@article{SchmaelzlinMoralejoGersondeetal.2018, author = {Schm{\"a}lzlin, Elmar Gerd and Moralejo, Benito and Gersonde, Ingo and Schleusener, Johannes and Darvin, Maxim E. and Thiede, Gisela and Roth, Martin M.}, title = {Nonscanning large-area Raman imaging for ex vivo/in vivo skin cancer discrimination}, series = {Journal of biomedical optics}, volume = {23}, journal = {Journal of biomedical optics}, number = {10}, publisher = {SPIE}, address = {Bellingham}, issn = {1083-3668}, doi = {10.1117/1.JBO.23.10.105001}, pages = {11}, year = {2018}, abstract = {Imaging Raman spectroscopy can be used to identify cancerous tissue. Traditionally, a step-by-step scanning of the sample is applied to generate a Raman image, which, however, is too slow for routine examination of patients. By transferring the technique of integral field spectroscopy (IFS) from astronomy to Raman imaging, it becomes possible to record entire Raman images quickly within a single exposure, without the need for a tedious scanning procedure. An IFS-based Raman imaging setup is presented, which is capable of measuring skin ex vivo or in vivo. It is demonstrated how Raman images of healthy and cancerous skin biopsies were recorded and analyzed. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.}, language = {en} } @article{MannRahmstorfKornhuberetal.2018, author = {Mann, Michael E. and Rahmstorf, Stefan and Kornhuber, Kai and Steinman, Byron A. and Miller, Sonya K. and Petri, Stefan and Coumou, Dim}, title = {Projected changes in persistent extreme summer weather events}, series = {Science Advances}, volume = {4}, journal = {Science Advances}, number = {10}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {2375-2548}, doi = {10.1126/sciadv.aat3272}, pages = {9}, year = {2018}, abstract = {Persistent episodes of extreme weather in the Northern Hemisphere summer have been associated with high-amplitude quasi-stationary atmospheric Rossby waves, with zonal wave numbers 6 to 8 resulting from the phenomenon of quasi-resonant amplification (QRA). A fingerprint for the occurrence of QRA can be defined in terms of the zonally averaged surface temperature field. Examining state-of-the-art [Coupled Model Intercomparison Project Phase 5 (CMIP5)] climate model projections, we find that QRA events are likely to increase by similar to 50\% this century under business-as-usual carbon emissions, but there is considerable variation among climate models. Some predict a near tripling of QRA events by the end of the century, while others predict a potential decrease. Models with amplified Arctic warming yield the most pronounced increase in QRA events. The projections are strongly dependent on assumptions regarding the nature of changes in radiative forcing associated with anthropogenic aerosols over the next century. One implication of our findings is that a reduction in midlatitude aerosol loading could actually lead to Arctic de-amplification this century, ameliorating potential increases in persistent extreme weather events.}, language = {en} } @article{RichterFoxWakkeretal.2018, author = {Richter, Philipp and Fox, Andrew J. and Wakker, Bart P. and Howk, J. Christopher and Lehner, Nicolas and Barger, Kathleen A. and Lockman, Felix J.}, title = {New constraints on the nature and origin of the leading arm of the magellanic stream}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {865}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aadd0f}, pages = {16}, year = {2018}, abstract = {We present a new precision measurement of gas-phase abundances of S, O, N, Si, Fe, P, Al, Ca as well as molecular hydrogen (H-2) in the Leading Arm (region II, LA II) of the Magellanic Stream (MS) toward the Seyfert galaxy NGC 3783. The results are based on high-quality archival ultraviolet/optical/radio data from various different instruments (HST/STIS, FUSE, AAT, GBT, GB140 ft, ATCA). Our study updates previous results from lower-resolution data and provides for the first time a self-consistent component model of the complex multiphase absorber, delivering important constraints on the nature and origin of LA II. We derive a uniform, moderate a abundance in the two main absorber groups at +245 and +190 km s(-1) of alpha/H = 0.30 +/- 0.05 solar, a low nitrogen abundance of N/H = 0.05 +/- 0.01 solar, and a high dust content with substantial dust depletion values for Si, Fe, Al, and Ca. These a, N, and dust abundances in LA II are similar to those observed in the Small Magellanic Cloud (SMC). From the analysis of the H2 absorption, we determine a high thermal pressure of P/k approximate to 1680 K cm(-3) in LA II, in line with the idea that LA II is located in the inner Milky Way halo at a z-height of < 20 kpc, where it hydrodynamically interacts with the ambient hot coronal gas. Our study supports a scenario in which LA II stems from the breakup of a metal- and dust-enriched progenitor cloud that was recently (200-500 Myr ago) stripped from the SMC.}, language = {en} } @article{vonReppertWilligPudelletal.2018, author = {von Reppert, Alexander and Willig, Lisa and Pudell, Jan-Etienne and Roessle, M. and Leitenberger, Wolfram and Herzog, Marc and Ganss, F. and Hellwig, O. and Bargheer, Matias}, title = {Ultrafast laser generated strain in granular and continuous FePt thin films}, series = {Applied physics letters}, volume = {113}, journal = {Applied physics letters}, number = {12}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0003-6951}, doi = {10.1063/1.5050234}, pages = {5}, year = {2018}, abstract = {We employ ultrafast X-ray diffraction to compare the lattice dynamics of laser-excited continuous and granular FePt films on MgO (100) substrates. Contrary to recent results on free-standing granular films, we observe in both cases a pronounced and long-lasting out-of-plane expansion. We attribute this discrepancy to the in-plane expansion, which is suppressed by symmetry in continuous films. Granular films on substrates are less constrained and already show a reduced out-of-plane contraction. Via the Poisson effect, out-of-plane contractions drive in-plane expansion and vice versa. Consistently, the granular film exhibits a short-lived out-of-plane contraction driven by ultrafast demagnetization which is followed by a reduced and delayed expansion. From the acoustic reflections of the observed strain waves at the film-substrate interface, we extract a 13\% reduction of the elastic constants in thin 10 nm FePt films compared to bulk-like samples. (C) 2018 Author(s).}, language = {en} } @article{ArcherBenbowBirdetal.2018, author = {Archer, A. and Benbow, W. and Bird, R. and Brose, Robert and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Connolly, M. P. and Cui, W. and Daniel, M. K. and Feng, Q. and Finley, J. P. and Fortson, L. and Furniss, A. and Gillanders, G. and Huetten, M. and Hanna, D. and Hervet, O. and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Krennrich, F. and Kumar, S. and Lang, M. J. and Lin, T. T. Y. and Maier, G. and McArthur, S. and Moriarty, P. and Mukherjee, R. and Ong, R. A. and Otte, A. N. and Petrashyk, A. and Pohl, M. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rulten, C. and Sadeh, I. and Santander, M. and Sembroski, G. H. and Staszak, D. and Sushch, I. and Wakely, S. P. and Wells, R. M. and Wilcox, P. and Wilhelm, Alina and Williams, D. A. and Williamson, T. J. and Zitzer, B.}, title = {Measurement of cosmic-ray electrons at TeV energies by VERITAS}, series = {Physical review : D, Particles, fields, gravitation, and cosmology}, volume = {98}, journal = {Physical review : D, Particles, fields, gravitation, and cosmology}, number = {6}, publisher = {American Physical Society}, address = {College Park}, organization = {VERITAS Collaboration}, issn = {2470-0010}, doi = {10.1103/PhysRevD.98.062004}, pages = {7}, year = {2018}, abstract = {Cosmic-ray electrons and positrons (CREs) at GeV-TeV energies are a unique probe of our local Galactic neighborhood. CREs lose energy rapidly via synchrotron radiation and inverse-Compton scattering processes while propagating within the Galaxy, and these losses limit their propagation distance. For electrons with TeV energies, the limit is on the order of a kiloparsec. Within that distance, there are only a few known astrophysical objects capable of accelerating electrons to such high energies. It is also possible that the CREs are the products of the annihilation or decay of heavy dark matter (DM) particles. VERITAS, an array of imaging air Cherenkov telescopes in southern Arizona, is primarily utilized for gamma-ray astronomy but also simultaneously collects CREs during all observations. We describe our methods of identifying CREs in VERITAS data and present an energy spectrum, extending from 300 GeV to 5 TeV, obtained from approximately 300 hours of observations. A single power-law fit is ruled out in VERITAS data. We find that the spectrum of CREs is consistent with a broken power law, with a break energy at 710 +/- 40(stat) +/- 140(syst) GeV.}, language = {en} } @article{GonzalezManriqueKuckeinColladosetal.2018, author = {Gonzalez Manrique, Sergio Javier and Kuckein, Christoph and Collados, M. and Denker, Carsten and Solanki, S. K. and Gomory, P. and Verma, Meetu and Balthasar, H. and Lagg, A. and Diercke, Andrea}, title = {Temporal evolution of arch filaments as seen in He I 10 830 angstrom}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {617}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201832684}, pages = {11}, year = {2018}, abstract = {Aims. We study the evolution of an arch filament system (AFS) and of its individual arch filaments to learn about the processes occurring in them. Methods. We observed the AFS at the GREGOR solar telescope on Tenerife at high cadence with the very fast spectroscopic mode of the GREGOR Infrared Spectrograph (GRIS) in the He I 10 830 angstrom spectral range. The He I triplet profiles were fitted with analytic functions to infer line-of-sight (LOS) velocities to follow plasma motions within the AFS. Results. We tracked the temporal evolution of an individual arch filament over its entire lifetime, as seen in the He I 10 830 angstrom triplet. The arch filament expanded in height and extended in length from 13 ' to 21 '. The lifetime of this arch filament is about 30 min. About 11 min after the arch filament is seen in He I, the loop top starts to rise with an average Doppler velocity of 6 km s(-1). Only two minutes later, plasma drains down with supersonic velocities towards the footpoints reaching a peak velocity of up to 40 km s(-1) in the chromosphere. The temporal evolution of He I 10 830 angstrom profiles near the leading pore showed almost ubiquitous dual red components of the He I triplet, indicating strong downflows, along with material nearly at rest within the same resolution element during the whole observing time.}, language = {en} } @article{BrueggerGobetSigletal.2018, author = {Br{\"u}gger, Sandra Olivia and Gobet, Erika and Sigl, Michael and Osmont, Dimitri and Papina, Tatyana and Rudaya, Natalia and Schwikowski-Gigar, Margit and Tinner, Willy}, title = {Ice records provide new insights into climatic vulnerability of Central Asian forest and steppe communities}, series = {Global and planetary change}, volume = {169}, journal = {Global and planetary change}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0921-8181}, doi = {10.1016/j.gloplacha.2018.07.010}, pages = {188 -- 201}, year = {2018}, abstract = {Forest and steppe communities in the Altai region of Central Asia are threatened by changing climate and anthropogenic pressure. Specifically, increasing drought and grazing pressure may cause collapses of moisture-demanding plant communities, particularly forests. Knowledge about past vegetation and fire responses to climate and land use changes may help anticipating future ecosystem risks, given that it has the potential to disclose mechanisms and processes that govern ecosystem vulnerability. We present a unique paleoecological record from the high-alpine Tsambagarav glacier in the Mongolian Altai that provides novel large-scale information on vegetation, fire and pollution with an exceptional temporal resolution and precision. Our palynological record identifies several late-Holocene boreal forest expansions, contractions and subsequent recoveries. Maximum forest expansions occurred at 3000-2800 BC, 2400-2100 BC, and 1900-1800 BC. After 1800 BC mixed boreal forest communities irrecoverably declined. Fires reached a maximum at 1600 BC, 200 years after the final forest collapse. Our multiproxy data suggest that burning peaked in response to dead biomass accumulation resulting from forest diebacks. Vegetation and fire regimes partly decoupled from climate after 1700 AD, when atmospheric industrial pollution began, and land use intensified. We conclude that moisture availability was more important than temperature for past vegetation dynamics, in particular for forest loss and steppe expansion. The past Mongolian Altai evidence implies that in the future forests of the Russian Altai may collapse in response to reduced moisture availability.}, language = {en} } @article{RamiaramanantsoaRatnasingamShenaretal.2018, author = {Ramiaramanantsoa, Tahina and Ratnasingam, Rathish and Shenar, Tomer and Moffat, Anthony F. J. and Rogers, Tamara M. and Popowicz, Adam and Kuschnig, Rainer and Pigulski, Andrzej and Handler, Gerald and Wade, Gregg A. and Zwintz, Konstanze and Weiss, Werner W.}, title = {A BRITE view on the massive O-type supergiant V973 Scorpii}, series = {Monthly notices of the Royal Astronomical Society}, volume = {480}, journal = {Monthly notices of the Royal Astronomical Society}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/sty1897}, pages = {972 -- 986}, year = {2018}, abstract = {Stochastically triggered photospheric light variations reaching similar to 40 mmag peak-to-valley amplitudes have been detected in the O8 Iaf supergiant V973 Scorpii as the outcome of 2 months of high-precision time-resolved photometric observations with the BRIght Target Explorer (BRITE) nanosatellites. The amplitude spectrum of the time series photometry exhibits a pronounced broad bump in the low-frequency regime (less than or similar to 0.9 d(-1)) where several prominent frequencies are detected. A time-frequency analysis of the observations reveals typical mode lifetimes of the order of 5-10 d. The overall features of the observed brightness amplitude spectrum of V973 Sco match well with those extrapolated from two-dimensional hydrodynamical simulations of convectively driven internal gravity waves randomly excited from deep in the convective cores of massive stars. An alternative or additional possible source of excitation from a sub-surface convection zone needs to be explored in future theoretical investigations.}, language = {en} } @article{ReindlGeierOstensen2018, author = {Reindl, Nicole and Geier, Stephan Alfred and Ostensen, R. H.}, title = {Discovery of two bright DO-type white dwarfs}, series = {Monthly notices of the Royal Astronomical Society}, volume = {480}, journal = {Monthly notices of the Royal Astronomical Society}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/sty1875}, pages = {1211 -- 1217}, year = {2018}, abstract = {We discovered two bright DO-type white dwarfs, GALEXJ053628.3+544854 (J0536+5448) and GALEXJ231128.0+292935(J2311+2929), which rank among the eight brightest DO-type white dwarfs known. Our non-LTE model atmosphere analysis reveals effective temperatures and surface gravities of T-eff = 80000 +/- 4600K and log g = 8.25 +/- 0.15 for J0536+5448 and T-eff = 69400 +/- 900K and log g = 7.80 +/- 0.06 for J2311+2929. The latter shows a significant amount of carbon in its atmosphere (C = 0.003(-0.002)(+0.005), by mass), while for J0536+5448 we could derive only an upper limit of C < 0.003. Furthermore, we calculated spectroscopic distances for the two stars and found a good agreement with the distances derived from the Gaia parallaxes.}, language = {en} } @article{RobradeOskinovaSchmittetal.2018, author = {Robrade, Jan and Oskinova, Lida and Schmitt, J. H. M. M. and Leto, Paolo and Trigilio, C.}, title = {Outstanding X-ray emission from the stellar radio pulsar CU Virginis}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {619}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201833492}, pages = {6}, year = {2018}, abstract = {Context. Among the intermediate-mass magnetic chemically peculiar (MCP) stars, CU Vir is one of the most intriguing objects. Its 100\% circularly polarized beams of radio emission sweep the Earth as the star rotates, thereby making this strongly magnetic star the prototype of a class of nondegenerate stellar radio pulsars. While CU Vir is well studied in radio, its high-energy properties are not known. Yet, X-ray emission is expected from stellar magnetospheres and confined stellar winds. Aims. Using X-ray data we aim to test CU Vir for intrinsic X-ray emission and investigate mechanisms responsible for its generation. Methods. We present X-ray observations performed with XMM-Newton and Chandra and study obtained X-ray images, light curves, and spectra. Basic X-ray properties are derived from spectral modelling and are compared with model predictions. In this context we investigate potential thermal and nonthermal X-ray emission scenarios. Results. We detect an X-ray source at the position of CU Vir. With LX approximate to 3 x 10(28) erg s(-1) it is moderately X-ray bright, but the spectrum is extremely hard compared to other Ap stars. Spectral modelling requires multi-component models with predominant hot plasma at temperatures of about T-X = 25MK or, alternatively, a nonthermal spectral component. Both types of model provide a virtually equivalent description of the X-ray spectra. The Chandra observation was performed six years later than those by XMM-Newton, yet the source has similar X-ray flux and spectrum, suggesting a steady and persistent X-ray emission. This is further confirmed by the X-ray light curves that show only mild X-ray variability. Conclusions. CU Vir is also an exceptional star at X-ray energies. To explain its full X-ray properties, a generating mechanism beyond standard explanations, like the presence of a low-mass companion or magnetically confined wind-shocks, is required. Magnetospheric activity might be present or, as proposed for fast-rotating strongly magnetic Bp stars, the X-ray emission of CU Vir is predominantly auroral in nature.}, language = {en} } @article{RychkovAltafim2018, author = {Rychkov, Dmitry and Altafim, Ruy Alberto Pisani}, title = {Template-based fluoroethylenepropylene ferroelectrets with enhanced thermal stability of piezoelectricity}, series = {Journal of applied physics}, volume = {124}, journal = {Journal of applied physics}, number = {17}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-8979}, doi = {10.1063/1.5041374}, pages = {5}, year = {2018}, abstract = {In ferroelectrets, the piezoelectricity stems from the charges of both polarities trapped on the inner surfaces of the cavities in the material, so that its thermal stability is defined by the stability of the respective charges. In the present work, a template-based lamination technique has been employed to fabricate tubular-channel ferroelectrets from fluoroethylenepropylene (FEP) films. It has been shown that the piezoelectricity in FEP ferroelectrets decays at relatively low temperatures due to the inherently lower thermal stability of the positive charge. In order to improve charge trapping, we have treated both FEP films and inner surfaces of the ferroelectret cavities with titanium-tetrachloride vapor, using the atomic-layer-deposition technique. Using surface-potential-decay measurements on FEP films, we have found that the charge-decay curves shift by more than 100 degrees C to the higher temperatures as a result of the surface treatment. Direct measurements of piezoelectric d(33) coefficients as a function of temperature have shown that the piezoelectric stability is likewise improved with the d(33)-decay curves shifted by 60 degrees C to the right. The improvement of electret/ferroelectret properties can be attributed to the formation of the deeper traps on the chemically modified FEP surface. SEM micrographs and EDS analysis reveal island-like structures with titanium- and oxygen-containing species that can be responsible for the deeper trapping of the electret charges. Published by AIP Publishing.}, language = {en} } @article{AgarwalMaheswaranMarwanetal.2018, author = {Agarwal, Ankit and Maheswaran, Rathinasamy and Marwan, Norbert and Caesar, Levke and Kurths, J{\"u}rgen}, title = {Wavelet-based multiscale similarity measure for complex networks}, series = {The European physical journal : B, Condensed matter and complex systems}, volume = {91}, journal = {The European physical journal : B, Condensed matter and complex systems}, number = {11}, publisher = {Springer}, address = {New York}, issn = {1434-6028}, doi = {10.1140/epjb/e2018-90460-6}, pages = {12}, year = {2018}, abstract = {In recent years, complex network analysis facilitated the identification of universal and unexpected patterns in complex climate systems. However, the analysis and representation of a multiscale complex relationship that exists in the global climate system are limited. A logical first step in addressing this issue is to construct multiple networks over different timescales. Therefore, we propose to apply the wavelet multiscale correlation (WMC) similarity measure, which is a combination of two state-of-the-art methods, viz. wavelet and Pearson's correlation, for investigating multiscale processes through complex networks. Firstly we decompose the data over different timescales using the wavelet approach and subsequently construct a corresponding network by Pearson's correlation. The proposed approach is illustrated and tested on two synthetics and one real-world example. The first synthetic case study shows the efficacy of the proposed approach to unravel scale-specific connections, which are often undiscovered at a single scale. The second synthetic case study illustrates that by dividing and constructing a separate network for each time window we can detect significant changes in the signal structure. The real-world example investigates the behavior of the global sea surface temperature (SST) network at different timescales. Intriguingly, we notice that spatial dependent structure in SST evolves temporally. Overall, the proposed measure has an immense potential to provide essential insights on understanding and extending complex multivariate process studies at multiple scales.