to prepare polypeptides was developed, and its mechanism and kinetics were investigated. The polypeptide properties were thoroughly studied and new materials were developed from them. In particular, these polypeptides were able to aggregate (or self-assemble) in solution into microscopic fibres, very similar to those formed by collagen. By doing so, they formed robust physical networks and organogels which could be processed into high water-content, pH-responsive hydrogels. Particles with highly regular and chiral spiral morphologies were also obtained by emulsifying these polypeptides. Such polypeptides and the materials derived from them are, therefore, promising candidates for biomedical applications.}, language = {en} } @misc{SchneiderWeigertLesnyaketal.2016, author = {Schneider, Ralf and Weigert, Florian and Lesnyak, Vladimir and Leubner, Susanne and Lorenz, Tommy and Behnke, Thomas and Dubavik, Aliaksei and Joswig, Jan-Ole and Resch-Genger, Ute and Gaponik, Nikolai and Eychm{\"u}ller, Alexander}, title = {pH and concentration dependence of the optical properties of thiol-capped CdTe nanocrystals in water and D2O}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-395143}, pages = {10}, year = {2016}, abstract = {The optical properties of semiconductor nanocrystals (SC NCs) are largely controlled by their size and surface chemistry, i.e., the chemical composition and thickness of inorganic passivation shells and the chemical nature and number of surface ligands as well as the strength of their bonds to surface atoms. The latter is particularly important for CdTe NCs, which - together with alloyed CdxHg1-xTe - are the only SC NCs that can be prepared in water in high quality without the need for an additional inorganic passivation shell. Aiming at a better understanding of the role of stabilizing ligands for the control of the application-relevant fluorescence features of SC NCs, we assessed the influence of two of the most commonly used monodentate thiol ligands, thioglycolic acid (TGA) and mercaptopropionic acid (MPA), on the colloidal stability, photoluminescence (PL) quantum yield (QY), and PL decay behavior of a set of CdTe NC colloids. As an indirect measure for the strength of the coordinative bond of the ligands to SC NC surface atoms, the influence of the pH (pD) and the concentration on the PL properties of these colloids was examined in water and D2O and compared to the results from previous dilution studies with a set of thiol-capped Cd1-xHgxTe SC NCs in D2O. As a prerequisite for these studies, the number of surface ligands was determined photometrically at different steps of purification after SC NC synthesis with Ellman's test. Our results demonstrate ligand control of the pH-dependent PL of these SC NCs, with MPA-stabilized CdTe NCs being less prone to luminescence quenching than TGA-capped ones. For both types of CdTe colloids, ligand desorption is more pronounced in H2O compared to D2O, underlining also the role of hydrogen bonding and solvent molecules.}, language = {en} } @misc{SchuermannBald2016, author = {Sch{\"u}rmann, Robin Mathis and Bald, Ilko}, title = {Real-time monitoring of plasmon induced dissociative electron transfer to the potential DNA radiosensitizer 8-bromoadenine}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-395113}, pages = {5}, year = {2016}, abstract = {The excitation of localized surface plasmons in noble metal nanoparticles (NPs) results in different nanoscale effects such as electric field enhancement, the generation of hot electrons and a temperature increase close to the NP surface. These effects are typically exploited in diverse fields such as surface-enhanced Raman scattering (SERS), NP catalysis and photothermal therapy (PTT). Halogenated nucleobases are applied as radiosensitizers in conventional radiation cancer therapy due to their high reactivity towards secondary electrons. Here, we use SERS to study the transformation of 8-bromoadenine (8BrA) into adenine on the surface of Au and AgNPs upon irradiation with a low-power continuous wave laser at 532, 633 and 785 nm, respectively. The dissociation of 8BrA is ascribed to a hot-electron transfer reaction and the underlying kinetics are carefully explored. The reaction proceeds within seconds or even milliseconds. Similar dissociation reactions might also occur with other electrophilic molecules, which must be considered in the interpretation of respective SERS spectra. Furthermore, we suggest that hot-electron transfer induced dissociation of radiosensitizers such as 8BrA can be applied in the future in PTT to enhance the damage of tumor tissue upon irradiation.}, language = {en} } @misc{BehrendtSchlaad2016, author = {Behrendt, Felix Nicolas and Schlaad, Helmut}, title = {Metathesis polymerization of cystine-based macrocycles}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-395080}, pages = {4}, year = {2016}, abstract = {Macrocycles based on L-cystine were synthesized by ring-closing metathesis (RCM) and subsequently polymerized by entropy-driven ring-opening metathesis polymerization (ED-ROMP). Monomer conversion reached ∼80\% in equilibrium and the produced poly(ester-amine-disulfide-alkene)s exhibited apparent molar masses (Mappw) of up to 80 kDa and dispersities (Đ) of ∼2. The polymers can be further functionalized with acid anhydrides and degraded by reductive cleavage of the main-chain disulfide.}, language = {en} } @phdthesis{Titov2017, author = {Titov, Evgenii}, title = {Quantum chemistry and surface hopping dynamics of azobenzenes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-394610}, school = {Universit{\"a}t Potsdam}, pages = {205}, year = {2017}, abstract = {This cumulative doctoral dissertation, based on three publications, is devoted to the investigation of several aspects of azobenzene molecular switches, with the aid of computational chemistry. In the first paper, the isomerization rates of a thermal cis → trans isomerization of azobenzenes for species formed upon an integer electron transfer, i.e., with added or removed electron, are calculated from Eyring's transition state theory and activation energy barriers, computed by means of density functional theory. The obtained results are discussed in connection with an experimental study of the thermal cis → trans isomerization of azobenzene derivatives in the presence of gold nanoparticles, which is demonstrated to be greatly accelerated in comparison to the same isomerization reaction in the absence of nanoparticles. The second paper is concerned with electronically excited states of (i) dimers, composed of two photoswitchable units placed closely side-by-side, as well as (ii) monomers and dimers adsorbed on a silicon cluster. A variety of quantum chemistry methods, capable of calculating molecular electronic absorption spectra, based on density functional and wave function theories, is employed to quantify changes in optical absorption upon dimerization and covalent grafting to a surface. Specifically, the exciton (Davydov) splitting between states of interest is determined from first-principles calculations with the help of natural transition orbital analysis, allowing for insight into the nature of excited states. In the third paper, nonadiabatic molecular dynamics with trajectory surface hopping is applied to model the photoisomerization of azobenzene dimers, (i) for the isolated case (exhibiting the exciton coupling between two molecules) as well as (ii) for the constrained case (providing the van der Waals interaction with environment in addition to the exciton coupling between two monomers). For the latter, the additional azobenzene molecules, surrounding the dimer, are introduced, mimicking a densely packed self-assembled monolayer. From obtained results it is concluded that the isolated dimer is capable of isomerization likewise the monomer, whereas the steric hindrance considerably suppresses trans → cis photoisomerization. Furthermore, the present dissertation comprises the general introduction describing the main features of the azobenzene photoswitch and objectives of this work, theoretical basis of the employed methods, and discussion of gained findings in the light of existing literature. Also, additional results on (i) activation parameters of the thermal cis → trans isomerization of azobenzenes, (ii) an approximate scheme to account for anharmonicity of molecular vibrations in calculation of the activation entropy, as well as (iii) absorption spectra of photoswitch-silicon composites obtained from time-demanding wave function-based methods are presented.}, language = {en} } @misc{HoogenboomSchlaad2016, author = {Hoogenboom, Richard and Schlaad, Helmut}, title = {Thermoresponsive poly(2-oxazoline)s, polypeptoids, and polypeptides}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-395022}, pages = {17}, year = {2016}, abstract = {This review covers the recent advances in the emerging field of thermoresponsive polyamides or polymeric amides, i.e., poly(2-oxazoline)s, polypeptoids, and polypeptides, with a specific focus on structure-thermoresponsive property relationships, self-assembly, and applications.}, language = {en} } @misc{ToepferTremblay2016, author = {T{\"o}pfer, Kai and Tremblay, Jean Christophe}, title = {How surface reparation prevents catalytic oxidation of carbon monoxide on atomic gold at defective magnesium oxide surfaces}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-394978}, pages = {8}, year = {2016}, abstract = {In this contribution, we study using first principles the co-adsorption and catalytic behaviors of CO and O2 on a single gold atom deposited at defective magnesium oxide surfaces. Using cluster models and point charge embedding within a density functional theory framework, we simulate the CO oxidation reaction for Au1 on differently charged oxygen vacancies of MgO(001) to rationalize its experimentally observed lack of catalytic activity. Our results show that: (1) co-adsorption is weakly supported at F0 and F2+ defects but not at F1+ sites, (2) electron redistribution from the F0 vacancy via the Au1 cluster to the adsorbed molecular oxygen weakens the O2 bond, as required for a sustainable catalytic cycle, (3) a metastable carbonate intermediate can form on defects of the F0 type, (4) only a small activation barrier exists for the highly favorable dissociation of CO2 from F0, and (5) the moderate adsorption energy of the gold atom on the F0 defect cannot prevent insertion of molecular oxygen inside the defect. Due to the lack of protection of the color centers, the surface becomes invariably repaired by the surrounding oxygen and the catalytic cycle is irreversibly broken in the first oxidation step.}, language = {en} } @misc{RasovicBlagojevicBaranacStojanovicetal.2016, author = {Rasovic, Aleksandar and Blagojevic, Vladimir and Baranac-Stojanovic, Marija and Kleinpeter, Erich and Markovic, Rade and Minic, Dragica M.}, title = {Quantification of the push-pull effect in 2-alkylidene-4-oxothiazolidines by using NMR spectral data and barriers to rotation around the C=C bond}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-394523}, pages = {6364 -- 6373}, year = {2016}, abstract = {Information about the strength of donor-acceptor interactions in push-pull alkenes is valuable, as this so-called "push-pull effect" influences their chemical reactivity and dynamic behaviour. In this paper, we discuss the applicability of NMR spectral data and barriers to rotation around the C[double bond, length as m-dash]C double bond to quantify the push-pull effect in biologically important 2-alkylidene-4-oxothiazolidines. While olefinic proton chemical shifts and differences in 13C NMR chemical shifts of the two carbons constituting the C[double bond, length as m-dash]C double bond fail to give the correct trend in the electron withdrawing ability of the substituents attached to the exocyclic carbon of the double bond, barriers to rotation prove to be a reliable quantity in providing information about the extent of donor-acceptor interactions in the push-pull systems studied. In particular all relevant kinetic data, that is the Arrhenius parameters (apparent activation energy Ea and frequency factor A) and activation parameters (ΔS‡, ΔH‡ and ΔG‡), were determined from the data of the experimentally studied configurational isomerization of (E)-9a. These results were compared to previously published related data for other two compounds, (Z)-1b and (2E,5Z)-7, showing that experimentally determined ΔG‡ values are a good indicator of the strength of push-pull character. Theoretical calculations of the rotational barriers of eight selected derivatives excellently correlate with the calculated C[double bond, length as m-dash]C bond lengths and corroborate the applicability of ΔG‡ for estimation of the strength of the push-pull effect in these and related systems.