}, language = {en} } @article{SposiniChechkinMetzler2018, author = {Sposini, Vittoria and Chechkin, Aleksei V. and Metzler, Ralf}, title = {First passage statistics for diffusing diffusivity}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {52}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {4}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8121/aaf6ff}, pages = {11}, year = {2018}, abstract = {A rapidly increasing number of systems is identified in which the stochastic motion of tracer particles follows the Brownian law < r(2)(t)> similar or equal to Dt yet the distribution of particle displacements is strongly non-Gaussian. A central approach to describe this effect is the diffusing diffusivity (DD) model in which the diffusion coefficient itself is a stochastic quantity, mimicking heterogeneities of the environment encountered by the tracer particle on its path. We here quantify in terms of analytical and numerical approaches the first passage behaviour of the DD model. We observe significant modifications compared to Brownian-Gaussian diffusion, in particular that the DD model may have a faster first passage dynamics. Moreover we find a universal crossover point of the survival probability independent of the initial condition.}, language = {en} } @article{JonscherFlemmingSchmittetal.2018, author = {Jonscher, Ernst and Flemming, Sven and Schmitt, Marius and Sabitzki, Ricarda and Reichard, Nick and Birnbaum, Jakob and Bergmann, B{\"a}rbel and H{\"o}hn, Katharina and Spielmann, Tobias}, title = {PfVPS45 Is Required for Host Cell Cytosol Uptake by Malaria Blood Stage Parasites}, series = {Cell host \& microbe}, volume = {25}, journal = {Cell host \& microbe}, number = {1}, publisher = {Cell Press}, address = {Cambridge}, issn = {1931-3128}, doi = {10.1016/j.chom.2018.11.010}, pages = {166 -- 173}, year = {2018}, abstract = {During development in human erythrocytes, the malaria parasite Plasmodium falciparum internalizes a large part of the cellular content of the host cell. The internalized cytosol, consisting largely of hemoglobin, is transported to the parasite's food vacuole where it is degraded, providing nutrients and space for growth. This host cell cytosol uptake (HCCU) is crucial for parasite survival but the parasite proteins mediating this process remain obscure. Here, we identify P. falciparum VPS45 as an essential factor in HCCU. Conditional inactivation of PfVPS45 led to an accumulation of host cell cytosol-filled vesicles within the parasite and inhibited the delivery of hemoglobin to the parasite's digestive vacuole, resulting in arrested parasite growth. A proportion of these HCCU vesicle intermediates was positive for phosphatidylinositol 3-phosphate, suggesting endosomal characteristics. Thus PfVPS45 provides insight into the elusive machinery of the ingestion pathway in a parasite that contains an endolysosomal system heavily repurposed for protein secretion.}, language = {en} } @article{DybiecCapalaChechkinetal.2018, author = {Dybiec, Bartlomiej and Capala, Karol and Chechkin, Aleksei V. and Metzler, Ralf}, title = {Conservative random walks in confining potentials}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {52}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8121/aaefc2}, pages = {25}, year = {2018}, abstract = {Levy walks are continuous time random walks with spatio-temporal coupling of jump lengths and waiting times, often used to model superdiffusive spreading processes such as animals searching for food, tracer motion in weakly chaotic systems, or even the dynamics in quantum systems such as cold atoms. In the simplest version Levy walks move with a finite speed. Here, we present an extension of the Levy walk scenario for the case when external force fields influence the motion. The resulting motion is a combination of the response to the deterministic force acting on the particle, changing its velocity according to the principle of total energy conservation, and random velocity reversals governed by the distribution of waiting times. For the fact that the motion stays conservative, that is, on a constant energy surface, our scenario is fundamentally different from thermal motion in the same external potentials. In particular, we present results for the velocity and position distributions for single well potentials of different steepness. The observed dynamics with its continuous velocity changes enriches the theory of Levy walk processes and will be of use in a variety of systems, for which the particles are externally confined.}, language = {en} } @article{SandevTomovskiDubbeldametal.2018, author = {Sandev, Trifce and Tomovski, Zivorad and Dubbeldam, Johan L. A. and Chechkin, Aleksei V.}, title = {Generalized diffusion-wave equation with memory kernel}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {52}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8121/aaefa3}, pages = {22}, year = {2018}, abstract = {We study generalized diffusion-wave equation in which the second order time derivative is replaced by an integro-differential operator. It yields time fractional and distributed order time fractional diffusion-wave equations as particular cases. We consider different memory kernels of the integro-differential operator, derive corresponding fundamental solutions, specify the conditions of their non-negativity and calculate the mean squared displacement for all cases. In particular, we introduce and study generalized diffusion-wave equations with a regularized Prabhakar derivative of single and distributed orders. The equations considered can be used for modeling the broad spectrum of anomalous diffusion processes and various transitions between different diffusion regimes.}, language = {en} } @misc{LewandowskyCowtanRisbeyetal.2018, author = {Lewandowsky, Stephan and Cowtan, Kevin and Risbey, James S. and Mann, Michael E. and Steinman, Byron A. and Oreskes, Naomi and Rahmstorf, Stefan}, title = {The 'pause' in global warming in historical context}, series = {Environmental research letters}, volume = {13}, journal = {Environmental research letters}, number = {12}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/aaf372}, pages = {25}, year = {2018}, abstract = {We review the evidence for a putative early 21st-century divergence between global mean surface temperature (GMST) and Coupled Model Intercomparison Project Phase 5 (CMIP5) projections. We provide a systematic comparison between temperatures and projections using historical versions of GMST products and historical versions of model projections that existed at the times when claims about a divergence were made. The comparisons are conducted with a variety of statistical techniques that correct for problems in previous work, including using continuous trends and a Monte Carlo approach to simulate internal variability. The results show that there is no robust statistical evidence for a divergence between models and observations. The impression of a divergence early in the 21st century was caused by various biases in model interpretation and in the observations, and was unsupported by robust statistics.}, language = {en} } @article{LatourRandallCalamidaetal.2018, author = {Latour, Marilyn and Randall, Suzanna K. and Calamida, Annalisa and Geier, Stephan Alfred and Moehler, Sabine}, title = {The ultimate spectroscopic census of extreme horizontal branch stars in omega Centauri}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {618}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201833129}, pages = {26}, year = {2018}, abstract = {The presence of extreme horizontal branch (EHB) and blue hook stars in some Galactic globular clusters (GGCs) constitutes one of the remaining mysteries of stellar evolution. While several evolutionary scenarios have been proposed to explain the characteristics of this peculiar population of evolved stars, their observational verification has been limited by the availability of spectroscopic data for a statistically significant sample of such objects in any single GGC. We recently launched the SHOTGLAS project with the aim of providing a comprehensive picture of this intriguing stellar population in terms of spectroscopic properties for all readily accessible GGCs hosting an EHB. In this first paper, we focus on omega Cen, a peculiar, massive GGC that hosts multiple stellar populations. We use non-LTE model atmospheres to derive atmospheric parameters (Te ff, log g and N(He) / N(H)) and spectroscopic masses for 152 EHB stars in the cluster. This constitutes the largest spectroscopic sample of EHB stars ever analyzed in a GGC and represents similar to 20\% of the EHB population of omega Cen. We also search for close binaries among these stars based on radial velocity variations. Our results show that the EHB population of omega Cen is divided into three spectroscopic groups that are very distinct in the Te ff helium abundance plane. The coolest sdB-type stars (Te ff. 30 000 K) have a hydrogen-rich atmosphere, populate the theoretical EHB region in the Te ff log g plane, and form 26\% of our sample. The hottest sdO-type stars (Te ff \& 42 000 K) make up 10\% of the sample, have a hydrogen-rich atmosphere and are thought to be in a post-EHB evolutionary phase. The majority of our sample is found at intermediate temperatures and consists of sdOB stars that have roughly solar or super-solar atmospheric helium abundances. It is these objects that constitute the blue hook at V > 18 : 5 mag in the omega Cen color-magnitude diagram. Interestingly, the helium-enriched sdOBs do not have a significant counterpart population in the Galactic field, indicating that their formation is dependent on the particular environment found in omega Cen and other select GGCs. Another major di ff erence between the EHB stars in omega Cen and the field is the fraction of close binaries. From our radial velocity survey we identify two binary candidates, however no orbital solutions could be determined. We estimate an EHB close binary fraction of similar to 5\% in omega Cen. This low fraction is in line with findings for other GGCs, but in sharp contrast to the situation in the field, where around 50\% of the sdB stars reside in close binaries. Finally, the mass distribution derived is very similar for all three spectroscopic groups, however the average mass (0.38 M fi) is lower than that expected from stellar evolution theory. While this mass conundrum has previously been noted for EHB stars in omega Cen, it so far appears to be unique to that cluster.}, language = {en} } @article{Goychuk2018, author = {Goychuk, Igor}, title = {Viscoelastic subdiffusion in a random Gaussian environment}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {20}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {37}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c8cp05238g}, pages = {24140 -- 24155}, year = {2018}, abstract = {Viscoelastic subdiffusion governed by a fractional Langevin equation is studied numerically in a random Gaussian environment modeled by stationary Gaussian potentials with decaying spatial correlations. This anomalous diffusion is archetypal for living cells, where cytoplasm is known to be viscoelastic and a spatial disorder also naturally emerges. We obtain some first important insights into it within a model one-dimensional study. Two basic types of potential correlations are studied: short-range exponentially decaying and algebraically slow decaying with an infinite correlation length, both for a moderate (several kBT, in the units of thermal energy), and strong (5-10kBT) disorder. For a moderate disorder, it is shown that on the ensemble level viscoelastic subdiffusion can easily overcome the medium's disorder. Asymptotically, it is not distinguishable from the disorder-free subdiffusion. However, a strong scatter in single-trajectory averages is nevertheless seen even for a moderate disorder. It features a weak ergodicity breaking, which occurs on a very long yet transient time scale. Furthermore, for a strong disorder, a very long transient regime of logarithmic, Sinai-type diffusion emerges. It can last longer and be faster in the absolute terms for weakly decaying correlations as compared with the short-range correlations. Residence time distributions in a finite spatial domain are of a generalized log-normal type and are reminiscent also of a stretched exponential distribution. They can be easily confused for power-law distributions in view of the observed weak ergodicity breaking. This suggests a revision of some experimental data and their interpretation.}, language = {en} } @misc{RisbeyLewandowskyCowtanetal.2018, author = {Risbey, James S. and Lewandowsky, Stephan and Cowtan, Kevin and Oreskes, Naomi and Rahmstorf, Stefan and Jokim{\"a}ki, Ari and Foster, Grant}, title = {A fluctuation in surface temperature in historical context}, series = {Environmental research letters}, volume = {13}, journal = {Environmental research letters}, number = {12}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/aaf342}, pages = {23}, year = {2018}, abstract = {This work reviews the literature on an alleged global warming 'pause' in global mean surface temperature (GMST) to determine how it has been defined, what time intervals are used to characterise it, what data are used to measure it, and what methods used to assess it. We test for 'pauses', both in the normally understood meaning of the term to mean no warming trend, as well as for a 'pause' defined as a substantially slower trend in GMST. The tests are carried out with the historical versions of GMST that existed for each pause-interval tested, and with current versions of each of the GMST datasets. The tests are conducted following the common (but questionable) practice of breaking the linear fit at the start of the trend interval ('broken' trends), and also with trends that are continuous with the data bordering the trend interval. We also compare results when appropriate allowance is made for the selection bias problem. The results show that there is little or no statistical evidence for a lack of trend or slower trend in GMST using either the historical data or the current data. The perception that there was a 'pause' in GMST was bolstered by earlier biases in the data in combination with incomplete statistical testing.}, language = {en} } @article{BaranOstensenTeltingetal.2018, author = {Baran, Andrzej S. and Ostensen, R. H. and Telting, J. H. and Vos, Joris and Kilkenny, D. and Vuckovic, Maja and Reed, M. D. and Silvotti, R. and Jeffery, C. Simon and Parsons, Steven G. and Dhillon, V. S. and Marsh, T. R.}, title = {Pulsations and eclipse-time analysis of HW Vir}, series = {Monthly notices of the Royal Astronomical Society}, volume = {481}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/sty2473}, pages = {2721 -- 2735}, year = {2018}, abstract = {We analysed recent K2 data of the short-period eclipsing binary system HW Vir, which consists of a hot subdwarf-B type primary with an M-dwarf companion. We determined the mid-times of eclipses, calculated O-C diagrams, and an average shift of the secondary minimum. Our results show that the orbital period is stable within the errors over the course of the 70 days of observations. Interestingly, the offset from mid-orbital phase between the primary and the secondary eclipses is found to be 1.62 s. If the shift is explained solely by light-travel time, the mass of the sdB primary must be 0.26 M-circle dot, which is too low for the star to be core-helium burning. However, we argue that this result is unlikely to be correct and that a number of effects caused by the relative sizes of the stars conspire to reduce the effective light-travel time measurement. After removing the flux variation caused by the orbit, we calculated the amplitude spectrum to search for pulsations. The spectrum clearly shows periodic signal from close to the orbital frequency up to 4600 mu Hz, with the majority of peaks found below 2600 mu Hz. The amplitudes are below 0.1 part-per-thousand, too low to be detected with ground-based photometry. Thus, the high-precision data from the Kepler spacecraft has revealed that the primary of the HW Vir system is a pulsating sdBV star. We argue that the pulsation spectrum of the primary in HW Vir differs from that in other sdB stars due to its relatively fast rotation that is (nearly) phase-locked with the orbit.}, language = {en} } @article{GajdaWylomanskaKantzetal.2018, author = {Gajda, J. and Wylomanska, Agnieszka and Kantz, Holger and Chechkin, Aleksei V. and Sikora, Grzegorz}, title = {Large deviations of time-averaged statistics for Gaussian processes}, series = {Statistics \& Probability Letters}, volume = {143}, journal = {Statistics \& Probability Letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0167-7152}, doi = {10.1016/j.spl.2018.07.013}, pages = {47 -- 55}, year = {2018}, abstract = {In this paper we study the large deviations of time averaged mean square displacement (TAMSD) for Gaussian processes. The theory of large deviations is related to the exponential decay of probabilities of large fluctuations in random systems. From the mathematical point of view a given statistics satisfies the large deviation principle, if the probability that it belongs to a certain range decreases exponentially. The TAMSD is one of the main statistics used in the problem of anomalous diffusion detection. Applying the theory of generalized chi-squared distribution and sub-gamma random variables we prove the upper bound for large deviations of TAMSD for Gaussian processes. As a special case we consider fractional Brownian motion, one of the most popular models of anomalous diffusion. Moreover, we derive the upper bound for large deviations of the estimator for the anomalous diffusion exponent. (C) 2018 Elsevier B.V. All rights reserved.}, language = {en} } @article{RousseauErardBecketal.2018, author = {Rousseau, Batiste and Erard, St{\´e}phane and Beck, P. and Quirico, Eric and Schmitt, B. and Brissaud, O. and Montes-Hernandez, G. and Capaccioni, F. and Filacchione, Gianrico and Bockelee-Morvan, Dominique and Leyrat, C. and Ciarniello, M. and Raponi, Andrea and Kappel, David and Arnold, G. and Moroz, L. V. and Palomba, Ernesto and Tosi, Federico}, title = {Laboratory simulations of the Vis-NIR spectra of comet 67P using sub-mu m sized cosmochemical analogues}, series = {Icarus : international journal of solar system studies}, volume = {306}, journal = {Icarus : international journal of solar system studies}, publisher = {Elsevier}, address = {San Diego}, organization = {VIRTIS Team}, issn = {0019-1035}, doi = {10.1016/j.icarus.2017.10.015}, pages = {306 -- 318}, year = {2018}, abstract = {Laboratory spectral measurements of relevant analogue materials were performed in the framework of the Rosetta mission in order to explain the surface spectral properties of comet 67P. Fine powders of coal, iron sulphides, silicates and their mixtures were prepared and their spectra measured in the Vis-IR range. These spectra are compared to a reference spectrum of 67P nucleus obtained with the VIRTIS/Rosetta instrument up to 2.7 mu m, excluding the organics band centred at 3.2 mu m. The species used are known to be chemical analogues for cometary materials which could be present at the surface of 67P. Grain sizes of the powders range from tens of nanometres to hundreds of micrometres. Some of the mixtures studied here actually reach the very low reflectance level observed by VIRTIS on 67P. The best match is provided by a mixture of sub-micron coal, pyrrhotite, and silicates. Grain sizes are in agreement with the sizes of the dust particles detected by the GIADA, MIDAS and COSIMA instruments on board Rosetta. The coal used in the experiment is responsible for the spectral slope in the visible and infrared ranges. Pyrrhotite, which is strongly absorbing, is responsible for the low albedo observed in the NIR. The darkest components dominate the spectra, especially within intimate mixtures. Depending on sample preparation, pyrrhotite can coat the coal and silicate aggregates. Such coating effects can affect the spectra as much as particle size. In contrast, silicates seem to play a minor role. (c) 2017 Elsevier Inc. All rights reserved.}, language = {en} } @article{HouCherstvyMetzleretal.2018, author = {Hou, Ru and Cherstvy, Andrey G. and Metzler, Ralf and Akimoto, Takuma}, title = {Biased continuous-time random walks for ordinary and equilibrium cases}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {20}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {32}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c8cp01863d}, pages = {20827 -- 20848}, year = {2018}, abstract = {We examine renewal processes with power-law waiting time distributions (WTDs) and non-zero drift via computing analytically and by computer simulations their ensemble and time averaged spreading characteristics. All possible values of the scaling exponent alpha are considered for the WTD psi(t) similar to 1/t(1+alpha). We treat continuous-time random walks (CTRWs) with 0 < alpha < 1 for which the mean waiting time diverges, and investigate the behaviour of the process for both ordinary and equilibrium CTRWs for 1 < alpha < 2 and alpha > 2. We demonstrate that in the presence of a drift CTRWs with alpha < 1 are ageing and non-ergodic in the sense of the non-equivalence of their ensemble and time averaged displacement characteristics in the limit of lag times much shorter than the trajectory length. In the sense of the equivalence of ensemble and time averages, CTRW processes with 1 < alpha < 2 are ergodic for the equilibrium and non-ergodic for the ordinary situation. Lastly, CTRW renewal processes with alpha > 2-both for the equilibrium and ordinary situation-are always ergodic. For the situations 1 < alpha < 2 and alpha > 2 the variance of the diffusion process, however, depends on the initial ensemble. For biased CTRWs with alpha > 1 we also investigate the behaviour of the ergodicity breaking parameter. In addition, we demonstrate that for biased CTRWs the Einstein relation is valid on the level of the ensemble and time averaged displacements, in the entire range of the WTD exponent alpha.}, language = {en} } @article{CherstvyThapaMardoukhietal.2018, author = {Cherstvy, Andrey G. and Thapa, Samudrajit and Mardoukhi, Yousof and Chechkin, Aleksei V. and Metzler, Ralf}, title = {Time averages and their statistical variation for the Ornstein-Uhlenbeck process}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {98}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {2}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.98.022134}, pages = {15}, year = {2018}, abstract = {How ergodic is diffusion under harmonic confinements? How strongly do ensemble- and time-averaged displacements differ for a thermally-agitated particle performing confined motion for different initial conditions? We here study these questions for the generic Ornstein-Uhlenbeck (OU) process and derive the analytical expressions for the second and fourth moment. These quantifiers are particularly relevant for the increasing number of single-particle tracking experiments using optical traps. For a fixed starting position, we discuss the definitions underlying the ensemble averages. We also quantify effects of equilibrium and nonequilibrium initial particle distributions onto the relaxation properties and emerging nonequivalence of the ensemble- and time-averaged displacements (even in the limit of long trajectories). We derive analytical expressions for the ergodicity breaking parameter quantifying the amplitude scatter of individual time-averaged trajectories, both for equilibrium and outof-equilibrium initial particle positions, in the entire range of lag times. Our analytical predictions are in excellent agreement with results of computer simulations of the Langevin equation in a parabolic potential. We also examine the validity of the Einstein relation for the ensemble- and time-averaged moments of the OU-particle. Some physical systems, in which the relaxation and nonergodic features we unveiled may be observable, are discussed.}, language = {en} } @article{SchaererIzotovNakajimaetal.2018, author = {Schaerer, Daniel and Izotov, Yuri I. and Nakajima, K. and Worseck, Gabor and Chisholm, J. and Verhamme, A. and Thuan, T. X. and de Barros, S.}, title = {Intense C III] lambda lambda 1907,1909 emission from a strong Lyman continuum emitting galaxy}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {616}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201833823}, pages = {5}, year = {2018}, abstract = {We have obtained the first complete ultraviolet (UV) spectrum of a strong Lyman continuum (LyC) emitter at low redshift - the compact, low-metallicity, star-forming galaxy J1154+2443 - with a Lyman continuum escape fraction of 46\% discovered recently. The Space Telescope Imaging Spectrograph spectrum shows strong Ly alpha and C III] lambda 1909 emission, as well as O III] lambda 1666. Our observations show that strong LyC emitters can have UV emission lines with a high equivalent width (e.g. EW(C III]) = 11.7 +/- 2.9 angstrom rest-frame), although their equivalent widths should be reduced due to the loss of ionizing photons. The intrinsic ionizing photon production efficiency of J1154+2443 is high, log(xi(0)(ion)) = 25.56 erg(-1) Hz, comparable to that of other recently discovered z similar to 0.3-0.4 LyC emitters. Combining our measurements and earlier determinations from the literature, we find a trend of increasing xi(0)(ion) with increasing C III] lambda 1909 equivalent width, which can be understood by a combination of decreasing stellar population age and metallicity. Simple ionization and density-bounded photoionization models can explain the main observational features including the UV spectrum of J1154+2443.}, language = {en} } @article{AlonsoStangeBeta2018, author = {Alonso, Sergio and Stange, Mai Ke and Beta, Carsten}, title = {Modeling random crawling, membrane deformation and intracellular polarity of motile amoeboid cells}, series = {PLoS one}, volume = {13}, journal = {PLoS one}, number = {8}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0201977}, pages = {22}, year = {2018}, abstract = {Amoeboid movement is one of the most widespread forms of cell motility that plays a key role in numerous biological contexts. While many aspects of this process are well investigated, the large cell-to-cell variability in the motile characteristics of an otherwise uniform population remains an open question that was largely ignored by previous models. In this article, we present a mathematical model of amoeboid motility that combines noisy bistable kinetics with a dynamic phase field for the cell shape. To capture cell-to-cell variability, we introduce a single parameter for tuning the balance between polarity formation and intracellular noise. We compare numerical simulations of our model to experiments with the social amoeba Dictyostelium discoideum. Despite the simple structure of our model, we found close agreement with the experimental results for the center-of-mass motion as well as for the evolution of the cell shape and the overall intracellular patterns. We thus conjecture that the building blocks of our model capture essential features of amoeboid motility and may serve as a starting point for more detailed descriptions of cell motion in chemical gradients and confined environments.}, language = {en} } @article{BattistoniDuerrGuehretal.2018, author = {Battistoni, A. and D{\"u}rr, H. A. and G{\"u}hr, Markus and Wolf, Thomas J. A.}, title = {A tilted pulse-front setup for femtosecond transient grating spectroscopy in highly non-collinear geometries}, series = {Journal of optics}, volume = {20}, journal = {Journal of optics}, number = {9}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2040-8978}, doi = {10.1088/2040-8986/aad60a}, pages = {5}, year = {2018}, abstract = {We demonstrate a tilted pulse-front transient grating (TG) technique that allows to optimally utilize time resolution as well as TG line density while probing under grazing incidence as typically done in extreme ultraviolet (EUV) or soft x-ray (SXR) experiments. Our optical setup adapts the pulse front tilt of the two pulses that create the TG to the grazing incident pulse. We demonstrate the technique using all 800 nm femtosecond laser pulses for TG generation on a vanadium dioxide film. We probe that grating via diffraction of a third 800 nm pulse. The time resolution of 90 fs is an improvement by a factor of 30 compared to our previous experiments on the same system. The scheme paves the way for EUV and SXR probing of optically induced TGs on any material.}, language = {en} } @article{BustamanteSparreSpringeletal.2018, author = {Bustamante, Sebastian and Sparre, Martin and Springel, Volker and Grand, Robert J. J.}, title = {Merger-induced metallicity dilution in cosmological galaxy formation simulations}, series = {Monthly notices of the Royal Astronomical Society}, volume = {479}, journal = {Monthly notices of the Royal Astronomical Society}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/sty1692}, pages = {3381 -- 3392}, year = {2018}, abstract = {Observational studies have revealed that galaxy pairs tend to have lower gas-phase metallicity than isolated galaxies. This metallicity deficiency can be caused by inflows of low-metallicity gas due to the tidal forces and gravitational torques associated with galaxy mergers, diluting the metal content of the central region. In this work we demonstrate that such metallicity dilution occurs in state-of-the-art cosmological simulations of galaxy formation. We find that the dilution is typically 0.1 dex for major mergers, and is noticeable at projected separations smaller than 40 kpc. For minor mergers the metallicity dilution is still present, even though the amplitude is significantly smaller. Consistent with previous analysis of observed galaxies we find that mergers are outliers from the fundamental metallicity relation, with deviations being larger than expected for a Gaussian distribution of residuals. Our large sample of mergers within full cosmological simulations also makes it possible to estimate how the star formation rate enhancement and gas consumption timescale behave as a function of the merger mass ratio. We confirm that strong starbursts are likely to occur in major mergers, but they can also arise in minor mergers if more than two galaxies are participating in the interaction, a scenario that has largely been ignored in previous work based on idealised isolated merger simulations.}, language = {en} } @article{CecchiniThielSchelteretal.2018, author = {Cecchini, Gloria and Thiel, Marco and Schelter, Bj{\"o}rn and Sommerlade, Linda}, title = {Improving network inference}, series = {Journal of neuroscience methods}, volume = {307}, journal = {Journal of neuroscience methods}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0165-0270}, doi = {10.1016/j.jneumeth.2018.06.011}, pages = {31 -- 36}, year = {2018}, abstract = {Background: A reliable inference of networks from data is of key interest in the Neurosciences. Several methods have been suggested in the literature to reliably determine links in a network. To decide about the presence of links, these techniques rely on statistical inference, typically controlling the number of false positives, paying little attention to false negatives. New method: In this paper, by means of a comprehensive simulation study, we analyse the influence of false positive and false negative conclusions about the presence or absence of links in a network on the network topology. We show that different values to balance false positive and false negative conclusions about links should be used in order to reliably estimate network characteristics. We propose to run careful simulation studies prior to making potentially erroneous conclusion about the network topology. Results: Our analysis shows that optimal values to balance false positive and false negative conclusions about links depend on the network topology and characteristic of interest. Comparison with existing methods: Existing methods rely on a choice of the rate for false positive conclusions. They aim to be sure about individual links rather than the entire network. The rate of false negative conclusions is typically not investigated. Conclusions: Our investigation shows that the balance of false positive and false negative conclusions about links in a network has to be tuned for any network topology that is to be estimated. Moreover, within the same network topology, the results are qualitatively the same for each network characteristic, but the actual values leading to reliable estimates of the characteristics are different.}, language = {en} } @article{HeintzWatsonJakobssonetal.2018, author = {Heintz, Kasper Elm and Watson, D. and Jakobsson, P. and Fynbo, J. P. U. and Bolmer, J. and Arabsalmani, M. and Cano, Zach and Covino, S. and Gomboc, A. and Japelj, J. and Kaper, L. and Krogager, J. -K. and Pugliese, G. and Sanchez-Ramirez, R. and Selsing, J. and Sparre, Martin and Tanvir, N. R. and Thone, C. C. and de Ugarte Postigo, A. and Vergani, S. D.}, title = {Highly ionized metals as probes of the circumburst gas in the natal regions of gamma-ray bursts}, series = {Monthly notices of the Royal Astronomical Society}, volume = {479}, journal = {Monthly notices of the Royal Astronomical Society}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/sty1447}, pages = {3456 -- 3476}, year = {2018}, abstract = {We present here a survey of high-ionization absorption lines in the afterglow spectra of long-duration gamma-ray bursts (GRBs) obtained with the VLT/X-shooter spectrograph. Our main goal is to investigate the circumburst medium in the natal regions of GRBs. Our primary focus is on the N vλλ 1238, 1242 line transitions, but we also discuss other high-ionization lines such as O vi, C iv, and Si iv. We find no correlation between the column density of N v and the neutral gas properties such as metallicity, H i column density, and dust depletion; however, the relative velocity of N v, typically a blueshift with respect to the neutral gas, is found to be correlated with the column density of H i. This may be explained if the N v gas is part of an H ii region hosting the GRB, where the region's expansion is confined by dense, neutral gas in the GRB's host galaxy. We find tentative evidence (at 2σ significance) that the X-ray derived column density, NH, X, may be correlated with the column density of N v, which would indicate that both measurements are sensitive to the column density of the gas located in the vicinity of the GRB. We investigate the scenario where N v (and also O vi) is produced by recombination after the corresponding atoms have been stripped entirely of their electrons by the initial prompt emission, in contrast to previous models where highly ionized gas is produced by photoionization from the GRB afterglow.}, language = {en} } @article{LebigaSantosLimaYan2018, author = {Lebiga, O. and Santos-Lima, Reinaldo and Yan, Huirong}, title = {Kinetic-MHD simulations of gyroresonance instability driven by CR pressure anisotropy}, series = {Monthly notices of the Royal Astronomical Society}, volume = {476}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/sty309}, pages = {2779 -- 2791}, year = {2018}, abstract = {The transport of cosmic rays (CRs) is crucial for the understanding of almost all high-energy phenomena. Both pre-existing large-scale magnetohydrodynamic (MHD) turbulence and locally generated turbulence through plasma instabilities are important for the CR propagation in astrophysical media. The potential role of the resonant instability triggered by CR pressure anisotropy to regulate the parallel spatial diffusion of low-energy CRs (less than or similar to 100 GeV) in the interstellar and intracluster medium of galaxies has been shown in previous theoretical works. This work aims to study the gyroresonance instability via direct numerical simulations, in order to access quantitatively the wave-particle scattering rates. For this, we employ a 1D PIC-MHD code to follow the growth and saturation of the gyroresonance instability. We extract from the simulations the pitch-angle diffusion coefficient D-mu mu produced by the instability during the linear and saturation phases, and a very good agreement (within a factor of 3) is found with the values predicted by the quasi-linear theory (QLT). Our results support the applicability of the QLT for modelling the scattering of low-energy CRs by the gyroresonance instability in the complex interplay between this instability and the large-scale MHD turbulence.}, language = {en} } @article{ElNagarLauermannSarhanetal.2018, author = {El-Nagar, Gumaa A. and Lauermann, Iver and Sarhan, Radwan Mohamed and Roth, Christina}, title = {Hierarchically structured iron-doped silver (Ag-Fe) lotus flowers for an efficient oxygen reduction reaction}, series = {Nanoscale}, volume = {10}, journal = {Nanoscale}, number = {15}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2040-3364}, doi = {10.1039/c8nr00020d}, pages = {7304 -- 7310}, year = {2018}, abstract = {The development of cheap and efficient electrocatalysts for the oxygen reduction reaction (ORR) is vital for the immediate commercialization of fuel cells which are still limited by the high cost and low performance of the utilized commercial Pt-based electrodes. As a promising alternative, this study reports on the synthesis of hierarchical iron-doped silver lotus flowers (AgFelotus) by a facile chemical procedure as robust and efficient ORR electrocatalysts. Succinic acid was used as a structure directing agent to tune the morphology of undoped and iron-doped silver particles. In the absence of succinic acid, ball-like silver particles were obtained, while using 2 mM succinic acid led to peony-like flower structures. The doping of silver peony-flowers with iron resulted in lotus-like flower structures with high electrocatalytic activity for ORR together with outstanding tolerance against poisoning with various hydrocarbon (HC) impurities, in situ generated during fuel cell operation, as well as different fuels from anodic crossover. AgFelotus exhibited a superior ORR activity with more than 40 times higher stability than the commercial Pt/C catalyst in alkaline media. This substantial performance enhancement is attributed to the unique lotus-like flower structures providing more electroactive surface sites, in addition to the iron dopants which facilitate ORR charge transfer.}, language = {en} } @article{DenkerKuckeinVermaetal.2018, author = {Denker, Carsten and Kuckein, Christoph and Verma, Meetu and Manrique Gonzalez, Sergio Javier Gonzalez and Diercke, Andrea and Enke, Harry and Klar, Jochen and Balthasar, Horst and Louis, Rohan E. and Dineva, Ekaterina}, title = {High-cadence Imaging and Imaging Spectroscopy at the GREGOR Solar Telescope-A Collaborative Research Environment for High-resolution Solar Physics}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Supplement series}, volume = {236}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Supplement series}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0067-0049}, doi = {10.3847/1538-4365/aab773}, pages = {12}, year = {2018}, abstract = {In high-resolution solar physics, the volume and complexity of photometric, spectroscopic, and polarimetric ground-based data significantly increased in the last decade, reaching data acquisition rates of terabytes per hour. This is driven by the desire to capture fast processes on the Sun and the necessity for short exposure times "freezing" the atmospheric seeing, thus enabling ex post facto image restoration. Consequently, large-format and high-cadence detectors are nowadays used in solar observations to facilitate image restoration. Based on our experience during the "early science" phase with the 1.5 m GREGOR solar telescope (2014-2015) and the subsequent transition to routine observations in 2016, we describe data collection and data management tailored toward image restoration and imaging spectroscopy. We outline our approaches regarding data processing, analysis, and archiving for two of GREGOR's post-focus instruments (see http://gregor.aip.de), i.e., the GREGOR Fabry-P{\´e}rot Interferometer (GFPI) and the newly installed High-Resolution Fast Imager (HiFI). The heterogeneous and complex nature of multidimensional data arising from high-resolution solar observations provides an intriguing but also a challenging example for "big data" in astronomy. The big data challenge has two aspects: (1) establishing a workflow for publishing the data for the whole community and beyond and (2) creating a collaborative research environment (CRE), where computationally intense data and postprocessing tools are colocated and collaborative work is enabled for scientists of multiple institutes. This requires either collaboration with a data center or frameworks and databases capable of dealing with huge data sets based on virtual observatory (VO) and other community standards and procedures.}, language = {en} } @article{VermaKummerowDenker2018, author = {Verma, Meetu and Kummerow, P. and Denker, Carsten}, title = {On the extent of the moat flow in axisymmetric sunspots}, series = {Astronomische Nachrichten = Astronomical notes}, volume = {339}, journal = {Astronomische Nachrichten = Astronomical notes}, number = {4}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0004-6337}, doi = {10.1002/asna.201813482}, pages = {268 -- 276}, year = {2018}, abstract = {Unipolar, axisymmetric sunspots are figuratively called "theoretician's sunspots" because their simplicity supposedly makes them more suitable for theoretical descriptions or numerical models. On November 18, 2013, a very large specimen (active region NOAA 11899) crossed the central meridian of the sun. The moat flow associated with this very large spot is quantitatively compared to that of a medium and a small sunspot to determine the extent of the moat flow in different environments. We employ continuum images and magnetograms of the Helioseismic and Magnetic Imager (HMI) as well as extreme ultraviolet (EUV) images at λ160 nm of the Atmospheric Imaging Assembly (AIA), both on board the Solar Dynamics Observatory (SDO), to measure horizontal proper motions with Local Correlation Tracking (LCT) and flux transport velocities with the Differential Affine Velocity Estimator (DAVE). We compute time-averaged flow maps (±6 hr around meridian passage) and radial averages of photometric, magnetic, and flow properties. Flow fields of a small- and a medium-sized axisymmetric sunspot provide the context for interpreting the results. All sunspots show outward moat flow and the advection of moving magnetic features (MMFs). However, the extent of the moat flow varies from spot to spot, and a correlation of flow properties with size is tenuous, if at all present. The moat flow is asymmetric and predominantly in the east-west direction, whereby deviations are related to the tilt angle of the sunspot group as well as to the topology and activity level of the trailing plage.}, language = {en} } @article{ZhangYanRichter2018, author = {Zhang, Heshou and Yan, Huirong and Richter, Philipp}, title = {The influence of atomic alignment on absorption and emission spectroscopy}, series = {Monthly notices of the Royal Astronomical Society}, volume = {479}, journal = {Monthly notices of the Royal Astronomical Society}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/sty1594}, pages = {3923 -- 3935}, year = {2018}, abstract = {Spectroscopic observations play essential roles in astrophysics. They are crucial for determining physical parameters in our Universe, providing information about the chemistry of various astronomical environments. The proper execution of the spectroscopic analysis requires accounting for all the physical effects that are compatible to the signal-to-noise ratio. We find in this paper the influence on spectroscopy from the atomic/ground state alignment owing to anisotropic radiation and modulated by interstellar magnetic field, has significant impact on the study of interstellar gas. In different observational scenarios, we comprehensively demonstrate how atomic alignment influences the spectral analysis and provide the expressions for correcting the effect. The variations are even more pronounced for multiplets and line ratios. We show the variation of the deduced physical parameters caused by the atomic alignment effect, including alpha-to-iron ratio ([X/Fe]) and ionization fraction. Synthetic observations are performed to illustrate the visibility of such effect with current facilities. A study of Photodissociation regions in rho Ophiuchi cloud is presented to demonstrate how to account for atomic alignment in practice. Our work has shown that due to its potential impact, atomic alignment has to be included in an accurate spectroscopic analysis of the interstellar gas with current observational capability.