}, language = {en} } @misc{WirthKirschWlosczyketal.2016, author = {Wirth, Jonas and Kirsch, Harald and Wlosczyk, Sebastian and Tong, Yujin and Saalfrank, Peter and Kramer Campen, Richard}, title = {Characterization of water dissociation on α-Al2O3(1102)}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-394497}, pages = {14822 -- 14832}, year = {2016}, abstract = {The interaction of water with α-alumina (i.e. α-Al2O3) surfaces is important in a variety of applications and a useful model for the interaction of water with environmentally abundant aluminosilicate phases. Despite its significance, studies of water interaction with α-Al2O3 surfaces other than the (0001) are extremely limited. Here we characterize the interaction of water (D2O) with a well defined α-Al2O3(1[1 with combining macron]02) surface in UHV both experimentally, using temperature programmed desorption and surface-specific vibrational spectroscopy, and theoretically, using periodic-slab density functional theory calculations. This combined approach makes it possible to demonstrate that water adsorption occurs only at a single well defined surface site (the so-called 1-4 configuration) and that at this site the barrier between the molecularly and dissociatively adsorbed forms is very low: 0.06 eV. A subset of OD stretch vibrations are parallel to this dissociation coordinate, and thus would be expected to be shifted to low frequencies relative to an uncoupled harmonic oscillator. To quantify this effect we solve the vibrational Schr{\"o}dinger equation along the dissociation coordinate and find fundamental frequencies red-shifted by more than 1500 cm-1. Within the context of this model, at moderate temperatures, we further find that some fraction of surface deuterons are likely delocalized: dissociatively and molecularly absorbed states are no longer distinguishable.}, language = {en} } @misc{SteeplesKellingSchildeetal.2016, author = {Steeples, Elliot and Kelling, Alexandra and Schilde, Uwe and Esposito, Davide}, title = {Amino acid-derived N-heterocyclic carbene palladium complexes for aqueous phase Suzuki-Miyaura couplings}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-394488}, pages = {4922 -- 4930}, year = {2016}, abstract = {In this work, three ligands produced from amino acids were synthesized and used to produce five bis- and PEPPSI-type palladium-NHC complexes using a novel synthesis route from sustainable starting materials. Three of these complexes were used as precatalysts in the aqueous-phase Suzuki-Miyaura coupling of various substrates displaying high activity. TEM and mercury poisoning experiments provide evidence for Pd-nanoparticle formation stabilized in water.}, language = {en} } @misc{WessigHilleKumkeetal.2016, author = {Wessig, Pablo and Hille, Carsten and Kumke, Michael Uwe and Meiling, Till Thomas and Behrends, Nicole and Eisold, Ursula}, title = {Two-photon FRET pairs based on coumarin and DBD dyes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-394445}, pages = {33510 -- 33513}, year = {2016}, abstract = {The synthesis and photophysical properties of two new FRET pairs based on coumarin as a donor and DBD dye as an acceptor are described. The introduction of a bromo atom dramatically increases the two-photon excitation (2PE) cross section providing a 2PE-FRET system, which is also suitable for 2PE-FLIM.}, language = {en} } @misc{LiebigSarhanPrietzeletal.2016, author = {Liebig, Ferenc and Sarhan, Radwan Mohamed and Prietzel, Claudia Christina and Reinecke, Antje and Koetz, Joachim}, title = {"Green" gold nanotriangles: synthesis, purification by polyelectrolyte/micelle depletion flocculation and performance in surface-enhanced Raman scattering}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-394430}, pages = {33561 -- 33568}, year = {2016}, abstract = {The aim of this study was to develop a one-step synthesis of gold nanotriangles (NTs) in the presence of mixed phospholipid vesicles followed by a separation process to isolate purified NTs. Negatively charged vesicles containing AOT and phospholipids, in the absence and presence of additional reducing agents (polyampholytes, polyanions or low molecular weight compounds), were used as a template phase to form anisotropic gold nanoparticles. Upon addition of the gold chloride solution, the nucleation process is initiated and both types of particles, i.e., isotropic spherical and anisotropic gold nanotriangles, are formed simultaneously. As it was not possible to produce monodisperse nanotriangles with such a one-step procedure, the anisotropic nanoparticles needed to be separated from the spherical ones. Therefore, a new type of separation procedure using combined polyelectrolyte/micelle depletion flocculation was successfully applied. As a result of the different purification steps, a green colored aqueous dispersion was obtained containing highly purified, well-defined negatively charged flat nanocrystals with a platelet thickness of 10 nm and an edge length of about 175 nm. The NTs produce promising results in surface-enhanced Raman scattering.}, language = {en} } @misc{PacholskiAgarwalBalderasValadez2016, author = {Pacholski, Claudia and Agarwal, Vivechana and Balderas-Valadez, Ruth Fabiola}, title = {Fabrication of porous silicon-based optical sensors using metal-assisted chemical etching}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-394426}, pages = {21430 -- 21434}, year = {2016}, abstract = {Optical biosensors based on porous silicon were fabricated by metal assisted chemical etching. Thereby double layered porous silicon structures were obtained consisting of porous pillars with large pores on top of a porous silicon layer with smaller pores. These structures showed a similar sensing performance in comparison to electrochemically produced porous silicon interferometric sensors.}, language = {en} } @misc{EhlertHolzweberLippitzetal.2016, author = {Ehlert, Christopher and Holzweber, Markus and Lippitz, Andreas and Unger, Wolfgang E. S. and Saalfrank, Peter}, title = {A detailed assignment of NEXAFS resonances of imidazolium based ionic liquids}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-394417}, pages = {8654 -- 8661}, year = {2016}, abstract = {In Near Edge X-Ray Absorption Fine Structure (NEXAFS) spectroscopy X-Ray photons are used to excite tightly bound core electrons to low-lying unoccupied orbitals of the system. This technique offers insight into the electronic structure of the system as well as useful structural information. In this work, we apply NEXAFS to two kinds of imidazolium based ionic liquids ([CnC1im]+[NTf2]- and [C4C1im]+[I]-). A combination of measurements and quantum chemical calculations of C K and N K NEXAFS resonances is presented. The simulations, based on the transition potential density functional theory method (TP-DFT), reproduce all characteristic features observed by the experiment. Furthermore, a detailed assignment of resonance features to excitation centers (carbon or nitrogen atoms) leads to a consistent interpretation of the spectra.}, language = {en} } @phdthesis{Prinz2016, author = {Prinz, Julia}, title = {DNA origami substrates as a versatile tool for surface-enhanced Raman scattering (SERS)}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-104089}, school = {Universit{\"a}t Potsdam}, pages = {xviii, 184 Seiten}, year = {2016}, abstract = {Surface-enhanced Raman scattering (SERS) is a promising tool to obtain rich chemical information about analytes at trace levels. However, in order to perform selective experiments on individual molecules, two fundamental requirements have to be fulfilled. On the one hand, areas with high local field enhancement, so-called "hot spots", have to be created by positioning the supporting metal surfaces in close proximity to each other. In most cases hot spots are formed in the gap between adjacent metal nanoparticles (NPs). On the other hand, the analyte has to be positioned directly in the hot spot in order to profit from the highest signal amplification. The use of DNA origami substrates provides both, the arrangement of AuNPs with nm precision as well as the ability to bind analyte molecules at predefined positions. Consequently, the present cumulative doctoral thesis aims at the development of a novel SERS substrate based on a DNA origami template. To this end, two DNA-functionalized gold nanoparticles (AuNPs) are attached to one DNA origami substrate resulting in the formation of a AuNP dimer and thus in a hot spot within the corresponding gap. The obtained structures are characterized by correlated atomic force microscopy (AFM) and SERS imaging which allows for the combination of structural and chemical information. Initially, the proof-of principle is presented which demonstrates the potential of the novel approach. It is shown that the Raman signal of 15 nm AuNPs coated with dye-modified DNA (dye: carboxytetramethylrhodamine (TAMRA)) is significantly higher for AuNP dimers arranged on a DNA origami platform in comparison to single AuNPs. Furthermore, by attaching single TAMRA molecules in the hot spot between two 5 nm AuNPs and optimizing the size of the AuNPs by electroless gold deposition, SERS experiments at the few-molecule level are presented. The initially used DNA origami-AuNPs design is further optimized in many respects. On the one hand, larger AuNPs up to a diameter of 60 nm are used which are additionally treated with a silver enhancement solution to obtain Au-Ag-core-shell NPs. On the other hand, the arrangement of both AuNPs is altered to improve the position of the dye molecule within the hot spot as well as to decrease the gap size between the two particles. With the optimized design the detection of single dye molecules (TAMRA and cyanine 3 (Cy3)) by means of SERS is demonstrated. Quantitatively, enhancement factors up to 10^10 are estimated which is sufficiently high to detect single dye molecules. In the second part, the influence of graphene as an additional component of the SERS substrate is investigated. Graphene is a two-dimensional material with an outstanding combination of electronical, mechanical and optical properties. Here, it is demonstrated that single layer graphene (SLG) replicates the shape of underlying non-modified DNA origami substrates very well, which enables the monitoring of structural alterations by AFM imaging. In this way, it is shown that graphene encapsulation significantly increases the structural stability of bare DNA origami substrates towards mechanical force and prolonged exposure to deionized water. Furthermore, SLG is used to cover DNA origami substrates which are functionalized with a 40 nm AuNP dimer. In this way, a novel kind of hybrid material is created which exhibits several advantages compared to the analogue non-covered SERS substrates. First, the fluorescence background of dye molecules that are located in between the AuNP surface and SLG is efficiently reduced. Second, the photobleaching rate of the incorporated dye molecules is decreased up to one order of magnitude. Third, due to the increased photostability of the investigated dye molecules, the performance of polarization-dependent series measurements on individual structures is enabled. This in turn reveals extensive information about the dye molecules in the hot spot as well as about the strain induced within the graphene lattice. Although SLG can significantly influence the SERS substrate in the aforementioned ways, all those effects are strongly related to the extent of contact with the underlying AuNP dimer.}, language = {en} } @phdthesis{Graglia2017, author = {Graglia, Micaela}, title = {Lignin valorization}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-104863}, school = {Universit{\"a}t Potsdam}, pages = {133}, year = {2017}, abstract = {The topic of this project is the use of lignin as alternative source of aromatic building blocks and oligomers to fossil feedstocks. Lignin is known as the most abundant aromatic polymer in nature and is isolated from the lignocellulosic component of plants by different possible extraction treatments. Both the biomass source and the extraction method affect the structure of the isolated lignin, therefore influencing its further application. Lignin was extracted from beech wood by two different hydrothermal alkaline treatments, which use NaOH and Ba(OH)2 as base and by an acid-catalyzed organosolv process. Moreover, lignin was isolated from bamboo, beech wood and coconut by soda treatment of the biomasses. A comparison of the structural features of such isolated lignins was performed through the use of a wide range of analytical methods. Alkaline lignins resulted in a better candidate as carbon precursor and macromonomers for the synthesis of polymer than organosolv lignin. In fact, alkaline lignins showed higher residual mass after carbonization and higher content of the reactive hydroxy functionalities. In contrast, the lignin source turned out to slightly affect the lignin hydroxyl content. One of the most common lignin modifications is its deconstruction to obtain aromatic molecules, which can be used as starting materials for the synthesis of fine chemicals. Lignin deconstruction leads to a complex mixture of aromatic molecules. A gas chromatographic analytical method was developed to characterize the mixture of products obtained by lignin deconstruction via heterogeneous catalytic hydrogenolysis. The analytical protocol allowed the quantification of three main groups of molecules by means of calibration curves, internal standard and a preliminary silylation step of the sample. The analytical method was used to study the influence of the hydrogenolysis catalyst, temperature and system (flow and batch reactor) on the yield and selectivity of the aromatic compounds. Lignin extracted from beech wood by a hydrothermal process using Ba(OH)2 as base, was functionalized by aromatic nitration in order to add nitrogen functionalities. The final goal was the synthesis of a nitrogen doped carbon. Nitrated lignin was reduced to the amino form in order to compare the influence of different nitrogen functionalities on the porosity of the final carbon. The carbons were obtained by ionothermal treatment of the precursors in the presence of the eutectic salt mixture KCl/ZnCl2 Such synthesized carbons showed micro-, macro- and mesoporosity and were tested for their electrocatalytic activity towards the oxygen reduction reaction. Mesoporous carbon derived from nitro lignin displayed the highest electrocatalytic activity. Lignins isolated from coconut, beech wood and bamboo were used as macromonomers for the synthesis of biobased polyesters. A condensation reaction was performed between lignin and a hyper branched poly(ester-amine), previously obtained by condensation of triethanolamine and adipic acid. The influence of the lignin source and content on the thermochemical and mechanical properties of the final material was investigated. The prepolymer showed adhesive properties towards aluminum and its shear strength was therefore measured. The gluing properties of such synthesized glues turned out to be independent from the lignin source but affected by the amount of lignin in the final material. This work shows that, although still at a laboratory scale, the valorization of lignin can overcome the critical issues of lignin´s structure variability and complexity.}, language = {en} } @misc{HildebrandLaschewskyWischerhoff2015, author = {Hildebrand, Viet and Laschewsky, Andr{\´e} and Wischerhoff, Erik}, title = {Modulating the solubility of zwitterionic poly((3- methacrylamidopropyl)ammonioalkane sulfonate)s in water and aqueous salt solutions via the spacer group separating the cationic and the anionic moieties}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-103040}, pages = {731 -- 740}, year = {2015}, abstract = {Complementary to the well-established zwitterionic monomer 3-((3-methacrylamidopropyl)dimethylammonio) propane-1-sulfonate (SPP), the closely related monomers 2-hydroxy-3-((3-methacrylamidopropyl) dimethylammonio)propane-1-sulfonate (SHPP) and 4-((3-methacrylamidopropyl)dimethylammonio)-butane-1-sulfonate (SBP) were synthesised and polymerised by reversible addition-fragmentation chain transfer (RAFT) polymerisation, using a fluorophore labeled RAFT agent. The polyzwitterions of systematically varied molar masses were characterised with respect to their solubility in water and aqueous salt solutions. Both poly(sulfobetaine)s show thermoresponsive behaviour in water, exhibiting phase separation at low temperatures and upper critical solution temperatures (UCST). For both polySHPP and polySBP, cloud points depend notably on the molar mass, and are much higher in D2O than in H2O. Also, the cloud points are effectively modulated by the addition of salts. The individual effects can be in parts correlated to the Hofmeister series for the anions studied. Still, they depend in a complex way on the concentration and the nature of the added electrolytes, on the one hand, and on the detailed nature of the spacer group separating the anionic and the cationic charges of the betaine moiety, on the other hand. As anticipated, the cloud points of polySBP are much higher than the ones of the analogous polySPP of identical molar mass. Surprisingly, the cloud points of polySHPP are also somewhat higher than the ones of their polySPP analogues, despite the additional hydrophilic hydroxyl group present in the spacer separating the ammonium and the sulfonate moieties. These findings point to a complicated interplay of the various hydrophilic components in polyzwitterions with respect to their overall hydrophilicity. Thus, the spacer group in the betaine moiety proves to be an effective additional molecular design parameter, apparently small variations of which strongly influence the phase behaviour of the polyzwitterions in specific aqueous environments.}, language = {en} } @misc{PapeWessigBrunner2015, author = {Pape, Simon and Wessig, Pablo and Brunner, Heiko}, title = {A new and environmentally benign synthesis of aroylguanidines using iron trichloride}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-102720}, pages = {101408 -- 101411}, year = {2015}, abstract = {A new synthetic approach for the guanylation of aroylthioureas using iron trichloride is presented. Our synthetic method distinguishes itself by benign reaction conditions, low costs and a broad product spectrum. The scope of the reaction and calorimetric studies are described.}, language = {en} } @misc{VacogneSchlaad2015, author = {Vacogne, Charlotte D. and Schlaad, Helmut}, title = {Primary ammonium/tertiary amine-mediated controlled ring opening polymerisation of amino acid N-carboxyanhydrides}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-102718}, pages = {15645 -- 15648}, year = {2015}, abstract = {Stable commercial primary ammonium chlorides were combined with tertiary amines to initiate the controlled ring opening polymerisation of amino acid N-carboxyanhydrides to yield polypeptides with defined end group structure, predetermined molar mass and narrow molar mass distribution.}, language = {en} } @misc{TasiorBaldDeperasińskaetal.2015, author = {Tasior, Mariusz and Bald, Ilko and Deperasińska, Irena and Cywiński, Piotr J. and Gryko, Daniel T.}, title = {An internal charge transfer-dependent solvent effect in V-shaped azacyanines}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-102704}, pages = {11714 -- 11720}, year = {2015}, abstract = {New V-shaped non-centrosymmetric dyes, possessing a strongly electron-deficient azacyanine core, have been synthesized based on a straightforward two-step approach. The key step in this synthesis involves palladium-catalysed cross-coupling of dibromo-N,N′-methylene-2,2′-azapyridinocyanines with arylacetylenes. The resulting strongly polarized π-expanded heterocycles exhibit green to orange fluorescence and they strongly respond to changes in solvent polarity. We demonstrate that differently electron-donating peripheral groups have a significant influence on the internal charge transfer, hence on the solvent effect and fluorescence quantum yield. TD-DFT calculations confirm that, in contrast to the previously studied bis(styryl)azacyanines, the proximity of S1 and T2 states calculated for compounds bearing two 4-N,N-dimethylaminophenylethynyl moieties establishes good conditions for efficient intersystem crossing and is responsible for its low fluorescence quantum yield. Non-linear properties have also been determined for new azacyanines and the results show that depending on peripheral groups, the synthesized dyes exhibit small to large two-photon absorption cross sections reaching 4000 GM.}, language = {en} } @misc{KumkeKlier2015, author = {Kumke, Michael Uwe and Klier, Dennis Tobias}, title = {Upconversion NaYF4:Yb:Er nanoparticles co-doped with Gd3+ and Nd3+ for thermometry on the nanoscale}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-102677}, pages = {67149 -- 67156}, year = {2015}, abstract = {In the present work, the upconversion luminescence properties of oleic acid capped NaYF4:Gd3+:Yb3+:Er3+ upconversion nanoparticles (UCNP) with pure β crystal phase and Nd3+ ions as an additional sensitizer were studied in the temperature range of 288 K < T < 328 K. The results of this study showed that the complex interplay of different mechanisms and effects, causing the special temperature behavior of the UCNP can be developed into thermometry on the nanoscale, e.g. to be applied in biological systems on a cellular level. The performance was improved by the use of Nd3+ as an additional dopant utilizing the cascade sensitization mechanism in tri-doped UCNP.}, language = {en} } @phdthesis{Hildebrand2016, author = {Hildebrand, Viet}, title = {Twofold switchable block copolymers based on new polyzwitterions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-101372}, school = {Universit{\"a}t Potsdam}, pages = {xvi, 170, LXXX}, year = {2016}, abstract = {In complement to the well-established zwitterionic monomers 3-((2-(methacryloyloxy)ethyl)dimethylammonio)propane-1-sulfonate ("SPE") and 3-((3-methacrylamidopropyl)dimethylammonio)propane-1-sulfonate ("SPP"), the closely related sulfobetaine monomers were synthesized and polymerized by reversible addition-fragmentation chain transfer (RAFT) polymerization, using a fluorophore labeled RAFT agent. The polyzwitterions of systematically varied molar mass were characterized with respect to their solubility in water, deuterated water, and aqueous salt solutions. These poly(sulfobetaine)s show thermoresponsive behavior in water, exhibiting upper critical solution temperatures (UCST). Phase transition temperatures depend notably on the molar mass and polymer concentration, and are much higher in D2O than in H2O. Also, the phase transition temperatures are effectively modulated by the addition of salts. The individual effects can be in parts correlated to the Hofmeister series for the anions studied. Still, they depend in a complex way on the concentration and the nature of the added electrolytes, on the one hand, and on the detailed structure of the zwitterionic side chain, on the other hand. For the polymers with the same zwitterionic side chain, it is found that methacrylamide-based poly(sulfobetaine)s exhibit higher UCST-type transition temperatures than their methacrylate analogs. The extension of the distance between polymerizable unit and zwitterionic groups from 2 to 3 methylene units decreases the UCST-type transition temperatures. Poly(sulfobetaine)s derived from aliphatic esters show higher UCST-type transition temperatures than their analogs featuring cyclic ammonium cations. The UCST-type transition temperatures increase markedly with spacer length separating the cationic and anionic moieties from 3 to 4 methylene units. Thus, apparently small variations of their chemical structure strongly affect the phase behavior of the polyzwitterions in specific aqueous environments. Water-soluble block copolymers were prepared from the zwitterionic monomers and the non-ionic monomer N-isopropylmethacrylamide ("NIPMAM") by the RAFT polymerization. Such block copolymers with two hydrophilic blocks exhibit twofold thermoresponsive behavior in water. The poly(sulfobetaine) block shows an UCST, whereas the poly(NIPMAM) block exhibits a lower critical solution temperature (LCST). This constellation induces a structure inversion of the solvophobic aggregate, called "schizophrenic micelle". Depending on the relative positions of the two different phase transitions, the block copolymer passes through a molecularly dissolved or an insoluble intermediate regime, which can be modulated by the polymer concentration or by the addition of salt. Whereas, at low temperature, the poly(sulfobetaine) block forms polar aggregates that are kept in solution by the poly(NIPMAM) block, at high temperature, the poly(NIPMAM) block forms hydrophobic aggregates that are kept in solution by the poly(sulfobetaine) block. Thus, aggregates can be prepared in water, which switch reversibly their "inside" to the "outside", and vice versa.