}, language = {en} } @article{SchmidtHennawiWorsecketal.2018, author = {Schmidt, Tobias M. and Hennawi, Joseph F. and Worseck, Gabor and Davies, Frederick B. and Lukic, Zarija and O{\~n}orbe, Jose}, title = {Modeling the HeII transverse proximity effect}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {861}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aac8e4}, pages = {20}, year = {2018}, abstract = {The He II transverse proximity effect-enhanced He II Ly alpha transmission in a background sightline caused by the ionizing radiation of a foreground quasar-offers a unique opportunity to probe the emission properties of quasars, in particular the emission geometry (obscuration, beaming) and the quasar lifetime. Building on the foreground quasar survey published in Schmidt et al., we present a detailed model of the He II transverse proximity effect, specifically designed to include light travel time effects, finite quasar ages, and quasar obscuration. We postprocess outputs from a cosmological hydrodynamical simulation with a fluctuating He II ultraviolet background model, with the added effect of the radiation from a single bright foreground quasar. We vary the age t(age) and obscured sky fractions Omega(obsc) of the foreground quasar, and explore the resulting effect on the He II transverse proximity effect signal. Fluctuations in intergalactic medium density and the ultraviolet background, as well as the unknown orientation of the foreground quasar, result in a large variance of the He II Ly alpha transmission along the background sightline. We develop a fully Bayesian statistical formalism to compare far-ultraviolet He II Ly alpha transmission spectra of the background quasars to our models, and extract joint constraints on t(age) and Omega(obsc) for the six Schmidt et al. foreground quasars with the highest implied He II photoionization rates. Our analysis suggests a bimodal distribution of quasar emission properties, whereby one foreground quasar, associated with a strong He II transmission spike, is relatively old (22 Myr) and unobscured (Omega(obsc) < 35\%), whereas three others are either younger than 10 Myr or highly obscured (Omega(obsc) > 70\%).}, language = {en} } @article{MonrealIberoWeilbacherWendt2018, author = {Monreal-Ibero, Ana and Weilbacher, Peter Michael and Wendt, Martin}, title = {Diffuse interstellar bands lambda 5780 and lambda 5797 in the Antennae Galaxy as seen by MUSE}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {615}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201732178}, pages = {12}, year = {2018}, abstract = {Context. Diffuse interstellar bands (DIBs) are faint spectral absorption features of unknown origin. Research on DIBs beyond the Local Group is very limited and will surely blossom in the era of the Extremely Large Telescopes. However, we can already start paving the way. One possibility that needs to be explored is the use of high-sensitivity integral field spectrographs. Aims. Our goals are twofold. First, we aim to derive reliable mapping of at least one DIB in a galaxy outside the Local Group. Second, we want to explore the relation between DIBs and other properties of the interstellar medium (ISM) in the galaxy. Methods. We use Multi Unit Spectroscopic Explorer (MUSE) data for the Antennae Galaxy, the closest major galaxy merger. High signal-to-noise spectra were created by co-adding the signal of many spatial elements with the Voronoi binning technique. The emission of the underlying stellar population was modelled and substracted with the STARLIGHT spectral synthesis code. Flux and equivalent width of the features of interest were measured by means of fitting to Gaussian functions. Conclusions. The results illustrate the enormous potential of integral field spectrographs for extragalactic DIB research.}, language = {en} } @article{YangZhuWolfetal.2018, author = {Yang, Jie and Zhu, Xiaolei and Wolf, Thomas J. A. and Li, Zheng and Nunes, Jo{\~a}o Pedro Figueira and Coffee, Ryan and Cryan, James P. and G{\"u}hr, Markus and Hegazy, Kareem and Heinz, Tony F. and Jobe, Keith and Li, Renkai and Shen, Xiaozhe and Veccione, Theodore and Weathersby, Stephen and Wilkin, Kyle J. and Yoneda, Charles and Zheng, Qiang and Martinez, Todd J. and Centurion, Martin and Wang, Xijie}, title = {Imaging CF3I conical intersection and photodissociation dynamics with ultrafast electron diffraction}, series = {Science}, volume = {361}, journal = {Science}, number = {6397}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.aat0049}, pages = {64 -- 67}, year = {2018}, abstract = {Conical intersections play a critical role in excited-state dynamics of polyatomic molecules because they govern the reaction pathways of many nonadiabatic processes. However, ultrafast probes have lacked sufficient spatial resolution to image wave-packet trajectories through these intersections directly. Here, we present the simultaneous experimental characterization of one-photon and two-photon excitation channels in isolated CF3I molecules using ultrafast gas-phase electron diffraction. In the two-photon channel, we have mapped out the real-space trajectories of a coherent nuclear wave packet, which bifurcates onto two potential energy surfaces when passing through a conical intersection. In the one-photon channel, we have resolved excitation of both the umbrella and the breathing vibrational modes in the CF3 fragment in multiple nuclear dimensions. These findings benchmark and validate ab initio nonadiabatic dynamics calculations.}, language = {en} } @article{AlqahtaniBabicsGorenflotetal.2018, author = {Alqahtani, Obaid and Babics, Maxime and Gorenflot, Julien and Savikhin, Victoria and Ferron, Thomas and Balawi, Ahmed H. and Paulke, Andreas and Kan, Zhipeng and Pope, Michael and Clulow, Andrew J. and Wolf, Jannic and Burn, Paul L. and Gentle, Ian R. and Neher, Dieter and Toney, Michael F. and Laquai, Frederic and Beaujuge, Pierre M. and Collins, Brian A.}, title = {Mixed Domains Enhance Charge Generation and Extraction in Bulk-Heterojunction Solar Cells with Small-Molecule Donors}, series = {Advanced energy materials}, volume = {8}, journal = {Advanced energy materials}, number = {19}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.201702941}, pages = {16}, year = {2018}, abstract = {The interplay between nanomorphology and efficiency of polymer-fullerene bulk-heterojunction (BHJ) solar cells has been the subject of intense research, but the generality of these concepts for small-molecule (SM) BHJs remains unclear. Here, the relation between performance; charge generation, recombination, and extraction dynamics; and nanomorphology achievable with two SM donors benzo[1,2-b:4,5-b]dithiophene-pyrido[3,4-b]-pyrazine BDT(PPTh2)(2), namely SM1 and SM2, differing by their side-chains, are examined as a function of solution additive composition. The results show that the additive 1,8-diiodooctane acts as a plasticizer in the blends, increases domain size, and promotes ordering/crystallinity. Surprisingly, the system with high domain purity (SM1) exhibits both poor exciton harvesting and severe charge trapping, alleviated only slightly with increased crystallinity. In contrast, the system consisting of mixed domains and lower crystallinity (SM2) shows both excellent exciton harvesting and low charge recombination losses. Importantly, the onset of large, pure crystallites in the latter (SM2) system reduces efficiency, pointing to possible differences in the ideal morphologies for SM-based BHJ solar cells compared with polymer-fullerene devices. In polymer-based systems, tie chains between pure polymer crystals establish a continuous charge transport network, whereas SM-based active layers may in some cases require mixed domains that enable both aggregation and charge percolation to the electrodes.}, language = {en} } @article{OhmHoischen2018, author = {Ohm, Stefan and Hoischen, Clemens}, title = {On the expected gamma-ray emission from nearby flaring stars}, series = {Monthly notices of the Royal Astronomical Society}, volume = {474}, journal = {Monthly notices of the Royal Astronomical Society}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stx2806}, pages = {1335 -- 1341}, year = {2018}, abstract = {Stellar flares have been extensively studied in soft X-rays (SXRs) by basically every X-ray mission. Hard X-ray (HXR) emission from stellar superflares, however, have only been detected from a handful of objects over the past years. One very extreme event was the superflare from the young M-dwarf DGCVn binary star system, which triggered Swift/BAT as if it was a gamma-ray burst. In this work, we estimate the expected gamma-ray emission from DGCVn and the most extreme stellar flares by extrapolating from solar flares based on measured solar energetic particles (SEPs), as well as thermal and non-thermal emission properties. We find that ions are plausibly accelerated in stellar superflares to 100 GeV energies, and possibly up to TeV energies in the associated coronal mass ejections. The corresponding pi(0)-decay gamma-ray emission could be detectable from stellar superflares with ground-based gamma-ray telescopes. On the other hand, the detection of gamma-ray emission implies particle densities high enough that ions suffer significant losses due to inelastic proton-proton scattering. The next-generation Cherenkov Telescope Array (CTA) should be able to probe superflares from M dwarfs in the solar neighbourhood and constrain the energy in interacting cosmic rays and/or their maximum energy. The detection of gamma-ray emission from stellar flares would open a new window for the study of stellar physics, the underlying physical processes in flares and their impact on habitability of planetary systems.}, language = {en} } @article{RamiaramanantsoaMoffatHarmonetal.2018, author = {Ramiaramanantsoa, Tahina and Moffat, Anthony F. J. and Harmon, Robert and Ignace, R. and St-Louis, Nicole and Vanbeveren, Dany and Shenar, Tomer and Pablo, Herbert and Richardson, Noel D. and Howarth, Ian D. and Stevens, Ian R. and Piaulet, Caroline and St-Jean, Lucas and Eversberg, Thomas and Pigulski, Andrzej and Popowicz, Adam and Kuschnig, Rainer and Zoclonska, Elzbieta and Buysschaert, Bram and Handler, Gerald and Weiss, Werner W. and Wade, Gregg A. and Rucinski, Slavek M. and Zwintz, Konstanze and Luckas, Paul and Heathcote, Bernard and Cacella, Paulo and Powles, Jonathan and Locke, Malcolm and Bohlsen, Terry and Chen{\´e}, Andr{\´e}-Nicolas and Miszalski, Brent and Waldron, Wayne L. and Kotze, Marissa M. and Kotze, Enrico J. and B{\"o}hm, Torsten}, title = {BRITE-Constellation high-precision time-dependent photometry of the early O-type supergiant zeta Puppis unveils the photospheric drivers of its small- and large-scale wind structures}, series = {Monthly notices of the Royal Astronomical Society}, volume = {473}, journal = {Monthly notices of the Royal Astronomical Society}, number = {4}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stx2671}, pages = {5532 -- 5569}, year = {2018}, abstract = {From 5.5 months of dual-band optical photometric monitoring at the 1 mmag level, BRITE-Constellation has revealed two simultaneous types of variability in the O4I(n)fp star ζ Puppis: one single periodic non-sinusoidal component superimposed on a stochastic component. The monoperiodic component is the 1.78-d signal previously detected by Coriolis/Solar Mass Ejection Imager, but this time along with a prominent first harmonic. The shape of this signal changes over time, a behaviour that is incompatible with stellar oscillations but consistent with rotational modulation arising from evolving bright surface inhomogeneities. By means of a constrained non-linear light-curve inversion algorithm, we mapped the locations of the bright surface spots and traced their evolution. Our simultaneous ground-based multisite spectroscopic monitoring of the star unveiled cyclical modulation of its He ii λ4686 wind emission line with the 1.78-d rotation period, showing signatures of corotating interaction regions that turn out to be driven by the bright photospheric spots observed by BRITE. Traces of wind clumps are also observed in the He ii λ4686 line and are correlated with the amplitudes of the stochastic component of the light variations probed by BRITE at the photosphere, suggesting that the BRITE observations additionally unveiled the photospheric drivers of wind clumps in ζ Pup and that the clumping phenomenon starts at the very base of the wind. The origins of both the bright surface inhomogeneities and the stochastic light variations remain unknown, but a subsurface convective zone might play an important role in the generation of these two types of photospheric variability.}, language = {en} } @article{BeniniSchenkelSchreiber2018, author = {Benini, Marco and Schenkel, Alexander and Schreiber, Urs}, title = {The Stack of Yang-Mills Fields on Lorentzian Manifolds}, series = {Communications in mathematical physics}, volume = {359}, journal = {Communications in mathematical physics}, number = {2}, publisher = {Springer}, address = {New York}, issn = {0010-3616}, doi = {10.1007/s00220-018-3120-1}, pages = {765 -- 820}, year = {2018}, abstract = {We provide an abstract definition and an explicit construction of the stack of non-Abelian Yang-Mills fields on globally hyperbolic Lorentzian manifolds. We also formulate a stacky version of the Yang-Mills Cauchy problem and show that its well-posedness is equivalent to a whole family of parametrized PDE problems. Our work is based on the homotopy theoretical approach to stacks proposed in Hollander (Isr. J. Math. 163:93-124, 2008), which we shall extend by further constructions that are relevant for our purposes. In particular, we will clarify the concretification of mapping stacks to classifying stacks such as BG (con).}, language = {en} } @article{delValleMuellerRomero2018, author = {del Valle, Maria Victoria and M{\"u}ller, A. L. and Romero, G. E.}, title = {High-energy radiation from collisions of high-velocity clouds and the Galactic disc}, series = {Monthly notices of the Royal Astronomical Society}, volume = {475}, journal = {Monthly notices of the Royal Astronomical Society}, number = {4}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stx2984}, pages = {4298 -- 4308}, year = {2018}, abstract = {High-velocity clouds (HVCs) are interstellar clouds of atomic hydrogen that do not follow normal Galactic rotation and have velocities of a several hundred kilometres per second. A considerable number of these clouds are falling down towards the Galactic disc. HVCs form large and massive complexes, so if they collide with the disc a great amount of energy would be released into the interstellar medium. The cloud-disc interaction produces two shocks: one propagates through the cloud and the other through the disc. The properties of these shocks depend mainly on the cloud velocity and the disc-cloud density ratio. In this work, we study the conditions necessary for these shocks to accelerate particles by diffusive shock acceleration and we study the non-thermal radiation that is produced. We analyse particle acceleration in both the cloud and disc shocks. Solving a time-dependent two-dimensional transport equation for both relativistic electrons and protons, we obtain particle distributions and non-thermal spectral energy distributions. In a shocked cloud, significant synchrotron radio emission is produced along with soft gamma rays. In the case of acceleration in the shocked disc, the non-thermal radiation is stronger; the gamma rays, of leptonic origin, might be detectable with current instruments. A large number of protons are injected into the Galactic interstellar medium, and locally exceed the cosmic ray background. We conclude that under adequate conditions the contribution from HVC-disc collisions to the galactic population of relativistic particles and the associated extended non-thermal radiation might be important.}, language = {en} } @article{KoopmanMucciniToffanin2018, author = {Koopman, Wouter-Willem Adriaan and Muccini, Michele and Toffanin, Stefano}, title = {High-resolution photoluminescence electro-modulation microscopy by scanning lock-in}, series = {Review of scientific instruments : a monthly journal devoted to scientific instruments, apparatus, and techniques}, volume = {89}, journal = {Review of scientific instruments : a monthly journal devoted to scientific instruments, apparatus, and techniques}, number = {4}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0034-6748}, doi = {10.1063/1.5010281}, pages = {7}, year = {2018}, abstract = {Morphological inhomogeneities and structural defects in organic semiconductors crucially determine the charge accumulation and lateral transport in organic thin-film transistors. Photoluminescence Electro-Modulation (PLEM) microscopy is a laser-scanning microscopy technique that relies on the modulation of the thin-film fluorescence in the presence of charge-carriers to image the spatial distribution of charges within the active organic semiconductor. Here, we present a lock-in scheme based on a scanning beam approach for increasing the PLEM microscopy resolution and contrast. The charge density in the device is modulated by a sinusoidal electrical signal, phase-locked to the scanning beam of the excitation laser. The lock-in detection scheme is achieved by acquiring a series of images with different phases between the beam scan and the electrical modulation. Application of high resolution PLEM to an organic transistor in accumulation mode demonstrates its potential to image local variations in the charge accumulation. A diffraction-limited precision of sub-300 nm and a signal to noise ratio of 21.4 dB could be achieved. Published by AIP Publishing.}, language = {en} } @article{MorHerzogNoacketal.2018, author = {Mor, Selene and Herzog, Marc and Noack, Johannes and Katayama, Naoyuki and Nohara, Minoru and Takagi, Hide and Trunschke, Annette and Mizokawa, Takashi and Monney, Claude and St{\"a}hler, Julia}, title = {Inhibition of the photoinduced structural phase transition in the excitonic insulator Ta2NiSe5}, series = {Physical review : B, Condensed matter and materials physics}, volume = {97}, journal = {Physical review : B, Condensed matter and materials physics}, number = {11}, publisher = {American Physical Society}, address = {College Park}, issn = {2469-9950}, doi = {10.1103/PhysRevB.97.115154}, pages = {5}, year = {2018}, abstract = {Femtosecond time-resolved midinfrared reflectivity is used to investigate the electron and phonon dynamics occurring at the direct band gap of the excitonic insulator Ta2NiSe5 below the critical temperature of its structural phase transition. We find that the phonon dynamics show a strong coupling to the excitation of free carriers at the Gamma point of the Brillouin zone. The optical response saturates at a critical excitation fluence F-C = 0.30 +/- 0.08 mJ/cm(2) due to optical absorption saturation. This limits the optical excitation density in Ta2NiSe5 so that the system cannot be pumped sufficiently strongly to undergo the structural change to the high-temperature phase. We thereby demonstrate that Ta2NiSe5 exhibits a blocking mechanism when pumped in the near-infrared regime, preventing a nonthermal structural phase transition.}, language = {en} } @article{AydinerCherstvyMetzler2018, author = {Aydiner, Ekrem and Cherstvy, Andrey G. and Metzler, Ralf}, title = {Wealth distribution, Pareto law, and stretched exponential decay of money}, series = {Physica : europhysics journal ; A, Statistical mechanics and its applications}, volume = {490}, journal = {Physica : europhysics journal ; A, Statistical mechanics and its applications}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0378-4371}, doi = {10.1016/j.physa.2017.08.017}, pages = {278 -- 288}, year = {2018}, abstract = {We study by Monte Carlo simulations a kinetic exchange trading model for both fixed and distributed saving propensities of the agents and rationalize the person and wealth distributions. We show that the newly introduced wealth distribution - that may be more amenable in certain situations - features a different power-law exponent, particularly for distributed saving propensities of the agents. For open agent-based systems, we analyze the person and wealth distributions and find that the presence of trap agents alters their amplitude, leaving however the scaling exponents nearly unaffected. For an open system, we show that the total wealth - for different trap agent densities and saving propensities of the agents - decreases in time according to the classical Kohlrausch-Williams-Watts stretched exponential law. Interestingly, this decay does not depend on the trap agent density, but rather on saving propensities. The system relaxation for fixed and distributed saving schemes are found to be different.}, language = {en} } @article{DavidzonIlbertFaisstetal.2018, author = {Davidzon, Iary and Ilbert, Olivier and Faisst, Andreas L. and Sparre, Martin and Capak, Peter L.}, title = {An Alternate Approach to Measure Specific Star Formation Rates at 2 < z < 7}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {852}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aaa19e}, pages = {11}, year = {2018}, abstract = {We trace the specific star formation rate (sSFR) of massive star-forming galaxies (greater than or similar to 10(10)M(circle dot)) from z similar to 2 to 7. Our method is substantially different from previous analyses, as it does not rely on direct estimates of star formation rate, but on the differential evolution of the galaxy stellar mass function (SMF). We show the reliability of this approach by means of semianalytical and hydrodynamical cosmological simulations. We then apply it to real data, using the SMFs derived in the COSMOS and CANDELS fields. We find that the sSFR is proportional to (1 + z)(1.1) (+/-) (0.2) at z > 2, in agreement with other observations but in tension with the steeper evolution predicted by simulations from z similar to 4 to 2. We investigate the impact of several sources of observational bias, which, however, cannot account for this discrepancy. Although the SMF of high-redshift galaxies is still affected by significant errors, we show that future large-area surveys will substantially reduce them, making our method an effective tool to probe the massive end of the main sequence of star-forming galaxies.