}, language = {en} } @phdthesis{Steeples2016, author = {Steeples, Elliot}, title = {Amino acid-derived imidazolium salts: platform molecules for N-Heterocyclic carbene metal complexes and organosilica materials}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-101861}, school = {Universit{\"a}t Potsdam}, pages = {139}, year = {2016}, abstract = {In the interest of producing functional catalysts from sustainable building-blocks, 1, 3-dicarboxylate imidazolium salts derived from amino acids were successfully modified to be suitable as N-Heterocyclic carbene (NHC) ligands within metal complexes. Complexes of Ag(I), Pd(II), and Ir(I) were successfully produced using known procedures using ligands derived from glycine, alanine, β-alanine and phenylalanine. The complexes were characterized in solid state using X-Ray crystallography, which allowed for the steric and electronic comparison of these ligands to well-known NHC ligands within analogous metal complexes. The palladium complexes were tested as catalysts for aqueous-phase Suzuki-Miyaura cross-coupling. Water-solubility could be induced via ester hydrolysis of the N-bound groups in the presence of base. The mono-NHC-Pd complexes were seen to be highly active in the coupling of aryl bromides with phenylboronic acid; the active catalyst of which was determined to be mostly Pd(0) nanoparticles. Kinetic studies determined that reaction proceeds quickly in the coupling of bromoacetophenone, for both pre-hydrolyzed and in-situ hydrolysis catalyst dissolution. The catalyst could also be recycled for an extra run by simply re-using the aqueous layer. The imidazolium salts were also used to produce organosilica hybrid materials. This was attempted via two methods: by post-grafting onto a commercial organosilica, and co-condensation of the corresponding organosilane. The co-condensation technique harbours potential for the production of solid-support catalysts.}, language = {en} } @phdthesis{Pampel2016, author = {Pampel, Jonas}, title = {Ionothermal carbon materials}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-101323}, school = {Universit{\"a}t Potsdam}, pages = {122, xlv}, year = {2016}, abstract = {Alternative concepts for energy storage and conversion have to be developed, optimized and employed to fulfill the dream of a fossil-independent energy economy. Porous carbon materials play a major role in many energy-related devices. Among different characteristics, distinct porosity features, e.g., specific surface area (SSA), total pore volume (TPV), and the pore size distribution (PSD), are important to maximize the performance in the final device. In order to approach the aim to synthesize carbon materials with tailor-made porosity in a sustainable fashion, the present thesis focused on biomass-derived precursors employing and developing the ionothermal carbonization. During the ionothermal carbonization, a salt melt simultaneously serves as solvent and porogen. Typically, eutectic mixtures containing zinc chloride are employed as salt phase. The first topic of the present thesis addressed the possibility to precisely tailor the porosity of ionothermal carbon materials by an experimentally simple variation of the molar composition of the binary salt mixture. The developed pore tuning tool allowed the synthesis of glucose derived carbon materials with predictable SSAs in the range of ~ 900 to ~ 2100 m2 g-1. Moreover, the nucleobase adenine was employed as precursor introducing nitrogen functionalities in the final material. Thereby, the chemical properties of the carbon materials are varied leading to new application fields. Nitrogen doped carbons (NDCs) are able to catalyze the oxygen reduction reaction (ORR) which takes place on the cathodic site of a fuel cell. The herein developed porosity tailoring allowed the synthesis of adenine derived NDCs with outstanding SSAs of up to 2900 m2 g-1 and very large TPV of 5.19 cm3 g-1. Furthermore, the influence of the porosity on the ORR could be directly investigated enabling the precise optimization of the porosity characteristics of NDCs for this application. The second topic addressed the development of a new method to investigate the not-yet unraveled mechanism of the oxygen reduction reaction using a rotating disc electrode setup. The focus was put on noble-metal free catalysts. The results showed that the reaction pathway of the investigated catalysts is pH-dependent indicating different active species at different pH-values. The third topic addressed the expansion of the used salts for the ionothermal approach towards hydrated calcium and magnesium chloride. It was shown that hydrated salt phases allowed the introduction of a secondary templating effect which was connected to the coexistence of liquid and solid salt phases. The method enabled the synthesis of fibrous NDCs with SSAs of up to 2780 m2 g-1 and very large TPV of 3.86 cm3 g-1. Moreover, the concept of active site implementation by a facile low-temperature metalation employing the obtained NDCs as solid ligands could be shown for the first time in the context of ORR. Overall, the thesis may pave the way towards highly porous carbon with tailor-made porosity materials prepared by an inexpensive and sustainable pathway, which can be applied in energy related field thereby supporting the needed expansion of the renewable energy sector.}, language = {en} } @misc{VacogneBrosnanMasicetal.2015, author = {Vacogne, Charlotte D. and Brosnan, Sarah M. and Masic, Admir and Schlaad, Helmut}, title = {Fibrillar gels via the self-assembly of poly(L-glutamate)-based statistical copolymers}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-102289}, pages = {5040 -- 5052}, year = {2015}, abstract = {Polypeptides having secondary structures often undergo self-assembly which can extend over multiple length scales. Poly(γ-benzyl-L-glutamate) (PBLG), for example, folds into α-helices and forms physical organogels, whereas poly(L-glutamic acid) (PLGA at acidic pH) or poly(L-glutamate) (PLG at neutral/basic pH) do not form hydrogels. We explored the gelation of modified PBLG and investigated the deprotection of the carboxylic acid moieties in such gels to yield unique hydrogels. This was accomplished through photo-crosslinking gelation of poly(γ-benzyl-L-glutamate-co-allylglycine) statistical copolymers in toluene, tetrahydrofuran, and 1,4-dioxane. Unlike most polymer-based chemical gels, our gels were prepared from dilute solutions (<20 g L-1, i.e., <2\% w/v) of low molar mass polymers. Despite such low concentrations and molar masses, our dioxane gels showed high mechanical stability and little shrinkage; remarkably, they also exhibited a porous fibrillar network. Deprotection of the carboxylic acid moieties in dioxane gels yielded pH responsive and highly absorbent PLGA/PLG-based hydrogels (swelling ratio of up to 87), while preserving the network structure, which is an unprecedented feature in the context of crosslinked PLGA gels. These outstanding properties are highly attractive for biomedical materials.}, language = {en} } @misc{HildebrandLaschewskyPaechetal.2016, author = {Hildebrand, Viet and Laschewsky, Andr{\´e} and P{\"a}ch, Michael and M{\"u}ller-Buschbaum, Peter and Papadakis, Christine M.}, title = {Effect of the zwitterion structure on the thermo-responsive behaviour of poly(sulfobetaine methacrylates)}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-102028}, pages = {13}, year = {2016}, abstract = {A series of new sulfobetaine methacrylates, including nitrogen-containing saturated heterocycles, was synthesised by systematically varying the substituents of the zwitterionic group. Radical polymerisation via the RAFT (reversible addition-fragmentation chain transfer) method in trifluoroethanol proceeded smoothly and was well controlled, yielding polymers with predictable molar masses. Molar mass analysis and control of the end-group fidelity were facilitated by end-group labeling with a fluorescent dye. The polymers showed distinct thermo-responsive behaviour of the UCST (upper critical solution temperature) type in an aqueous solution, which could not be simply correlated to their molecular structure via an incremental analysis of the hydrophilic and hydrophobic elements incorporated within them. Increasing the spacer length separating the ammonium and the sulfonate groups of the zwitterion moiety from three to four carbons increased the phase transition temperatures markedly, whereas increasing the length of the spacer separating the ammonium group and the carboxylate ester group on the backbone from two to three carbons provoked the opposite effect. Moreover, the phase transition temperatures of the analogous polyzwitterions decreased in the order dimethylammonio > morpholinio > piperidinio alkanesulfonates. In addition to the basic effect of the polymers' precise molecular structure, the concentration and the molar mass dependence of the phase transition temperatures were studied. Furthermore, we investigated the influence of added low molar mass salts on the aqueous-phase behaviour for sodium chloride and sodium bromide as well as sodium and ammonium sulfate. The strong effects evolved in a complex way with the salt concentration. The strength of these effects depended on the nature of the anion added, increasing in the order sulfate < chloride < bromide, thus following the empirical Hofmeister series. In contrast, no significant differences were observed when changing the cation, i.e. when adding sodium or ammonium sulfate.}, language = {en} } @misc{SchildeKellingUmbreenetal.2016, author = {Schilde, Uwe and Kelling, Alexandra and Umbreen, Sumaira and Linker, Torsten}, title = {Crystal structures of three bicyclic carbohydrate derivatives}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-100833}, pages = {6}, year = {2016}, abstract = {The title compounds, [(1R,3R,4R,5R,6S)-4,5-bis­(acet­yloxy)-7-oxo-2-oxabi­cyclo[4.2.0]octan-3-yl]methyl acetate, C14H18O8, (I), [(1S,4R,5S,6R)-5-acet­yloxy-7-hy­droxy­imino-2-oxobi­cyclo­[4.2.0]octan-4-yl acetate, C11H15NO6, (II), and [(3aR,5R,6R,7R,7aS)-6,7-bis­(acet­yloxy)-2-oxo­octa­hydro­pyrano[3,2-b]pyrrol-5-yl]methyl acetate, C14H19NO8, (III), are stable bicyclic carbohydrate derivatives. They can easily be synthesized in a few steps from commercially available glycals. As a result of the ring strain from the four-membered rings in (I) and (II), the conformations of the carbohydrates deviate strongly from the ideal chair form. Compound (II) occurs in the boat form. In the five-membered lactam (III), on the other hand, the carbohydrate adopts an almost ideal chair conformation. As a result of the distortion of the sugar rings, the configurations of the three bicyclic carbohydrate derivatives could not be determined from their NMR coupling constants. From our three crystal structure determinations, we were able to establish for the first time the absolute configurations of all new stereocenters of the carbohydrate rings.}, language = {en} } @misc{TremblayBlancoRey2015, author = {Tremblay, Jean Christophe and Blanco-Rey, Maria}, title = {Manipulating interfacial hydrogens at palladium via STM}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-99511}, pages = {11}, year = {2015}, abstract = {In this contribution, we provide a detailed dynamical analysis of the interfacial hydrogen migration mediated by scanning tunneling microscopy (STM). Contributions from the STM-current and from the non-adiabatic couplings are taken into account using only first principle models. The slight asymmetry of the tunnelling rates with respect to the potential bias sign inferred from experimental observations is reproduced by weighting the contributions of the metal acceptor-donor states for the propagation of the impinging electrons. The quasi-thermal inelastic collision mechanism is treated perturbatively. The influence of hydrogen pre-coverage is also investigated using new potential energy surfaces obtained from periodic density functional theory calculations. Fully quantum dynamical simulations of the system evolution are performed by solving the Pauli master equation, providing insight into the reaction mechanism of STM manipulation of subsurface hydrogens. It is observed that the hydrogen impurity favors resurfacing over occupation of the bulk and subsurface sites whenever possible. The present simulations give strong indication that the experimentally observed protuberances after STM-excitation are due to hydrogen accumulating in the vicinity of the surface.