}, language = {en} } @article{GuberRichterWendt2018, author = {Guber, Christoph Rudolf and Richter, Philipp and Wendt, Martin}, title = {Multiple origins for the DLA at zabs = 0.313 toward PKS 1127-145 indicated by a complex dust depletion pattern of Ca, Ti, and Mn}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {609}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201730984}, pages = {9}, year = {2018}, abstract = {Aims: We aim to investigate the dust depletion properties of optically thick gas in and around galaxies and its origin we study in detail the dust depletion patterns of Ti, Mn, and Ca in the multi-component damped Lyman alpha (DLA) absorber at z(abs) = 0.313 toward the quasar PKS 1127-145. Methods: We performed a detailed spectral analysis of the absorption profiles of Ca II, Mn II, TIII, and Na I associated with the DLA toward PKS 1127-145, based on optical high-resolution data obtained with the UVES instrument at the Very Large Telescope. We obtained column densities and Doppler-parameters for the ions listed above and determine their gas-phase abundances, from which we conclude on their dust depletion properties. We compared the Ca and Ti depletion properties of this DLA with that of other DLAs. Results: One of the six analyzed absorption components (component 3) shows a striking underabundance of Ti and Mn in the gas-phase, indicating the effect of dust depletion for these elements and a locally enhanced dust-to-gas ratio. In this DLA and in other similar absorbers, the Mn II abundance follows that of Ti II very closely, implying that both ions are equally sensitive to the dust depletion effects. Conclusions: Our analysis indicates that the DLA toward PKS 1127 145 has multiple origins. With its narrow line width and its strong dust depletion, component 3 points toward the presence of a neutral gas disk from a faint LSB galaxy in front of PKS 1127 145, while the other, more diffuse and dust-poor, absorption components possibly are related to tidal gas features from the interaction between the various, optically confirmed galaxy-group members. In general, the Mn/Ca II ratio in sub-DLAs and DLAs possibly serves as an important indicator to discriminate between dust-rich and dust-poor in neutral gas in and around galaxies.}, language = {en} } @article{TotzEliseevPetrietal.2018, author = {Totz, Sonja Juliana and Eliseev, Alexey V. and Petri, Stefan and Flechsig, Michael and Caesar, Levke and Petoukhov, Vladimir and Coumou, Dim}, title = {The dynamical core of the Aeolus 1.0 statistical-dynamical atmosphere model}, series = {Geoscientific model development : an interactive open access journal of the European Geosciences Union}, volume = {11}, journal = {Geoscientific model development : an interactive open access journal of the European Geosciences Union}, number = {2}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1991-959X}, doi = {10.5194/gmd-11-665-2018}, pages = {665 -- 679}, year = {2018}, abstract = {Here, we present novel equations for the large-scale zonal-mean wind as well as those for planetary waves. Together with synoptic parameterization (as presented by Coumou et al., 2011), these form the mathematical description of the dynamical core of Aeolus 1.0. The regions of high azonal wind velocities (planetary waves) are accurately captured for all validation experiments. The zonal-mean zonal wind and the integrated lower troposphere mass flux show good results in particular in the Northern Hemisphere. In the Southern Hemisphere, the model tends to produce too-weak zonal-mean zonal winds and a too-narrow Hadley circulation. We discuss possible reasons for these model biases as well as planned future model improvements and applications.}, language = {en} } @article{XiongFangOsipovetal.2018, author = {Xiong, Hui and Fang, Li and Osipov, Timur and Kling, Nora G. and Wolf, Thomas J. A. and Sistrunk, Emily and Obaid, Razib and G{\"u}hr, Markus and Berrah, Nora}, title = {Fragmentation of endohedral fullerene Ho3N@C-80 in an intense femtosecond near-infrared laser field}, series = {Physical review : A, Atomic, molecular, and optical physics}, volume = {97}, journal = {Physical review : A, Atomic, molecular, and optical physics}, number = {2}, publisher = {American Physical Society}, address = {College Park}, issn = {2469-9926}, doi = {10.1103/PhysRevA.97.023419}, pages = {7}, year = {2018}, abstract = {The fragmentation of gas phase endohedral fullerene, Ho3N@C-80, was investigated using femtosecond near-infrared laser pulses with an ion velocity map imaging spectrometer. We observed that Ho+ abundance associated with carbon cage opening dominates at an intensity of 1.1 x 10(14) W/cm(2). As the intensity increases, the Ho+ yield associated with multifragmentation of the carbon cage exceeds the prominence of Ho+ associated with the gentler carbon cage opening. Moreover, the power law dependence of Ho+ on laser intensity indicates that the transition of the most likely fragmentation mechanisms occurs around 2.0 x 10(14) W/cm(2).}, language = {en} } @article{HusemannWorseckBattaiaetal.2018, author = {Husemann, Bernd and Worseck, Gabor and Battaia, Fabrizio Arrigoni and Shanks, T.}, title = {Discovery of a dual AGN at z similar or equal to 3.3 with 20 kpc separation}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {610}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201732457}, pages = {5}, year = {2018}, abstract = {A prediction of the current paradigm of the hierarchical assembly of galaxies is the presence of supermassive dual black holes at separations of a few kpc or less. In this context, we report the detection of a narrow-line emitter within the extended Ly alpha nebula (similar to 120 kpc diameter) of the luminous radio-quiet quasi-stellar object (QSO) LBQS 0302 0019 at z = 3 : 286. We identify several high-ionization narrow emission lines (He II, C IV, C III) associated with this point-like source, which we have named "Jil", which is only similar to 20 kpc (2 : 0 0 9) away from the QSO in projection. Emission-line diagnostics confirm that the source is likely powered by photoionization of an obscured active galactic nucleus (AGN) three orders of magnitude fainter than the QSO. The system represents the tightest unobscured/obscured dual AGN currently known at z > 3, highlighting the power of MUSE to detect these elusive systems.}, language = {en} } @article{FoxBargerWakkeretal.2018, author = {Fox, Andrew J. and Barger, Kathleen A. and Wakker, Bart P. and Richter, Philipp and Antwi-Danso, Jacqueline and Casetti-Dinescu, Dana I. and Howk, J. Christopher and Lehner, Nicolas and Crowther, Paul A. and Lockman, Felix J.}, title = {Chemical Abundances in the Leading Arm of the Magellanic Stream}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {854}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aaa9bb}, pages = {14}, year = {2018}, abstract = {The Leading Arm (LA) of the Magellanic Stream is a vast debris field of H I clouds connecting the Milky Way and the Magellanic Clouds. It represents an example of active gas accretion onto the Galaxy. Previously, only one chemical abundance measurement had been made in the LA. Here we present chemical abundance measurements using Hubble Space Telescope/Cosmic Origins Spectrograph and Green Bank Telescope spectra of four AGN sightlines passing through the LA and three nearby sightlines that may trace outer fragments of the LA. We find low oxygen abundances, ranging from 4.0+(2.0)(2.0)\% 12.6(4.1)(6.0)\% solar, in the confirmed LA directions, with the lowest values found in the region known as LA III, farthest from the LMC. These abundances are substantially lower than the single previous measurement, S/H = 35 +/- 7\% solar, but are in agreement with those reported in the SMC filament of the trailing Stream, supporting a common origin in the SMC (not the LMC) for the majority of the LA and trailing Stream. This provides important constraints for models of the formation of the Magellanic System. Finally, two of the three nearby sightlines show high-velocity clouds with H I columns, kinematics, and oxygen abundances consistent with LA membership. This suggests that the LA is larger than traditionally thought, extending at least 20 degrees further to the Galactic northwest.}, language = {en} } @article{BurekEidnerKukeetal.2018, author = {Burek, Katja and Eidner, Sascha and Kuke, Stefanie and Kumke, Michael Uwe}, title = {Intramolecular deactivation processes of electronically excited Lanthanide(III) complexes with organic acids of low molecular weight}, series = {Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy}, volume = {191}, journal = {Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy}, publisher = {Elsevier}, address = {Oxford}, issn = {1386-1425}, doi = {10.1016/j.saa.2017.09.012}, pages = {36 -- 49}, year = {2018}, abstract = {The luminescence of Lanthanide(Ill) complexes with different model ligands was studied under direct as well as sensitized excitation conditions. The research was performed in the context of studies dealing with deep-underground storages for high-level nuclear waste. Here, Lanthanide(III) ions served as natural analogues for Actinide(III) ions and the low-molecular weight organic ligands are present in clay minerals and furthermore, they were employed as proxies for building blocks of humic substances, which are important complexing molecules in the natural environment, e.g., in the far field of a repository site. Time-resolved luminescence spectroscopy was applied for a detailed characterization of Eu(III), Tb(III), Sm(III) and.Dy(III) complexes in aqueous solutions. Based on the observed luminescence the ligands were tentatively divided into two groups (A, B). The luminescence of Lanthanide(III) complexes of group A was mainly influenced by an energy transfer to OH-vibrations. Lanthanide(Ill) complexes of group B showed ligand-related luminescence quenching, which was further investigated. To gain more information on the underlying quenching processes of group A and B ligands, measurements at different temperatures (77 K <= T <= 353 K) were performed and activation energies were determined based on an Arrhenius analysis. Moreover, the influence of the ionic strength between 0 M <= 1 <= 4 M on the Lanthanide(III) luminescence was monitored for different complexes, in order to evaluate the influence of specific conditions encountered in host rocks foreseen as potential repository sites.}, language = {en} } @article{YoungUedaGuehretal.2018, author = {Young, Linda and Ueda, Kiyoshi and G{\"u}hr, Markus and Bucksbaum, Philip H. and Simon, Marc and Mukamel, Shaul and Rohringer, Nina and Prince, Kevin C. and Masciovecchio, Claudio and Meyer, Michael and Rudenko, Artem and Rolles, Daniel and Bostedt, Christoph and Fuchs, Matthias and Reis, David A. and Santra, Robin and Kapteyn, Henry and Murnane, Margaret and Ibrahim, Heide and Legare, Francois and Vrakking, Marc and Isinger, Marcus and Kroon, David and Gisselbrecht, Mathieu and W{\"o}rner, Hans Jakob and Leone, Stephen R.}, title = {Roadmap of ultrafast x-ray atomic and molecular physics}, series = {Journal of physics : B, Atomic, molecular and optical physics}, volume = {51}, journal = {Journal of physics : B, Atomic, molecular and optical physics}, number = {3}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0953-4075}, doi = {10.1088/1361-6455/aa9735}, pages = {45}, year = {2018}, abstract = {X-ray free-electron lasers (XFELs) and table-top sources of x-rays based upon high harmonic generation (HHG) have revolutionized the field of ultrafast x-ray atomic and molecular physics, largely due to an explosive growth in capabilities in the past decade. XFELs now provide unprecedented intensity (10(20) W cm(-2)) of x-rays at wavelengths down to similar to 1 Angstrom, and HHG provides unprecedented time resolution (similar to 50 attoseconds) and a correspondingly large coherent bandwidth at longer wavelengths. For context, timescales can be referenced to the Bohr orbital period in hydrogen atom of 150 attoseconds and the hydrogen-molecule vibrational period of 8 femtoseconds; wavelength scales can be referenced to the chemically significant carbon K-edge at a photon energy of similar to 280 eV (44 Angstroms) and the bond length in methane of similar to 1 Angstrom. With these modern x-ray sources one now has the ability to focus on individual atoms, even when embedded in a complex molecule, and view electronic and nuclear motion on their intrinsic scales (attoseconds and Angstroms). These sources have enabled coherent diffractive imaging, where one can image non-crystalline objects in three dimensions on ultrafast timescales, potentially with atomic resolution. The unprecedented intensity available with XFELs has opened new fields of multiphoton and nonlinear x-ray physics where behavior of matter under extreme conditions can be explored. The unprecedented time resolution and pulse synchronization provided by HHG sources has kindled fundamental investigations of time delays in photoionization, charge migration in molecules, and dynamics near conical intersections that are foundational to AMO physics and chemistry. This roadmap coincides with the year when three new XFEL facilities, operating at Angstrom wavelengths, opened for users (European XFEL, Swiss-FEL and PAL-FEL in Korea) almost doubling the present worldwide number of XFELs, and documents the remarkable progress in HHG capabilities since its discovery roughly 30 years ago, showcasing experiments in AMO physics and other applications. Here we capture the perspectives of 17 leading groups and organize the contributions into four categories: ultrafast molecular dynamics, multidimensional x-ray spectroscopies; high-intensity x-ray phenomena; attosecond x-ray science.}, language = {en} } @article{MyhreWolfChengetal.2018, author = {Myhre, Rolf H. and Wolf, Thomas J. A. and Cheng, Lan and Nandi, Saikat and Coriani, Sonia and G{\"u}hr, Markus and Koch, Henrik}, title = {A theoretical and experimental benchmark study of core-excited states in nitrogen}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {148}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {6}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.5011148}, pages = {7}, year = {2018}, abstract = {The high resolution near edge X-ray absorption fine structure spectrum of nitrogen displays the vibrational structure of the core-excited states. This makes nitrogen well suited for assessing the accuracy of different electronic structure methods for core excitations. We report high resolution experimental measurements performed at the SOLEIL synchrotron facility. These are compared with theoretical spectra calculated using coupled cluster theory and algebraic diagrammatic construction theory. The coupled cluster singles and doubles with perturbative triples model known as CC3 is shown to accurately reproduce the experimental excitation energies as well as the spacing of the vibrational transitions. The computational results are also shown to be systematically improved within the coupled cluster hierarchy, with the coupled cluster singles, doubles, triples, and quadruples method faithfully reproducing the experimental vibrational structure. Published by AIP Publishing.}, language = {en} } @article{ZellmeierBrennerJanietzetal.2018, author = {Zellmeier, M. and Brenner, Thomas J. K. and Janietz, Silvia and Nickel, N. H. and Rappich, J.}, title = {Polythiophenes as emitter layers for crystalline silicon solar cells}, series = {Journal of applied physics}, volume = {123}, journal = {Journal of applied physics}, number = {3}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-8979}, doi = {10.1063/1.5006625}, pages = {5}, year = {2018}, abstract = {We investigated the influence of the emitter (amorphous-Si, a-Si, or polythiophene derivatives: poly(3-hexylthiophene), P3HT, and poly(3-[3,6-dioxaheptyl]-thiophene), P3DOT) and the interface passivation (intrinsic a-Si or SiOX and methyl groups or SiOX) on the c-Si based 1 × 1 cm2 planar hybrid heterojunction solar cell parameters. We observed higher short circuit currents for the P3HT or P3DOT/c-Si solar cells than those obtained for a-Si/c-Si devices, independent of the interface passivation. The obtained VOC of 659 mV for the P3DOT/SiOX/c-Si heterojunction solar cell with hydrophilic 3,6-dioxaheptyl side chains is among the highest reported for c-Si/polythiophene devices. The maximum power conversion efficiency, PCE, was 11\% for the P3DOT/SiOX/c-Si heterojunction solar cell. Additionally, our wafer lifetime measurements reveal a field effect passivation in the wafer induced by the polythiophenes when deposited on c-Si.}, language = {en} } @article{LeeWhiteLiuetal.2018, author = {Lee, Jeongwoo and White, Stephen M. and Liu, Chang and Kliem, Bernhard and Masuda, Satoshi}, title = {Magnetic Structure of a Composite Solar Microwave Burst}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {856}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aaadbc}, pages = {10}, year = {2018}, abstract = {A composite flare consisting of an impulsive flare SOL2015-06-21T01:42 (GOES class M2.0) and a more gradual, long-duration flare SOL2015-06-21T02:36 (M2.6) from NOAA Active Region 12371, is studied using observations with the Nobeyama Radioheliograph (NoRH) and the Solar Dynamics Observatory (SDO). While composite flares are defined by their characteristic time profiles, in this paper we present imaging observations that demonstrate the spatial relationship of the two flares and allow us to address the nature of the evolution of a composite event. The NoRH maps show that the first flare is confined not only in time, but also in space, as evidenced by the stagnation of ribbon separation and the stationarity of the microwave source. The NoRH also detected another microwave source during the second flare, emerging from a different location where thermal plasma is so depleted that accelerated electrons could survive longer against Coulomb collisional loss. The AIA 131 angstrom images show that a sigmoidal EUV hot channel developed after the first flare and erupted before the second flare. We suggest that this eruption removed the high-lying flux to let the separatrix dome underneath reconnect with neighboring flux and the second microwave burst follow. This scenario explains how the first microwave burst is related to the much-delayed second microwave burst in this composite event.}, language = {en} } @article{SawickiAbelSchoell2018, author = {Sawicki, Jakub and Abel, Markus and Sch{\"o}ll, Eckehard}, title = {Synchronization of organ pipes}, series = {The European physical journal : B, Condensed matter and complex systems}, volume = {91}, journal = {The European physical journal : B, Condensed matter and complex systems}, number = {2}, publisher = {Springer}, address = {New York}, issn = {1434-6028}, doi = {10.1140/epjb/e2017-80485-8}, pages = {9}, year = {2018}, abstract = {We investigate synchronization of coupled organ pipes. Synchronization and reflection in the organ lead to undesired weakening of the sound in special cases. Recent experiments have shown that sound interaction is highly complex and nonlinear, however, we show that two delay-coupled Van-der-Pol oscillators appear to be a good model for the occurring dynamical phenomena. Here the coupling is realized as distance-dependent, or time-delayed, equivalently. Analytically, we investigate the synchronization frequency and bifurcation scenarios which occur at the boundaries of the Arnold tongues. We successfully compare our results to experimental data.}, language = {en} } @article{KrapfMarinariMetzleretal.2018, author = {Krapf, Diego and Marinari, Enzo and Metzler, Ralf and Oshanin, Gleb and Xu, Xinran and Squarcini, Alessio}, title = {Power spectral density of a single Brownian trajectory}, series = {New journal of physics : the open-access journal for physics}, volume = {20}, journal = {New journal of physics : the open-access journal for physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/aaa67c}, pages = {30}, year = {2018}, abstract = {The power spectral density (PSD) of any time-dependent stochastic processX (t) is ameaningful feature of its spectral content. In its text-book definition, the PSD is the Fourier transform of the covariance function of X-t over an infinitely large observation timeT, that is, it is defined as an ensemble-averaged property taken in the limitT -> infinity. Alegitimate question is what information on the PSD can be reliably obtained from single-trajectory experiments, if one goes beyond the standard definition and analyzes the PSD of a single trajectory recorded for a finite observation timeT. In quest for this answer, for a d-dimensional Brownian motion (BM) we calculate the probability density function of a single-trajectory PSD for arbitrary frequency f, finite observation time T and arbitrary number k of projections of the trajectory on different axes. We show analytically that the scaling exponent for the frequency-dependence of the PSD specific to an ensemble of BM trajectories can be already obtained from a single trajectory, while the numerical amplitude in the relation between the ensemble-averaged and single-trajectory PSDs is afluctuating property which varies from realization to realization. The distribution of this amplitude is calculated exactly and is discussed in detail. Our results are confirmed by numerical simulations and single-particle tracking experiments, with remarkably good agreement. In addition we consider a truncated Wiener representation of BM, and the case of a discrete-time lattice random walk. We highlight some differences in the behavior of a single-trajectory PSD for BM and for the two latter situations. The framework developed herein will allow for meaningful physical analysis of experimental stochastic trajectories.}, language = {en} } @article{GorenflotPaulkePiersimonietal.2018, author = {Gorenflot, Julien and Paulke, Andreas and Piersimoni, Fortunato and Wolf, Jannic and Kan, Zhipeng and Cruciani, Federico and El Labban, Abdulrahman and Neher, Dieter and Beaujuge, Pierre M. and Laquai, Frederic}, title = {From recombination dynamics to device performance}, series = {dvanced energy materials}, volume = {8}, journal = {dvanced energy materials}, number = {4}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.201701678}, pages = {12}, year = {2018}, abstract = {An original set of experimental and modeling tools is used to quantify the yield of each of the physical processes leading to photocurrent generation in organic bulk heterojunction solar cells, enabling evaluation of materials and processing condition beyond the trivial comparison of device performances. Transient absorption spectroscopy, "the" technique to monitor all intermediate states over the entire relevant timescale, is combined with time-delayed collection field experiments, transfer matrix simulations, spectral deconvolution, and parametrization of the charge carrier recombination by a two-pool model, allowing quantification of densities of excitons and charges and extrapolation of their kinetics to device-relevant conditions. Photon absorption, charge transfer, charge separation, and charge extraction are all quantified for two recently developed wide-bandgap donor polymers: poly(4,8-bis((2-ethylhexyl)oxy)benzo[1,2-b:4,5-b′]dithiophene-3,4-difluorothiophene) (PBDT[2F]T) and its nonfluorinated counterpart poly(4,8-bis((2-ethylhexyl)oxy)benzo[1,2-b:4,5-b′]dithiophene-3,4-thiophene) (PBDT[2H]T) combined with PC71BM in bulk heterojunctions. The product of these yields is shown to agree well with the devices' external quantum efficiency. This methodology elucidates in the specific case studied here the origin of improved photocurrents obtained when using PBDT[2F]T instead of PBDT[2H]T as well as upon using solvent additives. Furthermore, a higher charge transfer (CT)-state energy is shown to lead to significantly lower energy losses (resulting in higher VOC) during charge generation compared to P3HT:PCBM.