}, language = {en} } @misc{MorgnerLecointreCharbonniereetal.2014, author = {Morgner, Frank and Lecointre, Alexandre and Charbonni{\`e}re, Loic J. and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {Detecting free hemoglobin in blood plasma and serum with luminescent terbium complexes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-99485}, pages = {6}, year = {2014}, abstract = {Hemolysis, the rupturing of red blood cells, can result from numerous medical conditions (in vivo) or occur after collecting blood specimen or extracting plasma and serum out of whole blood (in vitro). In clinical laboratory practice, hemolysis can be a serious problem due to its potential to bias detection of various analytes or biomarkers. Here we present the first ''mix-and-measure'' method to assess the degree of hemolysis in biosamples using luminescence spectroscopy. Luminescent terbium complexes (LTC) were studied in the presence of free hemoglobin (Hb) as indicators for hemolysis in TRIS-buffer, and in fresh human plasma with absorption, excitation and emission measurements. Our findings indicate dynamic as well as resonance energy transfer (FRET) between the LTC and the porphyrin ligand of hemoglobin. This transfer leads to a decrease in luminescence intensity and decay time even at nanomolar hemoglobin concentrations either in buffer or plasma. Luminescent terbium complexes are very sensitive to free hemoglobin in buffer and blood plasma. Due to the instant change in luminescence properties of the LTC in presence of Hb it is possible to access the concentration of hemoglobin via spectroscopic methods without incubation time or further treatment of the sample thus enabling a rapid and sensitive detection of hemolysis in clinical diagnostics.}, language = {en} } @misc{CommingesFrascaSuetterlinetal.2014, author = {Comminges, Cl{\´e}ment and Frasca, Stefano and S{\"u}tterlin, Martin and Wischerhoff, Erik and Laschewsky, Andr{\´e} and Wollenberger, Ursula}, title = {Surface modification with thermoresponsive polymer brushes for a switchable electrochemical sensor}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-99471}, year = {2014}, abstract = {Elaboration of switchable surfaces represents an interesting way for the development of a new generation of electrochemical sensors. In this paper, a method for growing thermoresponsive polymer brushes from a gold surface pre-modified with polyethyleneimine (PEI), subsequent layer-by-layer polyelectrolyte assembly and adsorption of a charged macroinitiator is described. We propose an easy method for monitoring the coil-to-globule phase transition of the polymer brush using an electrochemical quartz crystal microbalance with dissipation (E-QCM-D). The surface of these polymer modified electrodes shows reversible switching from the swollen to the collapsed state with temperature. As demonstrated from E-QCM-D measurements using an original signal processing method, the switch is operating in three reversible steps related to different interfacial viscosities. Moreover, it is shown that the one electron oxidation of ferrocene carboxylic acid is dramatically affected by the change from the swollen to the collapsed state of the polymer brush, showing a spectacular 86\% decrease of the charge transfer resistance between the two states.}, language = {en} } @misc{NeffevonRuestenLangeBrauneetal.2014, author = {Neffe, Axel T. and von R{\"u}sten-Lange, Maik and Braune, Steffen and L{\"u}tzow, Karola and Roch, Toralf and Richau, Klaus and Kr{\"u}ger, Anne and Becherer, Tobias and Th{\"u}nemann, Andreas F. and Jung, Friedrich and Haag, Rainer and Lendlein, Andreas}, title = {Multivalent grafting of hyperbranched oligo- and polyglycerols shielding rough membranes to mediate hemocompatibility}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-99444}, year = {2014}, abstract = {Hemocompatible materials are needed for internal and extracorporeal biomedical applications, which should be realizable by reducing protein and thrombocyte adhesion to such materials. Polyethers have been demonstrated to be highly efficient in this respect on smooth surfaces. Here, we investigate the grafting of oligo- and polyglycerols to rough poly(ether imide) membranes as a polymer relevant to biomedical applications and show the reduction of protein and thrombocyte adhesion as well as thrombocyte activation. It could be demonstrated that, by performing surface grafting with oligo- and polyglycerols of relatively high polydispersity (>1.5) and several reactive groups for surface anchoring, full surface shielding can be reached, which leads to reduced protein adsorption of albumin and fibrinogen. In addition, adherent thrombocytes were not activated. This could be clearly shown by immunostaining adherent proteins and analyzing the thrombocyte covered area. The presented work provides an important strategy for the development of application relevant hemocompatible 3D structured materials.}, language = {en} } @misc{SchmidtBehlLendleinetal.2014, author = {Schmidt, Christian and Behl, Marc and Lendlein, Andreas and Bauermann, Sabine}, title = {Synthesis of high molecular weight polyglycolide in supercritical carbon dioxide}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-99439}, year = {2014}, abstract = {Polyglycolide (PGA) is a biodegradable polymer with multiple applications in the medical sector. Here the synthesis of high molecular weight polyglycolide by ring-opening polymerization of diglycolide is reported. For the first time stabilizer free supercritical carbon dioxide (scCO2) was used as a reaction medium. scCO2 allowed for a reduction in reaction temperature compared to conventional processes. Together with the lowering of monomer concentration and consequently reduced heat generation compared to bulk reactions thermal decomposition of the product occurring already during polymerization is strongly reduced. The reaction temperatures and pressures were varied between 120 and 150 °C and 145 to 1400 bar. Tin(II) ethyl hexanoate and 1-dodecanol were used as catalyst and initiator, respectively. The highest number average molecular weight of 31 200 g mol-1 was obtained in 5 hours from polymerization at 120 °C and 530 bar. In all cases the products were obtained as a dry white powder. Remarkably, independent of molecular weight the melting temperatures were always at (219 ± 2) °C.}, language = {en} } @misc{XieHuangTitiricietal.2014, author = {Xie, Zai-Lai and Huang, Xing and Titirici, Maria-Magdalena and Taubert, Andreas}, title = {Mesoporous graphite nanoflakes via ionothermal carbonization of fructose and their use in dye removal}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-99427}, year = {2014}, abstract = {The large-scale green synthesis of graphene-type two-dimensional materials is still challenging. Herein, we describe the ionothermal synthesis of carbon-based composites from fructose in the iron-containing ionic liquid 1-butyl-3-methylimidazolium tetrachloridoferrate(III), [Bmim][FeCl4] serving as solvent, catalyst, and template for product formation. The resulting composites consist of oligo-layer graphite nanoflakes and iron carbide particles. The mesoporosity, strong magnetic moment, and high specific surface area of the composites make them attractive for water purification with facile magnetic separation. Moreover, Fe3Cfree graphite can be obtained via acid etching, providing access to fairly large amounts of graphite material. The current approach is versatile and scalable, and thus opens the door to ionothermal synthesis towards the larger-scale synthesis of materials that are, although not made via a sustainable process, useful for water treatment such as the removal of organic molecules.}, language = {en} } @misc{WęcławskiTasiorHammannetal.2014, author = {Węcławski, Marek K. and Tasior, Mariusz and Hammann, Tommy and Cywiński, Piotr J. and Gryko, Daniel T.}, title = {From π-expanded coumarins to π-expanded pentacenes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-98822}, pages = {4}, year = {2014}, abstract = {The synthesis of two novel types of π-expanded coumarins has been developed. Modified Knoevenagel bis-condensation afforded 3,9-dioxa-perylene-2,8-diones. Subsequent oxidative aromatic coupling or light driven electrocyclization reaction led to dibenzo-1,7-dioxacoronene-2,8-dione. Unparalleled synthetic simplicity, straightforward purification and superb optical properties have the potential to bring these perylene and coronene analogs towards various applications.}, language = {en} } @phdthesis{Won2016, author = {Won, Jooyoung}, title = {Dynamic and equilibrium adsorption behaviour of ß-lactoglobulin at the solution/tetradecane interface: Effect of solution concentration, pH and ionic strength}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-99167}, school = {Universit{\"a}t Potsdam}, pages = {ix, 106}, year = {2016}, abstract = {Proteins are amphiphilic and adsorb at liquid interfaces. Therefore, they can be efficient stabilizers of foams and emulsions. β-lactoglobulin (BLG) is one of the most widely studied proteins due to its major industrial applications, in particular in food technology. In the present work, the influence of different bulk concentration, solution pH and ionic strength on the dynamic and equilibrium pressures of BLG adsorbed layers at the solution/tetradecane (W/TD) interface has been investigated. Dynamic interfacial pressure (Π) and interfacial dilational elastic modulus (E') of BLG solutions for various concentrations at three different pH values of 3, 5 and 7 at a fixed ionic strength of 10 mM and for a selected fixed concentration at three different ionic strengths of 1 mM, 10 mM and 100 mM are measured by Profile Analysis Tensiometer PAT-1 (SINTERFACE Technologies, Germany). A quantitative data analysis requires additional consideration of depletion due to BLG adsorption at the interface at low protein bulk concentrations. This fact makes experiments more efficient when oil drops are studied in the aqueous protein solutions rather than solution drops formed in oil. On the basis of obtained experimental data, concentration dependencies and the effect of solution pH on the protein surface activity was qualitatively analysed. In the presence of 10 mM buffer, we observed that generally the adsorbed amount is increasing with increasing BLG bulk concentration for all three pH values. The adsorption kinetics at pH 5 result in the highest Π values at any time of adsorption while it exhibits a less active behaviour at pH 3. Since the experimental data have not been in a good agreement with the classical diffusion controlled model due to the conformational changes which occur when the protein molecules get in contact with the hydrophobic oil phase in order to adapt to the interfacial environment, a new theoretical model is proposed here. The adsorption kinetics data were analysed with the newly proposed model, which is the classical diffusion model but modified by assuming an additional change in the surface activity of BLG molecules when adsorbing at the interface. This effect can be expressed through the adsorption activity constant in the corresponding equation of state. The dilational visco-elasticity of the BLG adsorbed interfacial layers is determined from measured dynamic interfacial tensions during sinusoidal drop area variations. The interfacial tension responses to these harmonic drop oscillations are interpreted with the same thermodynamic model which is used for the corresponding adsorption isotherm. At a selected BLG concentration of 2×10-6 mol/l, the influence of the ionic strength using different buffer concentration of 1, 10 and 100 mM on the interfacial pressure was studied. It is affected weakly at pH 5, whereas it has a strong impact by increasing buffer concentration at pH 3 and 7. In conclusion, the structure formation of BLG adsorbed layer in the early stage of adsorption at the W/TD interface is similar to those of the solution/air (W/A) surface. However, the equation of state at the W/TD interface provides an adsorption activity constant which is almost two orders of magnitude higher than that for the solution/air surface. At the end of this work, a new experimental tool called Drop and Bubble Micro Manipulator DBMM (SINTERFACE Technologies, Germany) has been introduced to study the stability of protein covered bubbles against coalescence. Among the available protocols the lifetime between the moment of contact and coalescence of two contacting bubble is determined for different BLG concentrations. The adsorbed amount of BLG is determined as a function of time and concentration and correlates with the observed coalescence behaviour of the contacting bubbles.