}, language = {en} } @article{DierckeKuckeinVermaetal.2018, author = {Diercke, Andrea and Kuckein, Christoph and Verma, Meetu and Denker, Carsten}, title = {Counter-streaming flows in a giant quiet-Sun filament observed in the extreme ultraviolet}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {611}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201730536}, pages = {11}, year = {2018}, abstract = {Aims. The giant solar filament was visible on the solar surface from 2011 November 8-23. Multiwavelength data from the Solar Dynamics Observatory (SDO) were used to examine counter-streaming flows within the spine of the filament. Methods. We use data from two SDO instruments, the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI), covering the whole filament, which stretched over more than half a solar diameter. H alpha images from the Kanzelhohe Solar Observatory (KSO) provide context information of where the spine of the filament is defined and the barbs are located. We apply local correlation tracking (LCT) to a two-hour time series on 2011 November 16 of the AIA images to derive horizontal flow velocities of the filament. To enhance the contrast of the AIA images, noise adaptive fuzzy equalization (NAFE) is employed, which allows us to identify and quantify counter-streaming flows in the filament. We observe the same cool filament plasma in absorption in both H alpha and EUV images. Hence, the counter-streaming flows are directly related to this filament material in the spine. In addition, we use directional flow maps to highlight the counter-streaming flows. Results. We detect counter-streaming flows in the filament, which are visible in the time-lapse movies in all four examined AIA wavelength bands (lambda 171 angstrom, lambda 193 angstrom, lambda 304 angstrom, and lambda 211 angstrom). In the time-lapse movies we see that these persistent flows lasted for at least two hours, although they became less prominent towards the end of the time series. Furthermore, by applying LCT to the images we clearly determine counter-streaming flows in time series of lambda 171 angstrom and lambda 193 angstrom images. In the lambda 304 angstrom wavelength band, we only see minor indications for counter-streaming flows with LCT, while in the lambda 211 angstrom wavelength band the counter-streaming flows are not detectable with this method. The diverse morphology of the filament in H alpha and EUV images is caused by different absorption processes, i.e., spectral line absorption and absorption by hydrogen and helium continua, respectively. The horizontal flows reach mean flow speeds of about 0.5 km s(-1) for all wavelength bands. The highest horizontal flow speeds are identified in the lambda 171 angstrom band with flow speeds of up to 2.5 km s(-1). The results are averaged over a time series of 90 minutes. Because the LCT sampling window has finite width, a spatial degradation cannot be avoided leading to lower estimates of the flow velocities as compared to feature tracking or Doppler measurements. The counter-streaming flows cover about 15-20\% of the whole area of the EUV filament channel and are located in the central part of the spine. Conclusions. Compared to the ground-based observations, the absence of seeing effects in AIA observations reveal counter-streaming flows in the filament even with a moderate image scale of 0 '.6 pixel(-1). Using a contrast enhancement technique, these flows can be detected and quantified with LCT in different wavelengths. We confirm the omnipresence of counter-streaming flows also in giant quiet-Sun filaments.}, language = {en} } @article{LeiendeckerLichtBorghsetal.2018, author = {Leiendecker, Mai-Thi and Licht, Christopher J. and Borghs, Jannik and Mooney, David J. and Zimmermann, Marc and B{\"o}ker, Alexander}, title = {Physical polyurethane hydrogels via charge shielding through acids or salts}, series = {Macromolecular rapid communications}, volume = {39}, journal = {Macromolecular rapid communications}, number = {7}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1336}, doi = {10.1002/marc.201700711}, pages = {5}, year = {2018}, abstract = {Physical hydrogels with tunable stress-relaxation and excellent stress recovery are formed from anionic polyurethanes via addition of acids, monovalent salts, or divalent salts. Gel properties can be widely adjusted through pH, salt valence, salt concentration, and monomer composition. We propose and investigate a novel gelation mechanism based on a colloidal system interacting through charge repulsion and chrage shielding, allowing a broad use of the material, from acidic (pH 4-5.5) to pH-neutral hydrogels with Young's moduli ranging from 10 to 140 kPa.}, language = {en} } @article{Sachse2018, author = {Sachse, Manuel}, title = {A planetary dust ring generated by impact-ejection from the Galilean satellites}, series = {Icarus : international journal of solar system studies}, volume = {303}, journal = {Icarus : international journal of solar system studies}, publisher = {Elsevier}, address = {San Diego}, issn = {0019-1035}, doi = {10.1016/j.icarus.2017.10.011}, pages = {166 -- 180}, year = {2018}, abstract = {All outer planets in the Solar System are surrounded by a ring system. Many of these rings are dust rings or they contain at least a high proportion of dust. They are often formed by impacts of micro-meteoroids onto embedded bodies. The ejected material typically consists of micron-sized charged particles, which are susceptible to gravitational and non-gravitational forces. Generally, detailed information on the dynamics and distribution of the dust requires expensive numerical simulations of a large number of particles. Here we develop a relatively simple and fast, semi-analytical model for an impact-generated planetary dust ring governed by the planet's gravity and the relevant perturbation forces for the dynamics of small charged particles. The most important parameter of the model is the dust production rate, which is a linear factor in the calculation of the dust densities. We apply our model to dust ejected from the Galilean satellites using production rates obtained from flybys of the dust sources. The dust densities predicted by our model are in good agreement with numerical simulations and with in situ measurements by the Galileo spacecraft. The lifetimes of large particles are about two orders of magnitude greater than those of small ones, which implies a flattening of the size distribution in circumplanetary space. Information about the distribution of circumplanetary dust is also important for the risk assessment of spacecraft orbits in the respective regions.}, language = {en} } @article{ChengKliemDing2018, author = {Cheng, Xin and Kliem, Bernhard and Ding, Mingde}, title = {Unambiguous evidence of filament splitting-induced partial eruptions}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {856}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aab08d}, pages = {15}, year = {2018}, abstract = {Coronal mass ejections are often considered to result from the full eruption of a magnetic flux rope (MFR). However, it is recognized that, in some events, the MFR may release only part of its flux, with the details of the implied splitting not completely established due to limitations in observations. Here, we investigate two partial eruption events including a confined and a successful one. Both partial eruptions are a consequence of the vertical splitting of a filament-hosting MFR involving internal reconnection. A loss of equilibrium in the rising part of the magnetic flux is suggested by the impulsive onset of both events and by the delayed onset of reconnection in the confined event. The remaining part of the flux might be line-tied to the photosphere in a bald patch (BP) separatrix surface, and we confirm the existence of extended BP sections for the successful eruption. The internal reconnection is signified by brightenings in the body of one filament and between the rising and remaining parts of both filaments. It evolves quickly into the standard current sheet reconnection in the wake of the eruption. As a result, regardless of being confined or successful, both eruptions produce hard X-ray sources and flare loops below the erupting but above the surviving flux, as well as a pair of flare ribbons enclosing the latter.}, language = {en} } @article{BaushevBarkov2018, author = {Baushev, Anton N. and Barkov, M. V.}, title = {Why does Einasto profile index n similar to 6 occur so frequently?}, series = {Journal of cosmology and astroparticle physics}, journal = {Journal of cosmology and astroparticle physics}, number = {3}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1475-7516}, doi = {10.1088/1475-7516/2018/03/034}, pages = {15}, year = {2018}, abstract = {We consider the behavior of spherically symmetric Einasto halos composed of gravitating particles in the Fokker-Planck approximation. This approach allows us to consider the undesirable influence of close encounters in the N-body simulations more adequately than the generally accepted criteria. The Einasto profile with index n approximate to 6 is a stationary solution of the Fokker-Planck equation in the halo center. There are some reasons to believe that the solution is an attractor. Then the Fokker-Planck diffusion tends to transform a density profile to the equilibrium one with the Einasto index n approximate to 6. We suggest this effect as a possible reason why the Einasto index n approximate to 6 occurs so frequently in the interpretation of N-body simulation results. The results obtained cast doubt on generally accepted criteria of N-body simulation convergence.}, language = {en} } @article{DenkerDinevaBalthasaretal.2018, author = {Denker, Carsten and Dineva, Ekaterina and Balthasar, Horst and Verma, Meetu and Kuckein, Christoph and Diercke, Andrea and Manrique Gonzalez, Sergio Javier Gonzalez}, title = {Image Quality in High-resolution and High-cadence Solar Imaging}, series = {Solar physics : a journal for solar and solar-stellar research and the study of solar terrestrial physics}, volume = {293}, journal = {Solar physics : a journal for solar and solar-stellar research and the study of solar terrestrial physics}, number = {3}, publisher = {Springer}, address = {Dordrecht}, issn = {0038-0938}, doi = {10.1007/s11207-018-1261-1}, pages = {24}, year = {2018}, abstract = {Broad-band imaging and even imaging with a moderate bandpass (about 1 nm) provides a photon-rich environment, where frame selection (lucky imaging) becomes a helpful tool in image restoration, allowing us to perform a cost-benefit analysis on how to design observing sequences for imaging with high spatial resolution in combination with real-time correction provided by an adaptive optics (AO) system. This study presents high-cadence (160 Hz) G-band and blue continuum image sequences obtained with the High-resolution Fast Imager (HiFI) at the 1.5-meter GREGOR solar telescope, where the speckle-masking technique is used to restore images with nearly diffraction-limited resolution. The HiFI employs two synchronized large-format and high-cadence sCMOS detectors. The median filter gradient similarity (MFGS) image-quality metric is applied, among others, to AO-corrected image sequences of a pore and a small sunspot observed on 2017 June 4 and 5. A small region of interest, which was selected for fast-imaging performance, covered these contrastrich features and their neighborhood, which were part of Active Region NOAA 12661. Modifications of theMFGS algorithm uncover the field-and structure-dependency of this imagequality metric. However, MFGS still remains a good choice for determining image quality without a priori knowledge, which is an important characteristic when classifying the huge number of high-resolution images contained in data archives. In addition, this investigation demonstrates that a fast cadence and millisecond exposure times are still insufficient to reach the coherence time of daytime seeing. Nonetheless, the analysis shows that data acquisition rates exceeding 50 Hz are required to capture a substantial fraction of the best seeing moments, significantly boosting the performance of post-facto image restoration.}, language = {en} } @article{UolaLeverGuehneetal.2018, author = {Uola, Roope and Lever, Fabiano and G{\"u}hne, Otfried and Pellonpaa, Juha-Pekka}, title = {Unified picture for spatial, temporal, and channel steering}, series = {Physical review : A, Atomic, molecular, and optical physics}, volume = {97}, journal = {Physical review : A, Atomic, molecular, and optical physics}, number = {3}, publisher = {American Physical Society}, address = {College Park}, issn = {2469-9926}, doi = {10.1103/PhysRevA.97.032301}, pages = {6}, year = {2018}, abstract = {Quantum steering describes how local actions on a quantum system can affect another, spacelike separated, quantum state. Lately, quantum steering has been formulated also for timelike scenarios and for quantum channels. We approach all the three scenarios as one using tools from Stinespring dilations of quantum channels. By applying our technique we link all three steering problems one-to-one with the incompatibility of quantum measurements, a result formerly known only for spatial steering. We exploit this connection by showing how measurement uncertainty relations can be used as tight steering inequalities for all three scenarios. Moreover, we show that certain notions of temporal and spatial steering are fully equivalent and prove a hierarchy between temporal steering and macrorealistic hidden variable models.}, language = {en} } @article{Goychuk2018, author = {Goychuk, Igor}, title = {Sensing magnetic fields with magnetosensitive ion channels}, series = {Sensors}, volume = {18}, journal = {Sensors}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s18030728}, pages = {19}, year = {2018}, abstract = {Magnetic nanoparticles are met across many biological species ranging from magnetosensitive bacteria, fishes, bees, bats, rats, birds, to humans. They can be both of biogenetic origin and due to environmental contamination, being either in paramagnetic or ferromagnetic state. The energy of such naturally occurring single-domain magnetic nanoparticles can reach up to 10-20 room k(B)T in the magnetic field of the Earth, which naturally led to supposition that they can serve as sensory elements in various animals. This work explores within a stochastic modeling framework a fascinating hypothesis of magnetosensitive ion channels with magnetic nanoparticles serving as sensory elements, especially, how realistic it is given a highly dissipative viscoelastic interior of living cells and typical sizes of nanoparticles possibly involved.}, language = {en} } @article{HsuSchmidtKempfetal.2018, author = {Hsu, Hsiang-Wen and Schmidt, J{\"u}rgen and Kempf, Sascha and Postberg, Frank and Moragas-Klostermeyer, Georg and Seiss, Martin and Hoffmann, Holger and Burton, Marcia and Ye, ShengYi and Kurth, William S. and Horanyi, Mihaly and Khawaja, Nozair and Spahn, Frank and Schirdewahn, Daniel and Moore, Luke and Cuzzi, Jeff and Jones, Geraint H. and Srama, Ralf}, title = {In situ collection of dust grains falling from Saturn's rings into its atmosphere}, series = {Science}, volume = {362}, journal = {Science}, number = {6410}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.aat3185}, pages = {49 -- +}, year = {2018}, abstract = {Saturn's main rings are composed of >95\% water ice, and the nature of the remaining few percent has remained unclear. The Cassini spacecraft's traversals between Saturn and its innermost D ring allowed its cosmic dust analyzer (CDA) to collect material released from the main rings and to characterize the ring material infall into Saturn. We report the direct in situ detection of material from Saturn's dense rings by the CDA impact mass spectrometer. Most detected grains are a few tens of nanometers in size and dynamically associated with the previously inferred "ring rain." Silicate and water-ice grains were identified, in proportions that vary with latitude. Silicate grains constitute up to 30\% of infalling grains, a higher percentage than the bulk silicate content of the rings.}, language = {en} } @misc{MaierWolfKeiligetal.2018, author = {Maier, Philipp and Wolf, J{\"u}rgen and Keilig, Thomas and Krabbe, Alfred and Duffard, Rene and Ortiz, Jose-Luis and Klinkner, Sabine and Lengowski, Michael and M{\"u}ller, Thomas and Lockowandt, Christian and Krockstedt, Christian and Kappelmann, Norbert and Stelzer, Beate and Werner, Klaus and Geier, Stephan Alfred and Kalkuhl, Christoph and Rauch, Thomas and Schanz, Thomas and Barnstedt, J{\"u}rgen and Conti, Lauro and Hanke, Lars}, title = {Towards a European Stratospheric Balloon Observatory}, series = {Ground-based and Airborne Telescopes VII}, volume = {10700}, journal = {Ground-based and Airborne Telescopes VII}, publisher = {SPIE-INT Soc Optical Engineering}, address = {Bellingham}, isbn = {978-1-5106-1954-8}, issn = {0277-786X}, doi = {10.1117/12.2319248}, pages = {12}, year = {2018}, abstract = {This paper presents the concept of a community-accessible stratospheric balloon-based observatory that is currently under preparation by a consortium of European research institutes and industry. We present the technical motivation, science case, instrumentation, and a two-stage image stabilization approach of the 0.5-m UV/visible platform. In addition, we briefly describe the novel mid-sized stabilized balloon gondola under design to carry telescopes in the 0.5 to 0.6 m range as well as the currently considered flight option for this platform. Secondly, we outline the scientific and technical motivation for a large balloon-based FIR telescope and the ESBO DS approach towards such an infrastructure.}, language = {en} } @misc{RisbeyLewandowskyCowtanetal.2018, author = {Risbey, James S. and Lewandowsky, Stephan and Cowtan, Kevin and Oreskes, Naomi and Rahmstorf, Stefan and Jokim{\"a}ki, Ari and Foster, Grant}, title = {A fluctuation in surface temperature in historical context}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, volume = {13}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1023}, issn = {1866-8372}, doi = {10.25932/publishup-46804}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-468041}, pages = {26}, year = {2018}, abstract = {This work reviews the literature on an alleged global warming 'pause' in global mean surface temperature (GMST) to determine how it has been defined, what time intervals are used to characterise it, what data are used to measure it, and what methods used to assess it. We test for 'pauses', both in the normally understood meaning of the term to mean no warming trend, as well as for a 'pause' defined as a substantially slower trend in GMST. The tests are carried out with the historical versions of GMST that existed for each pause-interval tested, and with current versions of each of the GMST datasets. The tests are conducted following the common (but questionable) practice of breaking the linear fit at the start of the trend interval ('broken' trends), and also with trends that are continuous with the data bordering the trend interval. We also compare results when appropriate allowance is made for the selection bias problem. The results show that there is little or no statistical evidence for a lack of trend or slower trend in GMST using either the historical data or the current data. The perception that there was a 'pause' in GMST was bolstered by earlier biases in the data in combination with incomplete statistical testing.}, language = {en} } @misc{MannRahmstorfKornhuberetal.2018, author = {Mann, Michael E. and Rahmstorf, Stefan and Kornhuber, Kai and Steinman, Byron A. and Miller, Sonya K. and Petri, Stefan and Coumou, Dim}, title = {Projected changes in persistent extreme summer weather events}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {994}, issn = {1866-8372}, doi = {10.25932/publishup-44641}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-446416}, pages = {12}, year = {2018}, abstract = {Persistent episodes of extreme weather in the Northern Hemisphere summer have been associated with high-amplitude quasi-stationary atmospheric Rossby waves, with zonal wave numbers 6 to 8 resulting from the phenomenon of quasi-resonant amplification (QRA). A fingerprint for the occurrence of QRA can be defined in terms of the zonally averaged surface temperature field. Examining state-of-the-art [Coupled Model Intercomparison Project Phase 5 (CMIP5)] climate model projections, we find that QRA events are likely to increase by similar to 50\% this century under business-as-usual carbon emissions, but there is considerable variation among climate models. Some predict a near tripling of QRA events by the end of the century, while others predict a potential decrease. Models with amplified Arctic warming yield the most pronounced increase in QRA events. The projections are strongly dependent on assumptions regarding the nature of changes in radiative forcing associated with anthropogenic aerosols over the next century. One implication of our findings is that a reduction in midlatitude aerosol loading could actually lead to Arctic de-amplification this century, ameliorating potential increases in persistent extreme weather events.}, language = {en} } @misc{AlonsoStangeBeta2018, author = {Alonso, Sergio and Stange, Maike and Beta, Carsten}, title = {Modeling random crawling, membrane deformation and intracellular polarity of motile amoeboid cells}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {1014}, issn = {1866-8372}, doi = {10.25932/publishup-45974}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459745}, pages = {24}, year = {2018}, abstract = {Amoeboid movement is one of the most widespread forms of cell motility that plays a key role in numerous biological contexts. While many aspects of this process are well investigated, the large cell-to-cell variability in the motile characteristics of an otherwise uniform population remains an open question that was largely ignored by previous models. In this article, we present a mathematical model of amoeboid motility that combines noisy bistable kinetics with a dynamic phase field for the cell shape. To capture cell-to-cell variability, we introduce a single parameter for tuning the balance between polarity formation and intracellular noise. We compare numerical simulations of our model to experiments with the social amoeba Dictyostelium discoideum. Despite the simple structure of our model, we found close agreement with the experimental results for the center-of-mass motion as well as for the evolution of the cell shape and the overall intracellular patterns. We thus conjecture that the building blocks of our model capture essential features of amoeboid motility and may serve as a starting point for more detailed descriptions of cell motion in chemical gradients and confined environments.