}, language = {en} } @phdthesis{Klier2016, author = {Klier, Dennis Tobias}, title = {Upconversion luminescence in Er-codoped NaYF4 nanoparticles}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-98486}, school = {Universit{\"a}t Potsdam}, pages = {ix, 89}, year = {2016}, abstract = {In the context of an increasing population of aging people and a shift of medical paradigm towards an individualized medicine in health care, nanostructured lanthanides doped sodium yttrium fluoride (NaYF4) represents an exciting class of upconversion nanomaterials (UCNM) which are suitable to bring forward developments in biomedicine and -biodetection. Despite the fact that among various fluoride based upconversion (UC) phosphors lanthanide doped NaYF4 is one of the most studied upconversion nanomaterial, many open questions are still remaining concerning the interplay of the population routes of sensitizer and activator electronic states involved in different luminescence upconversion photophysics as well as the role of phonon coupling. The collective work aims to explore a detailed understanding of the upconversion mechanism in nanoscaled NaYF4 based materials co-doped with several lanthanides, e.g. Yb3+ and Er3+ as the "standard" type upconversion nanoparticles (UCNP) up to advanced UCNP with Gd3+ and Nd3+. Especially the impact of the crystal lattice structure as well as the resulting lattice phonons on the upconversion luminescence was investigated in detail based on different mixtures of cubic and hexagonal NaYF4 nanoscaled crystals. Three synthesis methods, depending on the attempt of the respective central spectroscopic questions, could be accomplished in the following work. NaYF4 based upconversion nanoparticles doped with several combination of lanthanides (Yb3+, Er3+, Gd3+ and Nd3+) were synthesized successfully using a hydrothermal synthesis method under mild conditions as well as a co-precipitation and a high temperature co-precipitation technique. Structural information were gathered by means of X-ray diffraction (XRD), electron microscopy (TEM), dynamic light scattering (DLS), Raman spectroscopy and inductively coupled plasma atomic emission spectrometry (ICP-OES). The results were discussed in detail with relation to the spectroscopic results. A variable spectroscopic setup was developed for multi parameter upconversion luminescence studies at various temperature 4 K to 328 K. Especially, the study of the thermal behavior of upconversion luminescence as well as time resolved area normalized emission spectra were a prerequisite for the detailed understanding of intramolecular deactivation processes, structural changes upon annealing or Gd3+ concentration, and the role of phonon coupling for the upconversion efficiency. Subsequently it became possible to synthesize UCNP with tailored upconversion luminescence properties. In the end, the potential of UCNP for life science application should be enunciated in context of current needs and improvements of a nanomaterial based optical sensors, whereas the "standard" UCNP design was attuned according to the special conditions in the biological matrix. In terms of a better biocompatibility due to a lower impact on biological tissue and higher penetrability for the excitation light. The first step into this direction was to use Nd3+ ions as a new sensitizer in tridoped NaYF4 based UCNP, whereas the achieved absolute and relative temperature sensitivity is comparable to other types of local temperature sensors in the literature.}, language = {en} } @misc{PlehnMegowMay2014, author = {Plehn, Thomas and Megow, J{\"o}rg and May, Volkhard}, title = {Concerted charge and energy transfer processes in a highly flexible fullerene-dye system}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-98791}, pages = {10}, year = {2014}, abstract = {Photoinduced excitation energy transfer and accompanying charge separation are elucidated for a supramolecular system of a single fullerene covalently linked to six pyropheophorbide-a dye molecules. Molecular dynamics simulations are performed to gain an atomistic picture of the architecture and the surrounding solvent. Excitation energy transfer among the dye molecules and electron transfer from the excited dyes to the fullerene are described by a mixed quantum-classical version of the F{\"o}rster rate and the semiclassical Marcus rate, respectively. The mean characteristic time of energy redistribution lies in the range of 10 ps, while electron transfer proceeds within 150 ps. In between, on a 20 to 50 ps time-scale, conformational changes take place in the system. This temporal hierarchy of processes guarantees efficient charge separation, if the structure is exposed to a solvent. The fast energy transfer can adopt the dye excitation to the actual conformation. In this sense, the probability to achieve charge separation is large enough since any dominance of unfavorable conformations that exhibit a large dye-fullerene distance is circumvented. And the slow electron transfer may realize an averaging with respect to different conformations. To confirm the reliability of our computations, ensemble measurements on the charge separation dynamics are simulated and a very good agreement with the experimental data is obtained.}, language = {en} } @misc{SchottKretzschmarAckeretal.2014, author = {Schott, Juliane and Kretzschmar, Jerome and Acker, Margret and Eidner, Sascha and Kumke, Michael Uwe and Drobot, Bj{\"o}rn and Barkleit, Astrid and Taut, Steffen and Brendler, Vinzenz and Stumpf, Thorsten}, title = {Formation of a Eu(III) borate solid species from a weak Eu(III) borate complex in aqueous solution}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-98774}, pages = {13}, year = {2014}, abstract = {In the presence of polyborates (detected by 11B-NMR) the formation of a weak Eu(III) borate complex (lg β11 ∼ 2, estimated) was observed by time-resolved laser-induced fluorescence spectroscopy (TRLFS). This complex is a precursor for the formation of a solid Eu(III) borate species. The formation of this solid in solution was investigated by TRLFS as a function of the total boron concentration: the lower the total boron concentration, the slower is the solid formation. The solid Eu(III) borate was characterized by IR spectroscopy, powder XRD and solid-state TRLFS. The determination of the europium to boron ratio portends the existence of pentaborate units in the amorphous solid.}, language = {en} } @misc{SarauliXuDietzeletal.2014, author = {Sarauli, David and Xu, Chenggang and Dietzel, Birgit and Schulz, Burkhard and Lisdat, Fred}, title = {A multilayered sulfonated polyaniline network with entrapped pyrroloquinoline quinone-dependent glucose dehydrogenase}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-98744}, year = {2014}, abstract = {A feasible approach to construct multilayer films of sulfonated polyanilines - PMSA1 and PABMSA1 - containing different ratios of aniline, 2-methoxyaniline-5-sulfonic acid (MAS) and 3-aminobenzoic acid (AB), with the entrapped redox enzyme pyrroloquinoline quinone-dependent glucose dehydrogenase (PQQ-GDH) on Au and ITO electrode surfaces, is described. The formation of layers has been followed and confirmed by electrochemical impedance spectroscopy (EIS), which demonstrates that the multilayer assembly can be achieved in a progressive and uniform manner. The gold and ITO electrodes subsequently modified with PMSA1:PQQ-GDH and PABMSA1 films are studied by cyclic voltammetry (CV) and UV-Vis spectroscopy which show a significant direct bioelectrocatalytical response to the oxidation of the substrate glucose without any additional mediator. This response correlates linearly with the number of deposited layers. Furthermore, the constructed polymer/enzyme multilayer system exhibits a rather good long-term stability, since the catalytic current response is maintained for more than 60\% of the initial value even after two weeks of storage. This verifies that a productive interaction of the enzyme embedded in the film of substituted polyaniline can be used as a basis for the construction of bioelectronic units, which are useful as indicators for processes liberating glucose and allowing optical and electrochemical transduction.}, language = {en} } @misc{ErmeydanCabaneGierlingeretal.2014, author = {Ermeydan, Mahmut Ali and Cabane, Etienne and Gierlinger, Notburga and Koetz, Joachim and Burgert, Ingo}, title = {Improvement of wood material properties via in situ polymerization of styrene into tosylated cell walls}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-98736}, pages = {8}, year = {2014}, abstract = {As an engineering material derived from renewable resources, wood possesses excellent mechanical properties in view of its light weight but also has some disadvantages such as low dimensional stability upon moisture changes and low durability against biological attack. Polymerization of hydrophobic monomers in the cell wall is one of the potential approaches to improve the dimensional stability of wood. A major challenge is to insert hydrophobic monomers into the hydrophilic environment of the cell walls, without increasing the bulk density of the material due to lumen filling. Here, we report on an innovative and simple method to insert styrene monomers into tosylated cell walls (i.e. -OH groups from natural wood polymers are reacted with tosyl chloride) and carry out free radical polymerization under relatively mild conditions, generating low wood weight gains. In-depth SEM and confocal Raman microscopy analysis are applied to reveal the distribution of the polystyrene in the cell walls and the lumen. The embedding of polystyrene in wood results in reduced water uptake by the wood cell walls, a significant increase in dimensional stability, as well as slightly improved mechanical properties measured by nanoindentation.}, language = {en} } @phdthesis{Couturier2016, author = {Couturier, Jean-Philippe}, title = {New inverse opal hydrogels as platform for detecting macromolecules}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-98412}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 132, XXXVIII}, year = {2016}, abstract = {In this thesis, a route to temperature-, pH-, solvent-, 1,2-diol-, and protein-responsive sensors made of biocompatible and low-fouling materials is established. These sensor devices are based on the sensitivemodulation of the visual band gap of a photonic crystal (PhC), which is induced by the selective binding of analytes, triggering a volume phase transition. The PhCs introduced by this work show a high sensitivity not only for small biomolecules, but also for large analytes, such as glycopolymers or proteins. This enables the PhC to act as a sensor that detects analytes without the need of complex equipment. Due to their periodical dielectric structure, PhCs prevent the propagation of specific wavelengths. A change of the periodicity parameters is thus indicated by a change in the reflected wavelengths. In the case explored, the PhC sensors are implemented as periodically structured responsive hydrogels in formof an inverse opal. The stimuli-sensitive inverse opal hydrogels (IOHs) were prepared using a sacrificial opal template of monodispersed silica particles. First, monodisperse silica particles were assembled with a hexagonally packed structure via vertical deposition onto glass slides. The obtained silica crystals, also named colloidal crystals (CCs), exhibit structural color. Subsequently, the CCs templates were embedded in polymer matrix with low-fouling properties. The polymer matrices were composed of oligo(ethylene glycol) methacrylate derivatives (OEGMAs) that render the hydrogels thermoresponsive. Finally, the silica particles were etched, to produce highly porous hydrogel replicas of the CC. Importantly, the inner structure and thus the ability for light diffraction of the IOHs formed was maintained. The IOH membrane was shown to have interconnected pores with a diameter as well as interconnections between the pores of several hundred nanometers. This enables not only the detection of small analytes, but also, the detection of even large analytes that can diffuse into the nanostructured IOH membrane. Various recognition unit - analyte model systems, such as benzoboroxole - 1,2-diols, biotin - avidin and mannose - concanavalin A, were studied by incorporating functional comonomers of benzoboroxole, biotin and mannose into the copolymers. The incorporated recognition units specifically bind to certain low and highmolar mass biomolecules, namely to certain saccharides, catechols, glycopolymers or proteins. Their specific binding strongly changes the overall hydrophilicity, thus modulating the swelling of the IOH matrices, and in consequence, drastically changes their internal periodicity. This swelling is amplified by the thermoresponsive properties of the polymer matrix. The shift of the interference band gap due to the specific molecular recognition is easily visible by the naked eye (up to 150 nm shifts). Moreover, preliminary trial were attempted to detect even larger entities. Therefore anti-bodies were immobilized on hydrogel platforms via polymer-analogous esterification. These platforms incorporate comonomers made of tri(ethylene glycol) methacrylate end-functionalized with a carboxylic acid. In these model systems, the bacteria analytes are too big to penetrate into the IOH membranes, but can only interact with their surfaces. The selected model bacteria, as Escherichia coli, show a specific affinity to anti-body-functionalized hydrogels. Surprisingly in the case functionalized IOHs, this study produced weak color shifts, possibly opening a path to detect directly living organism, which will need further investigations.}, language = {en} } @misc{SchulzeKoetz2016, author = {Schulze, Nicole and Koetz, Joachim}, title = {Kinetically Controlled Growth of Gold Nanotriangles in a Vesicular Template Phase by Adding a Strongly Alternating Polyampholyte}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-98380}, pages = {22}, year = {2016}, abstract = {This paper is focused on the temperature dependent synthesis of gold nanotriangles in a vesicular template phase, containing phosphatidylcholin and AOT, by adding the strongly alternating polyampholyte PalPhBisCarb. UV-vis absorption spectra in combination with TEM micrographs show that flat gold nanoplatelets are formed predominantly in presence of the polyampholyte at 45 °C. The formation of triangular and hexagonal nanoplatelets can be directly influenced by the kinetic approach, i.e., by varying the polyampholyte dosage rate at 45 °C. Corresponding zeta potential measurements indicate that a temperature dependent adsorption of the polyampholyte on the {111} faces will induce the symmetry breaking effect, which is responsible for the kinetically controlled hindered vertical and preferred lateral growth of the nanoplatelets.}, language = {en} } @misc{ErmeydanCabaneHassetal.2014, author = {Ermeydan, Mahmut Ali and Cabane, Etienne and Hass, Philipp and Koetz, Joachim and Burgert, Ingo}, title = {Fully biodegradable modification of wood for improvement of dimensional stability and water absorption properties by poly(ε-caprolactone) grafting into the cell walls}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-97265}, pages = {3313 -- 3321}, year = {2014}, abstract = {Materials derived from renewable resources are highly desirable in view of more sustainable manufacturing. Among the available natural materials, wood is one of the key candidates, because of its excellent mechanical properties. However, wood and wood-based materials in engineering applications suffer from various restraints, such as dimensional instability upon humidity changes. Several wood modification treatments increase water repellence, but the insertion of hydrophobic polymers can result in a composite material which cannot be considered as renewable anymore. In this study, we report on the grafting of the fully biodegradable poly(ε-caprolactone) (PCL) inside the wood cell walls by Sn(Oct)2 catalysed ring-opening polymerization (ROP). The presence of polyester chains within the wood cell wall structure is monitored by confocal Raman imaging and spectroscopy as well as scanning electron microscopy. Physical tests reveal that the modified wood is more hydrophobic due to the bulking of the cell wall structure with the polyester chains, which results in a novel fully biodegradable wood material with improved dimensional stability.}, language = {en} } @misc{CywińskiNonoCharbonniereetal.2014, author = {Cywiński, Piotr J. and Nono, Katia Nchimi and Charbonni{\`e}re, Lo{\"i}c J. and Hammann, Tommy and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {Photophysical evaluation of a new functional terbium complex in FRET-based time-resolved homogenous fluoroassays}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95390}, pages = {6060 -- 6067}, year = {2014}, abstract = {A new functional luminescent lanthanide complex (LLC) has been synthesized with terbium as a central lanthanide ion and biotin as a functional moiety. Unlike in typical lanthanide complexes assembled via carboxylic moieties, in the presented complex, four phosphate groups are chelating the central lanthanide ion. This special chemical assembly enhances the complex stability in phosphate buffers conventionally used in biochemistry. The complex synthesis strategy and photophysical properties are described as well as the performance in time-resolved F{\"o}rster Resonance Energy Transfer (FRET) assays. In those assays, this biotin-LLC transferred energy either to acceptor organic dyes (Cy5 or AF680) labelled on streptavidin or to quantum dots (QD655 or QD705) surface-functionalised with streptavidins. The permanent spatial donor-acceptor proximity is assured through strong and stable biotin-streptavidin binding. The energy transfer is evidenced from the quenching observed in donor emission and from a decrease in donor luminescence decay, both associated with simultaneous increase in acceptor intensity and in the decay time. The dye-based assays are realised in TRIS and in PBS, whereas QD-based systems are studied in borate buffer. The delayed emission analysis allows for quantifying the recognition process and for auto-fluorescence-free detection, which is particularly relevant for application in bioanalysis. In accordance with F{\"o}rster theory, F{\"o}rster-radii (R0) were found to be around 60 {\AA} for organic dyes and around 105 {\AA} for QDs. The FRET efficiency (η) reached 80\% and 25\% for dye and QD acceptors, respectively. Physical donor-acceptor distances (r) have been determined in the range 45-60 {\AA} for organic dye acceptors, while for acceptor QDs between 120 {\AA} and 145 {\AA}. This newly synthesised biotin-LLC extends the class of highly sensitive analytical tools to be applied in the bioanalytical methods such as time-resolved fluoroimmunoassays (TR-FIA), luminescent imaging and biosensing.}, language = {en} } @misc{MeilingCywińskiBald2016, author = {Meiling, Till Thomas and Cywiński, Piotr J. and Bald, Ilko}, title = {White carbon: Fluorescent carbon nanoparticles with tunable quantum yield in a reproducible green synthesis}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-97087}, year = {2016}, abstract = {In this study, a new reliable, economic, and environmentally-friendly one-step synthesis is established to obtain carbon nanodots (CNDs) with well-defined and reproducible photoluminescence (PL) properties via the microwave-assisted hydrothermal treatment of starch and Tris-acetate-EDTA (TAE) buffer as carbon sources. Three kinds of CNDs are prepared using different sets of above mentioned starting materials. The as-synthesized CNDs: C-CND (starch only), N-CND 1 (starch in TAE) and N-CND 2 (TAE only) exhibit highly homogenous PL and are ready to use without need for further purification. The CNDs are stable over a long period of time (>1 year) either in solution or as freeze-dried powder. Depending on starting material, CNDs with PL quantum yield (PLQY) ranging from less than 1\% up to 28\% are obtained. The influence of the precursor concentration, reaction time and type of additives on the optical properties (UV-Vis absorption, PL emission spectrum and PLQY) is carefully investigated, providing insight into the chemical processes that occur during CND formation. Remarkably, upon freeze-drying the initially brown CND-solution turns into a non-fluorescent white/slightly brown powder which recovers PL in aqueous solution and can potentially be applied as fluorescent marker in bio-imaging, as a reduction agent or as a photocatalyst.}, language = {en} } @phdthesis{Riebe2016, author = {Riebe, Daniel}, title = {Experimental and theoretical investigations of molecular ions by spectroscopy as well as ion mobility and mass spectrometry}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-94632}, school = {Universit{\"a}t Potsdam}, pages = {143}, year = {2016}, abstract = {The aim of this thesis was the elucidation of different ionization methods (resonance-enhanced multiphoton ionization - REMPI, electrospray ionization - ESI, atmospheric pressure chemical ionization - APCI) in ion mobility (IM) spectrometry. In order to gain a better understanding of the ionization processes, several spectroscopic, mass spectrometric and theoretical methods were also used. Another focus was the development of experimental techniques, including a high resolution spectrograph and various combinations of IM and mass spectrometry. The novel high resolution 2D spectrograph facilitates spectroscopic resolutions in the range of commercial echelle spectrographs. The lowest full width at half maximum of a peak achieved was 25 pm. The 2D spectrograph is based on the wavelength separation of light by the combination of a prism and a grating in one dimension, and an etalon in the second dimension. This instrument was successfully employed for the acquisition of Raman and laser-induced breakdown spectra. Different spectroscopic methods (light scattering and fluorescence spectroscopy) permitting a spatial as well as spectral resolution, were used to investigate the release of ions in the electrospray. The investigation is based on the 50 nm shift of the fluorescence band of rhodamine 6G ions of during the transfer from the electrospray droplets to the gas phase. A newly developed ionization chamber operating at reduced pressure (0.5 mbar) was coupled to a time-of-flight mass spectrometer. After REMPI of H2S, an ionization chemistry analogous to H2O was observed with this instrument. Besides H2S+ and its fragments, H3S+ and protonated analyte ions could be observed as a result of proton-transfer reactions. For the elucidation of the peaks in IM spectra, a combination of IM spectrometer and linear quadrupole ion trap mass spectrometer was developed. The instrument can be equipped with various ionization sources (ESI, REMPI, APCI) and was used for the characterization of the peptide bradykinin and the neuroleptic promazine. The ionization of explosive compounds in an APCI source based on soft x-radiation was investigated in a newly developed ionization chamber attached to the ion trap mass spectrometer. The major primary and secondary reactions could be characterized and explosive compound ions could be identified and assigned to the peaks in IM spectra. The assignment is based on the comparison of experimentally determined and calculated IM. The methods of calculation currently available exhibit large deviations, especially in the case of anions. Therefore, on the basis of an assessment of available methods, a novel hybrid method was developed and characterized.}, language = {en} } @misc{DoritiBrosnanWeidneretal.2016, author = {Doriti, Afroditi and Brosnan, Sarah M. and Weidner, Steffen M. and Schlaad, Helmut}, title = {Synthesis of polysarcosine from air and moisture stable N-phenoxycarbonyl-N-methylglycine assisted by tertiary amine base}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95852}, pages = {3067 -- 3070}, year = {2016}, abstract = {Polysarcosine (Mn = 3650-20 000 g mol-1, Đ ∼ 1.1) was synthesized from the air and moisture stable N-phenoxycarbonyl-N-methylglycine. Polymerization was achieved by in situ transformation of the urethane precursor into the corresponding N-methylglycine-N-carboxyanhydride, when in the presence of a non-nucleophilic tertiary amine base and a primary amine initiator.