}, language = {en} } @misc{ReindlFinchSchaffenrothetal.2018, author = {Reindl, Nicole and Finch, Nicolle L. and Schaffenroth, Veronika and Barstow, Martin A. and Casewell, Sarah L. and Geier, Stephan Alfred and Bertolami Miller, Marcelo Miguel and Taubenberger, Stefan}, title = {Revealing the true nature of Hen2-428}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1129}, issn = {1866-8372}, doi = {10.25932/publishup-45970}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459703}, pages = {9}, year = {2018}, abstract = {The nucleus of Hen 2-428 is a short orbital period (4.2 h) spectroscopic binary, whose status as potential supernovae type Ia progenitor has raised some controversy in the literature. We present preliminary results of a thorough analysis of this interesting system, which combines quantitative non-local thermodynamic (non-LTE) equilibrium spectral modelling, radial velocity analysis, multi-band light curve fitting, and state-of-the art stellar evolutionary calculations. Importantly, we find that the dynamical system mass that is derived by using all available He II lines does not exceed the Chandrasekhar mass limit. Furthermore, the individual masses of the two central stars are too small to lead to an SN Ia in case of a dynamical explosion during the merger process.}, language = {en} } @misc{ShanGuanHubaceketal.2018, author = {Shan, Yuli and Guan, Dabo and Hubacek, Klaus and Zheng, Bo and Davis, Steven J. and Jia, Lichao and Liu, Jianghua and Liu, Zhu and Fromer, Neil and Mi, Zhifu and Meng, Jing and Deng, Xiangzheng and Li, Yuan and Lin, Jintai and Schroeder, Heike and Weisz, Helga and Schellnhuber, Hans Joachim}, title = {City-level climate change mitigation in China}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1096}, issn = {1866-8372}, doi = {10.25932/publishup-47154}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-471541}, pages = {18}, year = {2018}, abstract = {As national efforts to reduce CO2 emissions intensify, policy-makers need increasingly specific, subnational information about the sources of CO2 and the potential reductions and economic implications of different possible policies. This is particularly true in China, a large and economically diverse country that has rapidly industrialized and urbanized and that has pledged under the Paris Agreement that its emissions will peak by 2030. We present new, city level estimates of CO2 emissions for 182 Chinese cities, decomposed into 17 different fossil fuels, 46 socioeconomic sectors, and 7 industrial processes. We find that more affluent cities have systematically lower emissions per unit of gross domestic product (GDP), supported by imports from less affluent, industrial cities located nearby. In turn, clusters of industrial cities are supported by nearby centers of coal or oil extraction. Whereas policies directly targeting manufacturing and electric power infrastructure would drastically undermine the GDP of industrial cities, consumption based policies might allow emission reductions to be subsidized by those with greater ability to pay. In particular, sector based analysis of each city suggests that technological improvements could be a practical and effective means of reducing emissions while maintaining growth and the current economic structure and energy system. We explore city-level emission reductions under three scenarios of technological progress to show that substantial reductions (up to 31\%) are possible by updating a disproportionately small fraction of existing infrastructure.}, language = {en} } @article{HusemannBielbyJahnkeetal.2018, author = {Husemann, Bernd and Bielby, R. and Jahnke, K. and Arrigoni-Battaia, F. and Worseck, Gabor and Shanks, T. and Wardlow, J. and Scholtz, J.}, title = {Cosmic dance at z similar to 3}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {614}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201833363}, pages = {5}, year = {2018}, abstract = {We recently discovered that the luminous radio-quiet (QSO) LBQS 0302-0019 at z=3.286 is likely accompanied by an obscured AGN at 20 kpc projected distance, which we dubbed Jil. It represents the tightest candidate obscured/unobscured dual AGN system at z >3. To verify the dual AGN scenario we obtained deep K-s band (rest-frame V band) imaging with the VLT/HAWK-I+GRAAL instrument at 0 '.4 resolution during science verification in January 2018. Indeed, we detect the individual host galaxies of the QSO and Jil with estimated stellar masses of log(M-*/M-circle dot)=11.4 +/- 0.5 and log(M-*/M-circle dot)=10.9 +/- 0.5, respectively. Near-IR spectra obtained with VLT-KMOS reveal a clear [O-III] lambda 5007 line detection at the location of Jil which does not contribute significantly to the Ks band flux. Both observations therefore corroborate the dual AGN scenario. A comparison to Illustris cosmological simulations suggests a parent halo mass of log(M-halo/M-*)=13.2 +/- 0.5 for this interacting galaxy system, corresponding to a very massive dark matter halo at that epoch.}, language = {en} } @article{SanchezAyasodelValleMartietal.2018, author = {Sanchez-Ayaso, Mar{\´i}a de la Estrella and del Valle, Maria Victoria and Marti, Josep and Romero, G. E. and Luque-Escamilla, Pedro Luis}, title = {Possible association of two Stellar Bowshocks with Unidentified Fermi Sources}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {861}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aac7c7}, pages = {9}, year = {2018}, abstract = {The bowshocks of runaway stars had been theoretically proposed as gamma-ray sources. However, this hypothesis has not been confirmed by observations to date. In this paper, we present two runaway stars (lambda Cep and LS 2355) whose bowshocks are coincident with the unidentified Fermi gamma-ray sources 3FLG J2210.1+5925 and 3FGL J1128.7-6232, respectively. After performing a cross-correlation between different catalogs at distinct wavelengths, we found that these bowshocks are the most peculiar objects in the Fermi position ellipses. Then we computed the inverse Compton emission and fitted the Fermi data in order to test the viability of both runaway stars as potential counterparts of the two high-energy sources. We obtained very reasonable values for the fitted parameters of both stars. We also evaluated the possibility for the source 3FGL J1128.7-6232, which is positionally coincident with a H II region, to be the result of background cosmic-ray protons interacting with the matter of the cloud, as well as the probability of a pure chance association. We conclude that the gamma rays from these Fermi sources might be produced in the bowshocks of the considered runaway stars. In such a case, these would be the first sources of this class ever detected at gamma rays.}, language = {en} } @article{VermaDenkerBalthasaretal.2018, author = {Verma, Meetu and Denker, Carsten and Balthasar, H. and Kuckein, Christoph and Rezaei, R. and Sobotka, Michal and Deng, N. and Wang, Haimin and Tritschler, A. and Collados, M. and Diercke, Andrea and Gonz{\´a}lez Manrique, Sergio Javier}, title = {High-resolution imaging and near-infrared spectroscopy of penumbral decay}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {614}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201731801}, pages = {14}, year = {2018}, abstract = {Aims. Combining high-resolution spectropolarimetric and imaging data is key to understanding the decay process of sunspots as it allows us to scrutinize the velocity and magnetic fields of sunspots and their surroundings. Methods. Active region NOAA 12597 was observed on 2016 September 24 with the 1.5-meter GREGOR solar telescope using high-spatial-resolution imaging as well as imaging spectroscopy and near-infrared (NIR) spectropolarimetry. Horizontal proper motions were estimated with local correlation tracking, whereas line-of-sight (LOS) velocities were computed with spectral line fitting methods. The magnetic field properties were inferred with the "Stokes Inversions based on Response functions" (SIR) code for the Si I and Ca I NIR lines. Results. At the time of the GREGOR observations, the leading sunspot had two light bridges indicating the onset of its decay. One of the light bridges disappeared, and an elongated, dark umbral core at its edge appeared in a decaying penumbral sector facing the newly emerging flux. The flow and magnetic field properties of this penumbral sector exhibited weak Evershed flow, moat flow, and horizontal magnetic field. The penumbral gap adjacent to the elongated umbral core and the penumbra in that penumbral sector displayed LOS velocities similar to granulation. The separating polarities of a new flux system interacted with the leading and central part of the already established active region. As a consequence, the leading spot rotated 55 degrees clockwise over 12 h. Conclusions. In the high-resolution observations of a decaying sunspot, the penumbral filaments facing the flux emergence site contained a darkened area resembling an umbral core filled with umbral dots. This umbral core had velocity and magnetic field properties similar to the sunspot umbra. This implies that the horizontal magnetic fields in the decaying penumbra became vertical as observed in flare-induced rapid penumbral decay, but on a very different time-scale.}, language = {en} } @article{KurfuerstFeldmeierKrticka2018, author = {Kurf{\"u}rst, P. and Feldmeier, Achim and Krticka, Jiri}, title = {Two-dimensional modeling of density and thermal structure of dense circumstellar outflowing disks}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {613}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201731300}, pages = {24}, year = {2018}, abstract = {Context. Evolution of massive stars is affected by a significant loss of mass either via (nearly) spherically symmetric stellar winds or by aspherical mass-loss mechanisms, namely the outflowing equatorial disks. However, the scenario that leads to the formation of a disk or rings of gas and dust around massive stars is still under debate. It is also unclear how various forming physical mechanisms of the circumstellar environment affect its shape and density, as well as its kinematic and thermal structure. Results. Our models show the geometric distribution and contribution of viscous heating that begins to dominate in the central part of the disk for mass-loss rates higher than (M) over dot greater than or similar to 10(-10) M-circle dot yr(-1). In the models of dense viscous disks with (M) over dot > 10(-8) M-circle dot yr(-1), the viscosity increases the central temperature up to several tens of thousands of Kelvins, however the temperature rapidly drops with radius and with distance from the disk midplane. The high mass-loss rates and high viscosity lead to instabilities with significant waves or bumps in density and temperature in the very inner disk region. Conclusions. The two-dimensional radial-vertical models of dense outflowing disks including the full Navier-Stokes viscosity terms show very high temperatures that are however limited to only the central disk cores inside the optically thick area, while near the edge of the optically thick region the temperature may be low enough for the existence of neutral hydrogen, for example.}, language = {en} } @article{KegelesOritiTomlin2018, author = {Kegeles, Alexander and Oriti, Daniele and Tomlin, Casey}, title = {Inequivalent coherent state representations in group field theory}, series = {Classical and quantum gravit}, volume = {35}, journal = {Classical and quantum gravit}, number = {12}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0264-9381}, doi = {10.1088/1361-6382/aac39f}, pages = {23}, year = {2018}, abstract = {In this paper we propose an algebraic formulation of group field theory and consider non-Fock representations based on coherent states. We show that we can construct representations with an infinite number of degrees of freedom on compact manifolds. We also show that these representations break translation symmetry. Since such representations can be regarded as quantum gravitational systems with an infinite number of fundamental pre-geometric building blocks, they may be more suitable for the description of effective geometrical phases of the theory.}, language = {en} } @article{QuadeAbelKutzetal.2018, author = {Quade, Markus and Abel, Markus and Kutz, J. Nathan and Brunton, Steven L.}, title = {Sparse identification of nonlinear dynamics for rapid model recovery}, series = {Chaos : an interdisciplinary journal of nonlinear science}, volume = {28}, journal = {Chaos : an interdisciplinary journal of nonlinear science}, number = {6}, publisher = {American Institute of Physics}, address = {Melville}, issn = {1054-1500}, doi = {10.1063/1.5027470}, pages = {10}, year = {2018}, abstract = {Big data have become a critically enabling component of emerging mathematical methods aimed at the automated discovery of dynamical systems, where first principles modeling may be intractable. However, in many engineering systems, abrupt changes must be rapidly characterized based on limited, incomplete, and noisy data. Many leading automated learning techniques rely on unrealistically large data sets, and it is unclear how to leverage prior knowledge effectively to re-identify a model after an abrupt change. In this work, we propose a conceptual framework to recover parsimonious models of a system in response to abrupt changes in the low-data limit. First, the abrupt change is detected by comparing the estimated Lyapunov time of the data with the model prediction. Next, we apply the sparse identification of nonlinear dynamics (SINDy) regression to update a previously identified model with the fewest changes, either by addition, deletion, or modification of existing model terms. We demonstrate this sparse model recovery on several examples for abrupt system change detection in periodic and chaotic dynamical systems. Our examples show that sparse updates to a previously identified model perform better with less data, have lower runtime complexity, and are less sensitive to noise than identifying an entirely new model. The proposed abrupt-SINDy architecture provides a new paradigm for the rapid and efficient recovery of a system model after abrupt changes.}, language = {en} } @article{YeKurthHospodarskyetal.2018, author = {Ye, S. -Y. and Kurth, William S. and Hospodarsky, George B. and Persoon, Ann M. and Gurnett, Don A. and Morooka, Michiko and Wahlund, Jan-Erik and Hsu, Hsiang-Wen and Seiss, Martin and Srama, Ralf}, title = {Cassini RPWS dust observation near the Janus/Epimetheus orbit}, series = {Journal of geophysical research : Space physics}, volume = {123}, journal = {Journal of geophysical research : Space physics}, number = {6}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9380}, doi = {10.1029/2017JA025112}, pages = {4952 -- 4960}, year = {2018}, abstract = {During the Ring Grazing orbits near the end of Cassini mission, the spacecraft crossed the equatorial plane near the orbit of Janus/Epimetheus (similar to 2.5 Rs). This region is populated with dust particles that can be detected by the Radio and Plasma Wave Science (RPWS) instrument via an electric field antenna signal. Analysis of the voltage waveforms recorded on the RPWS antennas provides estimations of the density and size distribution of the dust particles. Measured RPWS profiles, fitted with Lorentzian functions, are shown to be mostly consistent with the Cosmic Dust Analyzer, the dedicated dust instrument on board Cassini. The thickness of the dusty ring varies between 600 and 1,000 km. The peak location shifts north and south within 100 km of the ring plane, likely a function of the precession phase of Janus orbit.}, language = {en} } @article{EstradaDelvenneHatanoetal.2018, author = {Estrada, Ernesto and Delvenne, Jean-Charles and Hatano, Naomichi and Mateos, Jose L. and Metzler, Ralf and Riascos, Alejandro P. and Schaub, Michael T.}, title = {Random multi-hopper model}, series = {Journal of Complex Networks}, volume = {6}, journal = {Journal of Complex Networks}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {2051-1310}, doi = {10.1093/comnet/cnx043}, pages = {382 -- 403}, year = {2018}, abstract = {We develop a mathematical model considering a random walker with long-range hops on arbitrary graphs. The random multi-hopper can jump to any node of the graph from an initial position, with a probability that decays as a function of the shortest-path distance between the two nodes in the graph. We consider here two decaying functions in the form of Laplace and Mellin transforms of the shortest-path distances. We prove that when the parameters of these transforms approach zero asymptotically, the hitting time in the multi-hopper approaches the minimum possible value for a normal random walker. We show by computational experiments that the multi-hopper explores a graph with clusters or skewed degree distributions more efficiently than a normal random walker. We provide computational evidences of the advantages of the random multi-hopper model with respect to the normal random walk by studying deterministic, random and real-world networks.}, language = {en} } @article{WetterichSchirrmeisteNazarovaetal.2018, author = {Wetterich, Sebastian and Schirrmeiste, Lutz and Nazarova, Larisa B. and Palagushkina, Olga and Bobrov, Anatoly and Pogosyan, Lilit and Savelieva, Larisa and Syrykh, Liudmila and Matthes, Heidrun and Fritz, Michael and G{\"u}nther, Frank and Opel, Thomas and Meyer, Hanno}, title = {Holocene thermokarst and pingo development in the Kolyma Lowland (NE Siberia)}, series = {Permafrost and Periglacial Processes}, volume = {29}, journal = {Permafrost and Periglacial Processes}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {1045-6740}, doi = {10.1002/ppp.1979}, pages = {182 -- 198}, year = {2018}, abstract = {Ground ice and sedimentary records of a pingo exposure reveal insights into Holocene permafrost, landscape and climate dynamics. Early to mid-Holocene thermokarst lake deposits contain rich floral and faunal paleoassemblages, which indicate lake shrinkage and decreasing summer temperatures (chironomid-based T-July) from 10.5 to 3.5 cal kyr BP with the warmest period between 10.5 and 8 cal kyr BP. Talik refreezing and pingo growth started about 3.5 cal kyr BP after disappearance of the lake. The isotopic composition of the pingo ice (delta O-18 - 17.1 +/- 0.6 parts per thousand, delta D -144.5 +/- 3.4 parts per thousand, slope 5.85, deuterium excess -7.7 +/- 1.5 parts per thousand) point to the initial stage of closed-system freezing captured in the record. A differing isotopic composition within the massive ice body was found (delta O-18 - 21.3 +/- 1.4 parts per thousand, delta D -165 +/- 11.5 parts per thousand, slope 8.13, deuterium excess 4.9 +/- 3.2 parts per thousand), probably related to the infill of dilation cracks by surface water with quasi-meteoric signature. Currently inactive syngenetic ice wedges formed in the thermokarst basin after lake drainage. The pingo preserves traces of permafrost response to climate variations in terms of ground-ice degradation (thermokarst) during the early and mid-Holocene, and aggradation (wedge-ice and pingo-ice growth) during the late Holocene.}, language = {en} } @article{HolzmeierWolfGiengeretal.2018, author = {Holzmeier, Fabian and Wolf, Thomas J. A. and Gienger, Christian and Wagner, Isabella and Bozek, J. and Nandi, S. and Nicolas, C. and Fischer, Ingo and G{\"u}hr, Markus and Fink, Reinhold F.}, title = {Normal and resonant Auger spectroscopy of isocyanic acid, HNCO}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {149}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {3}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.5030621}, pages = {13}, year = {2018}, abstract = {In this paper, we investigate HNCO by resonant and nonresonant Auger electron spectroscopy at the K-edges of carbon, nitrogen, and oxygen, employing soft X-ray synchrotron radiation. In comparison with the isosteric but linear CO2 molecule, spectra of the bent HNCO molecule are similar but more complex due to its reduced symmetry, wherein the degeneracy of the π-orbitals is lifted. Resonant Auger electron spectra are presented at different photon energies over the first core-excited 1s → 10a′ resonance. All Auger electron spectra are assigned based on ab initio configuration interaction computations combined with the one-center approximation for Auger intensities and moment theory to consider vibrational motion. The calculated spectra were scaled by a newly introduced energy scaling factor, and generally, good agreement is found between experiment and theory for normal as well as resonant Auger electron spectra. A comparison of resonant Auger spectra with nonresonant Auger structures shows a slight broadening as well as a shift of the former spectra between -8 and -9 eV due to the spectating electron. Since HNCO is a small molecule and contains the four most abundant atoms of organic molecules, the reported Auger electron decay spectra will provide a benchmark for further theoretical approaches in the computation of core electron spectra.}, language = {en} } @article{IzotovWorseckSchaereretal.2018, author = {Izotov, Y. I. and Worseck, G{\´a}bor and Schaerer, Daniel and Guseva, N. G. and Thuan, T. X. and Fricke, K. J. and Verhamme, Anne and Orlitova, I.