}, language = {en} } @misc{OlejkoCywińskiBald2016, author = {Olejko, Lydia and Cywiński, P. J. and Bald, Ilko}, title = {An ion-controlled four-color fluorescent telomeric switch on DNA origami structures}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95831}, pages = {10339 -- 10347}, year = {2016}, abstract = {The folding of single-stranded telomeric DNA into guanine (G) quadruplexes is a conformational change that plays a major role in sensing and drug targeting. The telomeric DNA can be placed on DNA origami nanostructures to make the folding process extremely selective for K+ ions even in the presence of high Na+ concentrations. Here, we demonstrate that the K+-selective G-quadruplex formation is reversible when using a cryptand to remove K+ from the G-quadruplex. We present a full characterization of the reversible switching between single-stranded telomeric DNA and G-quadruplex structures using F{\"o}rster resonance energy transfer (FRET) between the dyes fluorescein (FAM) and cyanine3 (Cy3). When attached to the DNA origami platform, the G-quadruplex switch can be incorporated into more complex photonic networks, which is demonstrated for a three-color and a four-color FRET cascade from FAM over Cy3 and Cy5 to IRDye700 with G-quadruplex-Cy3 acting as a switchable transmitter.}, language = {en} } @misc{NiedlBerensteinBeta2016, author = {Niedl, Robert Raimund and Berenstein, Igal and Beta, Carsten}, title = {How imperfect mixing and differential diffusion accelerate the rate of nonlinear reactions in microfluidic channels}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95810}, pages = {6451 -- 6457}, year = {2016}, abstract = {In this paper, we show experimentally that inside a microfluidic device, where the reactants are segregated, the reaction rate of an autocatalytic clock reaction is accelerated in comparison to the case where all the reactants are well mixed. We also find that, when mixing is enhanced inside the microfluidic device by introducing obstacles into the flow, the clock reaction becomes slower in comparison to the device where mixing is less efficient. Based on numerical simulations, we show that this effect can be explained by the interplay of nonlinear reaction kinetics (cubic autocatalysis) and differential diffusion, where the autocatalytic species diffuses slower than the substrate.}, language = {en} } @misc{InalKoelschChiappisietal.2013, author = {Inal, Sahika and K{\"o}lsch, Jonas D. and Chiappisi, Leonardo and Janietz, Dietmar and Gradzielski, Michael and Laschewsky, Andr{\´e} and Neher, Dieter}, title = {Structure-related differences in the temperature-regulated fluorescence response of LCST type polymers}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95379}, pages = {6603 -- 6612}, year = {2013}, abstract = {We demonstrate new fluorophore-labelled materials based on acrylamide and on oligo(ethylene glycol) (OEG) bearing thermoresponsive polymers for sensing purposes and investigate their thermally induced solubility transitions. It is found that the emission properties of the polarity-sensitive (solvatochromic) naphthalimide derivative attached to three different thermoresponsive polymers are highly specific to the exact chemical structure of the macromolecule. While the dye emits very weakly below the LCST when incorporated into poly(N-isopropylacrylamide) (pNIPAm) or into a polyacrylate backbone bearing only short OEG side chains, it is strongly emissive in polymethacrylates with longer OEG side chains. Heating of the aqueous solutions above their cloud point provokes an abrupt increase of the fluorescence intensity of the labelled pNIPAm, whereas the emission properties of the dye are rather unaffected as OEG-based polyacrylates and methacrylates undergo phase transition. Correlated with laser light scattering studies, these findings are ascribed to the different degrees of pre-aggregation of the chains at low temperatures and to the extent of dehydration that the phase transition evokes. It is concluded that although the temperature-triggered changes in the macroscopic absorption characteristics, related to large-scale alterations of the polymer chain conformation and aggregation, are well detectable and similar for these LCST-type polymers, the micro-environment provided to the dye within each polymer network differs substantially. Considering sensing applications, this finding is of great importance since the temperature-regulated fluorescence response of the polymer depends more on the macromolecular architecture than the type of reporter fluorophore.}, language = {en} } @misc{LiBabuTurneretal.2013, author = {Li, Hongguang and Babu, Sukumaran Santhosh and Turner, Sarah T. and Neher, Dieter and Hollamby, Martin J. and Seki, Tomohiro and Yagai, Shiki and Deguchi, Yonekazu and M{\"o}hwald, Helmuth and Nakanishi, Takashi}, title = {Alkylated-C60 based soft materials}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95358}, pages = {1943 -- 1951}, year = {2013}, abstract = {Derivatization of fullerene (C60) with branched aliphatic chains softens C60-based materials and enables the formation of thermotropic liquid crystals and room temperature nonvolatile liquids. This work demonstrates that by carefully tuning parameters such as type, number and substituent position of the branched chains, liquid crystalline C60 materials with mesophase temperatures suited for photovoltaic cell fabrication and room temperature nonvolatile liquid fullerenes with tunable viscosity can be obtained. In particular, compound 1, with branched chains, exhibits a smectic liquid crystalline phase extending from 84 °C to room temperature. Analysis of bulk heterojunction (BHJ) organic solar cells with a ca. 100 nm active layer of compound 1 and poly(3-hexylthiophene) (P3HT) as an electron acceptor and an electron donor, respectively, reveals an improved performance (power conversion efficiency, PCE: 1.6 ± 0.1\%) in comparison with another compound, 10 (PCE: 0.5 ± 0.1\%). The latter, in contrast to 1, carries linear aliphatic chains and thus forms a highly ordered solid lamellar phase at room temperature. The solar cell performance of 1 blended with P3HT approaches that of PCBM/P3HT for the same active layer thickness. This indicates that C60 derivatives bearing branched tails are a promising class of electron acceptors in soft (flexible) photovoltaic devices.}, language = {en} } @misc{InalKoelschSellrieetal.2013, author = {Inal, Sahika and K{\"o}lsch, Jonas D. and Sellrie, Frank and Schenk, J{\"o}rg A. and Wischerhoff, Erik and Laschewsky, Andr{\´e} and Neher, Dieter}, title = {A water soluble fluorescent polymer as a dual colour sensor for temperature and a specific protein}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95336}, pages = {6373 -- 6381}, year = {2013}, abstract = {We present two thermoresponsive water soluble copolymers prepared via free radical statistical copolymerization of N-isopropylacrylamide (NIPAm) and of oligo(ethylene glycol) methacrylates (OEGMAs), respectively, with a solvatochromic 7-(diethylamino)-3-carboxy-coumarin (DEAC)- functionalized monomer. In aqueous solutions, the NIPAm-based copolymer exhibits characteristic changes in its fluorescence profile in response to a change in solution temperature as well as to the presence of a specific protein, namely an anti-DEAC antibody. This polymer emits only weakly at low temperatures, but exhibits a marked fluorescence enhancement accompanied by a change in its emission colour when heated above its cloud point. Such drastic changes in the fluorescence and absorbance spectra are observed also upon injection of the anti-DEAC antibody, attributed to the specific binding of the antibody to DEAC moieties. Importantly, protein binding occurs exclusively when the polymer is in the well hydrated state below the cloud point, enabling a temperature control on the molecular recognition event. On the other hand, heating of the polymer-antibody complexes releases a fraction of the bound antibody. In the presence of the DEAC-functionalized monomer in this mixture, the released antibody competitively binds to the monomer and the antibody-free chains of the polymer undergo a more effective collapse and inter-aggregation. In contrast, the emission properties of the OEGMA-based analogous copolymer are rather insensitive to the thermally induced phase transition or to antibody binding. These opposite behaviours underline the need for a carefully tailored molecular design of responsive polymers aimed at specific applications, such as biosensing.}, language = {en} } @misc{MenSiebenbuergerQiuetal.2013, author = {Men, Yongjun and Siebenb{\"u}rger, Miriam and Qiu, Xunlin and Antonietti, Markus and Yuan, Jiayin}, title = {Low fractions of ionic liquid or poly(ionic liquid) can activate polysaccharide biomass into shaped, flexible and fire-retardant porous carbons}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95250}, pages = {11887 -- 11887}, year = {2013}, abstract = {Sugar-based molecules and polysaccharide biomass can be turned into porous functional carbonaceous products at comparably low temperatures of 400 °C under a nitrogen atmosphere in the presence of an ionic liquid (IL) or a poly(ionic liquid) (PIL). The IL and PIL act as "activation agents" with own structural contribution, and effectively promote the conversion and pore generation in the biomaterials even at a rather low doping ratio (7 wt\%). In addition, this "induced carbonization" and pore forming phenomenon enables the preservation of the biotemplate shape to the highest extent and was employed to fabricate shaped porous carbonaceous materials from carbohydrate-based biotemplates, exemplified here with cellulose filter membranes, coffee filter paper and natural cotton. These carbonized hybrids exhibit comparably good mechanical properties, such as bendability of membranes or shape recovery of foams. Moreover, the nitrogen atoms incorporated in the final products from the IL/PIL precursors further improve the oxidation stability in the fire-retardant tests.}, language = {en} } @misc{DiFlorioBruendermannYadavallietal.2013, author = {Di Florio, Giuseppe and Br{\"u}ndermann, Erik and Yadavalli, Nataraja Sekhar and Santer, Svetlana and Havenith, Martina}, title = {Polarized 3D Raman and nanoscale near-field optical microscopy of optically inscribed surface relief gratings}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95233}, pages = {1544 -- 1554}, year = {2013}, abstract = {We have used polarized confocal Raman microspectroscopy and scanning near-field optical microscopy with a resolution of 60 nm to characterize photoinscribed grating structures of azobenzene doped polymer films on a glass support. Polarized Raman microscopy allowed determining the reorientation of the chromophores as a function of the grating phase and penetration depth of the inscribing laser in three dimensions. We found periodic patterns, which are not restricted to the surface alone, but appear also well below the surface in the bulk of the material. Near-field optical microscopy with nanoscale resolution revealed lateral two-dimensional optical contrast, which is not observable by atomic force and Raman microscopy.}, language = {en} } @misc{McQuadeO'BrienDoerretal.2013, author = {McQuade, D. Tyler and O'Brien, Alexander G. and D{\"o}rr, Markus and Rajaratnam, Rajathees and Eisold, Ursula and Monnanda, Bopanna and Nobuta, Tomoya and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Meggers, Eric and Seeberger, Peter H.}, title = {Continuous synthesis of pyridocarbazoles and initial photophysical and bioprobe characterization}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95214}, pages = {4067 -- 4070}, year = {2013}, abstract = {Pyridocarbazoles when ligated to transition metals yield high affinity kinase inhibitors. While batch photocyclizations enable the synthesis of these heterocycles, the non-oxidative Mallory reaction only provides modest yields and difficult to purify mixtures. We demonstrate here that a flow-based Mallory cyclization provides superior results and enables observation of a clear isobestic point. The flow method allowed us to rapidly synthesize ten pyridocarbazoles and for the first time to document their interesting photophysical attributes. Preliminary characterization reveals that these molecules might be a new class of fluorescent bioprobe.}, language = {en} } @misc{TheteRojasNeumeyeretal.2013, author = {Thete, Aniket and Rojas, Oscar and Neumeyer, David and Koetz, Joachim and Dujardin, Erik}, title = {Ionic liquid-assisted morphosynthesis of gold nanorods using polyethyleneimine-capped seeds}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95196}, pages = {14294 -- 14298}, year = {2013}, abstract = {Seed-mediated gold nanorods with tunable lengths are prepared using new polyethyleneimine-capped gold nanoparticles synthesized in ionic liquid. The effect of polyethyleneimine and ionic liquid during nanorod growth is investigated and shows a marked effect on their final aspect ratio.}, language = {en} }