}, title = {Low-redshift Lyman continuum leaking galaxies with high [O III]/[O II] ratios}, series = {Monthly notices of the Royal Astronomical Society}, volume = {478}, journal = {Monthly notices of the Royal Astronomical Society}, number = {4}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/sty1378}, pages = {4851 -- 4865}, year = {2018}, abstract = {We present observations with the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope of five star-forming galaxies at redshifts z in the range 0.2993-0.4317 and with high emission-line flux ratios O-32 = [O III]lambda 5007/[O II]lambda 3727 similar to 8-27 aiming to detect the Lyman continuum (LyC) emission. We detect LyC emission in all galaxies with the escape fractions f(esc)(LyC) in a range of 2-72 per cent. A narrow Ly alpha emission line with two peaks in four galaxies and with three peaks in one object is seen in medium-resolution COS spectra with a velocity separation between the peaks V-sep varying from similar to 153 to similar to 345 km s(-1). We find a general increase of the LyC escape fraction with increasing O-32 and decreasing stellar mass M-star, but with a large scatter of f(esc)(LyC). A tight anticorrelation is found between f(esc)(LyC) and V-sep making V-sep a good parameter for the indirect determination of the LyC escape fraction. We argue that one possible source driving the escape of ionizing radiation is stellar winds and radiation from hot massive stars.}, language = {en} } @article{GraetzSeissSpahn2018, author = {Gr{\"a}tz, Fabio M. and Seiss, Martin and Spahn, Frank}, title = {Formation of moon-induced gaps in dense planetary rings}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {862}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aace00}, pages = {9}, year = {2018}, abstract = {We develop an axisymmetric diffusion model to describe radial density profiles in the vicinity of tiny moons embedded in planetary rings. Our diffusion model accounts for the gravitational scattering of the ring particles by an embedded moon and for the viscous diffusion of the ring matter back into the gap. With test particle simulations, we show that the scattering of the ring particles passing the moon is larger for small impact parameters than estimated by Goldreich \& Tremaine and Namouni. This is significant for modeling the Keeler gap. We apply our model to the gaps of the moons Pan and Daphnis embedded in the outer A ring of Saturn with the aim to estimate the shear viscosity of the ring in the vicinity of the Encke and Keeler gap. In addition, we analyze whether tiny icy moons whose dimensions lie below Cassini's resolution capabilities would be able to explain the gap structure of the C ring and the Cassini division.}, language = {en} } @article{HeHuangLietal.2018, author = {He, Yongli and Huang, Jianping and Li, Dongdong and Xie, Yongkun and Zhang, Guolong and Qi, Yulei and Wang, Shanshan and Totz, Sonja Juliana}, title = {Comparison of the effect of land-sea thermal contrast on interdecadal variations in winter and summer blockings}, series = {Climate dynamics : observational, theoretical and computational research on the climate system}, volume = {51}, journal = {Climate dynamics : observational, theoretical and computational research on the climate system}, number = {4}, publisher = {Springer}, address = {New York}, issn = {0930-7575}, doi = {10.1007/s00382-017-3954-9}, pages = {1275 -- 1294}, year = {2018}, abstract = {The influence of winter and summer land-sea surface thermal contrast on blocking for 1948-2013 is investigated using observations and the coupled model intercomparison project outputs. The land-sea index (LSI) is defined to measure the changes of zonal asymmetric thermal forcing under global warming. The summer LSI shows a slower increasing trend than winter during this period. For the positive of summer LSI, the EP flux convergence induced by the land-sea thermal forcing in the high latitude becomes weaker than normal, which induces positive anomaly of zonal-mean westerly and double-jet structure. Based on the quasiresonance amplification mechanism, the narrow and reduced westerly tunnel between two jet centers provides a favor environment for more frequent blocking. Composite analysis demonstrates that summer blocking shows an increasing trend of event numbers and a decreasing trend of durations. The numbers of the short-lived blocking persisting for 5-9 days significantly increases and the numbers of the long-lived blocking persisting for longer than 10 days has a weak increase than that in negative phase of summer LSI. The increasing transient wave activities induced by summer LSI is responsible for the decreasing duration of blockings. The increasing blocking due to summer LSI can further strengthen the continent warming and increase the summer LSI, which forms a positive feedback. The opposite dynamical effect of LSI on summer and winter blocking are discussed and found that the LSI-blocking negative feedback partially reduces the influence of the above positive feedback and induce the weak summer warming rate.}, language = {en} } @article{LeitnerJosefssonMazzaetal.2018, author = {Leitner, T. and Josefsson, Ida and Mazza, T. and Miedema, Piter S. and Schr{\"o}der, H. and Beye, Martin and Kunnus, Kristjan and Schreck, S. and D{\"u}sterer, Stefan and F{\"o}hlisch, Alexander and Meyer, M. and Odelius, Michael and Wernet, Philippe}, title = {Time-resolved electron spectroscopy for chemical analysis of photodissociation}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {149}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {4}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.5035149}, pages = {12}, year = {2018}, abstract = {The prototypical photoinduced dissociation of Fe(CO)(5) in the gas phase is used to test time-resolved x-ray photoelectron spectroscopy for studying photochemical reactions. Upon one-photon excitation at 266 nm, Fe(CO)(5) successively dissociates to Fe(CO)(4) and Fe(CO)(3) along a pathway where both fragments retain the singlet multiplicity of Fe(CO)(5). The x-ray free-electron laser FLASH is used to probe the reaction intermediates Fe(CO)(4) and Fe(CO)(3) with time-resolved valence and core-level photoelectron spectroscopy, and experimental results are interpreted with ab initio quantum chemical calculations. Changes in the valence photoelectron spectra are shown to reflect changes in the valenceorbital interactions upon Fe-CO dissociation, thereby validating fundamental theoretical concepts in Fe-CO bonding. Chemical shifts of CO 3 sigma inner-valence and Fe 3 sigma core-level binding energies are shown to correlate with changes in the coordination number of the Fe center. We interpret this with coordination-dependent charge localization and core-hole screening based on calculated changes in electron densities upon core-hole creation in the final ionic states. This extends the established capabilities of steady-state electron spectroscopy for chemical analysis to time-resolved investigations. It could also serve as a benchmark for howcharge and spin density changes in molecular dissociation and excited-state dynamics are expressed in valence and core-level photoelectron spectroscopy. Published by AIP Publishing.}, language = {en} } @article{BenduhnPiersimoniLondietal.2018, author = {Benduhn, Johannes and Piersimoni, Fortunato and Londi, Giacomo and Kirch, Anton and Widmer, Johannes and Koerner, Christian and Beljonne, David and Neher, Dieter and Spoltore, Donato and Vandewal, Koen}, title = {Impact of triplet excited states on the open-circuit voltage of organic solar cells}, series = {dvanced energy materials}, volume = {8}, journal = {dvanced energy materials}, number = {21}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.201800451}, pages = {7}, year = {2018}, abstract = {The best organic solar cells (OSCs) achieve comparable peak external quantum efficiencies and fill factors as conventional photovoltaic devices. However, their voltage losses are much higher, in particular those due to nonradiative recombination. To investigate the possible role of triplet states on the donor or acceptor materials in this process, model systems comprising Zn- and Cu-phthalocyanine (Pc), as well as fluorinated versions of these donors, combined with C-60 as acceptor are studied. Fluorination allows tuning the energy level alignment between the lowest energy triplet state (T-1) and the charge-transfer (CT) state, while the replacement of Zn by Cu as the central metal in the Pcs leads to a largely enhanced spin-orbit coupling. Only in the latter case, a substantial influence of the triplet state on the nonradiative voltage losses is observed. In contrast, it is found that for a large series of typical OSC materials, the relative energy level alignment between T-1 and the CT state does not substantially affect nonradiative voltage losses.}, language = {en} } @article{MuzahidFonsecaRobertsetal.2018, author = {Muzahid, S. and Fonseca, G. and Roberts, A. and Rosenwasser, B. and Richter, Philipp and Narayanan, A. and Churchill, C. and Charlton, J.}, title = {COS-Weak: probing the CGM using analogues of weak Mg II absorbers at z < 0.3}, series = {Monthly notices of the Royal Astronomical Society}, volume = {476}, journal = {Monthly notices of the Royal Astronomical Society}, number = {4}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/sty529}, pages = {4965 -- 4986}, year = {2018}, abstract = {We present a sample of 34 weak metal line absorbers at z < 0.3 selected by the simultaneous >3σ detections of the Si iiλ1260 and C iiλ1334 absorption lines, with Wr(SiII)<0.2 {\AA} and Wr(CII)<0.3 {\AA}, in archival HST/COS spectra. Our sample increases the number of known low-z 'weak absorbers' by a factor of >5. The column densities of H i and low-ionization metal lines obtained from Voigt profile fitting are used to build simple photoionization models. The inferred densities and line-of-sight thicknesses of the absorbers are in the ranges of -3.3 < log nH/cm-3 < -2.4 and ∼1 pc-50 kpc (median ≈500 pc), respectively. Most importantly, 85 per cent (50 per cent) of these absorbers show a metallicity of [Si/H]>-1.0(0.0)⁠. The fraction of systems showing near-/supersolar metallicity in our sample is significantly higher than in the H i-selected sample of Wotta et al., and the galaxy-selected sample of Prochaska et al., of absorbers probing the circum-galactic medium at similar redshift. A search for galaxies has revealed a significant galaxy-overdensity around these weak absorbers compared to random positions with a median impact parameter of 166 kpc from the nearest galaxy. Moreover, we find the presence of multiple galaxies in ≈80 per cent of the cases, suggesting group environments. The observed dN/dz of 0.8 ± 0.2 indicates that such metal-enriched, compact, dense structures are ubiquitous in the haloes of low-z group galaxies. We suggest that these are transient structures that are related to galactic outflows and/or stripping of metal-rich gas from galaxies.}, language = {en} } @article{MarinoCantalupoLillyetal.2018, author = {Marino, Raffaella Anna and Cantalupo, Sebastiano and Lilly, Simon J. and Gallego, Sofia G. and Straka, Lorrie A. and Borisova, Elena and Pezzulli, Gabriele and Bacon, Roland and Brinchmann, Jarle and Carollo, C. Marcella and Caruana, Joseph and Conseil, Simon and Contini, Thierry and Diener, Catrina and Finley, Hayley and Inami, Hanae and Leclercq, Floriane and Muzahid, Sowgat and Richard, Johan and Schaye, Joop and Wendt, Martin and Wisotzki, Lutz}, title = {Dark Galaxy Candidates at Redshift similar to 3.5 Detected with MUSE}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {859}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aab6aa}, pages = {22}, year = {2018}, abstract = {Recent theoretical models suggest that the early phase of galaxy formation could involve an epoch when galaxies are gas rich but inefficient at forming stars: a "dark galaxy" phase. Here, we report the results of our Multi-Unit Spectroscopic Explorer (MUSE) survey for dark galaxies fluorescently illuminated by quasars at z > 3. Compared to previous studies which are based on deep narrowband (NB) imaging, our integral field survey provides a nearly uniform sensitivity coverage over a large volume in redshift space around the quasars as well as full spectral information at each location. Thanks to these unique features, we are able to build control samples at large redshift distances from the quasars using the same data taken under the same conditions. By comparing the rest-frame equivalent width (EW0) distributions of the Ly alpha sources detected in proximity to the quasars and in control samples, we detect a clear correlation between the locations of high-EW0 objects and the quasars. This correlation is not seen in other properties, such as Ly alpha luminosities or volume overdensities, suggesting the possible fluorescent nature of at least some of these objects. Among these, we find six sources without continuum counterparts and EW0 limits larger than 240 angstrom that are the best candidates for dark galaxies in our survey at z > 3.5. The volume densities and properties, including inferred gas masses and star formation efficiencies, of these dark galaxy candidates are similar to those of previously detected candidates at z approximate to 2.4 in NB surveys. Moreover, if the most distant of these are fluorescently illuminated by the quasar, our results also provide a lower limit of t - 60 Myr on the quasar lifetime.}, language = {en} } @article{TotzLoeberTotzetal.2018, author = {Totz, Sonja Juliana and L{\"o}ber, Jakob and Totz, Jan Frederik and Engel, Harald}, title = {Control of transversal instabilities in reaction-diffusion systems}, series = {New journal of physics : the open-access journal for physics}, volume = {20}, journal = {New journal of physics : the open-access journal for physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/aabce5}, pages = {16}, year = {2018}, abstract = {In two-dimensional reaction-diffusion systems, local curvature perturbations on traveling waves are typically damped out and vanish. However, if the inhibitor diffuses much faster than the activator, transversal instabilities can arise, leading from flat to folded, spatio-temporally modulated waves and to spreading spiral turbulence. Here, we propose a scheme to induce or inhibit these instabilities via a spatio-temporal feedback loop. In a piecewise-linear version of the FitzHugh-Nagumo model, transversal instabilities and spiral turbulence in the uncontrolled system are shown to be suppressed in the presence of control, thereby stabilizing plane wave propagation. Conversely, in numerical simulations with the modified Oregonator model for the photosensitive Belousov-Zhabotinsky reaction, which does not exhibit transversal instabilities on its own, we demonstrate the feasibility of inducing transversal instabilities and study the emerging wave patterns in a well-controlled manner.}, language = {en} } @article{LiebigHenningSarhanetal.2018, author = {Liebig, Ferenc and Henning, Ricky and Sarhan, Radwan Mohamed and Prietzel, Claudia Christina and Bargheer, Matias and Koetz, Joachim}, title = {A new route to gold nanoflowers}, series = {Nanotechnology}, volume = {29}, journal = {Nanotechnology}, number = {18}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0957-4484}, doi = {10.1088/1361-6528/aaaffd}, pages = {8}, year = {2018}, abstract = {Catanionic vesicles spontaneously formed by mixing the anionic surfactant bis(2-ethylhexyl)sulfosuccinate sodium salt with the cationic surfactant cetyltrimethylammonium bromide were used as a reducing medium to produce gold clusters, which are embedded and well-ordered into the template phase. The gold clusters can be used as seeds in the growth process that follows by adding ascorbic acid as a mild reducing component. When the ascorbic acid was added very slowly in an ice bath round-edged gold nanoflowers were produced. When the same experiments were performed at room temperature in the presence of Ag+ ions, sharp-edged nanoflowers could be synthesized. The mechanism of nanoparticle formation can be understood to be a non-diffusion-limited Ostwald ripening process of preordered gold nanoparticles embedded in catanionic vesicle fragments. Surface-enhanced Raman scattering experiments show an excellent enhancement factor of 1.7 . 10(5) for the nanoflowers deposited on a silicon wafer.}, language = {en} } @article{NunezValdezEfthimiopoulosTaranetal.2018, author = {Nunez Valdez, Maribel and Efthimiopoulos, Ilias and Taran, Michail and Mueller, Jan and Bykova, Elena and McCammon, Catherine and Koch-M{\"u}ller, Monika and Wilke, Max}, title = {Evidence for a pressure-induced spin transition in olivine-type LiFePO4 triphylite}, series = {Physical review : B, Condensed matter and materials physics}, volume = {97}, journal = {Physical review : B, Condensed matter and materials physics}, number = {18}, publisher = {American Physical Society}, address = {College Park}, issn = {2469-9950}, doi = {10.1103/PhysRevB.97.184405}, pages = {9}, year = {2018}, abstract = {We present a combination of first-principles and experimental results regarding the structural and magnetic properties of olivine-type LiFePO4 under pressure. Our investigations indicate that the starting Pbnm phase of LiFePO4 persists up to 70 GPa. Further compression leads to an isostructural transition in the pressure range of 70-75 GPa, inconsistent with a former theoretical study. Considering our first-principles prediction for a high-spin to low-spin transition of Fe2+ close to 72 GPa, we attribute the experimentally observed isostructural transition to a change in the spin state of Fe2+ in LiFePO4. Compared to relevant Fe-bearing minerals, LiFePO4 exhibits the largest onset pressure for a pressure-induced spin state transition.}, language = {en} } @article{VafinLazarFichtneretal.2018, author = {Vafin, Sergei and Lazar, M. and Fichtner, H. and Schlickeiser, R. and Drillisch, M.}, title = {Solar wind temperature anisotropy constraints from streaming instabilities}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {613}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201731852}, pages = {5}, year = {2018}, abstract = {Due to the relatively low rate of particle-particle collisions in the solar wind, kinetic instabilities (e.g., the mirror and firehose) play an important role in regulating large deviations from temperature isotropy. These instabilities operate in the high beta(parallel to) > 1 plasmas, and cannot explain the other limits of the temperature anisotropy reported by observations in the low beta beta(parallel to) < 1 regimes. However, the instability conditions are drastically modified in the presence of streaming (or counterstreaming) components, which are ubiquitous in space plasmas. These effects have been analyzed for the solar wind conditions in a large interval of heliospheric distances, 0.3-2.5 AU. It was found that proton counter-streams are much more crucial for plasma stability than electron ones. Moreover, new instability thresholds can potentially explain all observed bounds on the temperature anisotropy, and also the level of differential streaming in the solar wind.}, language = {en} } @article{VitaliSposiniSliusarenkoetal.2018, author = {Vitali, Silvia and Sposini, Vittoria and Sliusarenko, Oleksii and Paradisi, Paolo and Castellani, Gastone and Pagnini, Gianni}, title = {Langevin equation in complex media and anomalous diffusion}, series = {Interface : journal of the Royal Society}, volume = {15}, journal = {Interface : journal of the Royal Society}, number = {145}, publisher = {Royal Society}, address = {London}, issn = {1742-5689}, doi = {10.1098/rsif.2018.0282}, pages = {10}, year = {2018}, abstract = {The problem of biological motion is a very intriguing and topical issue. Many efforts are being focused on the development of novel modelling approaches for the description of anomalous diffusion in biological systems, such as the very complex and heterogeneous cell environment. Nevertheless, many questions are still open, such as the joint manifestation of statistical features in agreement with different models that can also be somewhat alternative to each other, e.g. continuous time random walk and fractional Brownian motion. To overcome these limitations, we propose a stochastic diffusion model with additive noise and linear friction force (linear Langevin equation), thus involving the explicit modelling of velocity dynamics. The complexity of the medium is parametrized via a population of intensity parameters (relaxation time and diffusivity of velocity), thus introducing an additional randomness, in addition to white noise, in the particle's dynamics. We prove that, for proper distributions of these parameters, we can get both Gaussian anomalous diffusion, fractional diffusion and its generalizations.}, language = {en} } @misc{SzalayPoppeAgarwaletal.2018, author = {Szalay, J. R. and Poppe, A. R. and Agarwal, J. and Britt, D. and Belskaya, I. and Horanyi, M. and Nakamura, T. and Sachse, M. and Spahn, Frank}, title = {Dust Phenomena Relating to Airless Bodies}, series = {Space science reviews}, volume = {214}, journal = {Space science reviews}, number = {5}, publisher = {Springer}, address = {Dordrecht}, issn = {0038-6308}, doi = {10.1007/s11214-018-0527-0}, pages = {47}, year = {2018}, abstract = {Airless bodies are directly exposed to ambient plasma and meteoroid fluxes, making them characteristically different from bodies whose dense atmospheres protect their surfaces from such fluxes. Direct exposure to plasma and meteoroids has important consequences for the formation and evolution of planetary surfaces, including altering chemical makeup and optical properties, generating neutral gas and/or dust exospheres, and leading to the generation of circumplanetary and interplanetary dust grain populations. In the past two decades, there have been many advancements in our understanding of airless bodies and their interaction with various dust populations. In this paper, we describe relevant dust phenomena on the surface and in the vicinity of airless bodies over a broad range of scale sizes from to , with a focus on recent developments in this field.}, language = {en} } @article{CestnikRosenblum2018, author = {Cestnik, Rok and Rosenblum, Michael}, title = {Inferring the phase response curve from observation of a continuously perturbed oscillator}, series = {Scientific reports}, volume = {8}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-018-32069-y}, pages = {10}, year = {2018}, abstract = {Phase response curves are important for analysis and modeling of oscillatory dynamics in various applications, particularly in neuroscience. Standard experimental technique for determining them requires isolation of the system and application of a specifically designed input. However, isolation is not always feasible and we are compelled to observe the system in its natural environment under free-running conditions. To that end we propose an approach relying only on passive observations of the system and its input. We illustrate it with simulation results of an oscillator driven by a stochastic force.}, language = {en} }