@inproceedings{MichaelisAengenheisterSchwerdtleetal.2021, author = {Michaelis, Vivien and Aengenheister, Leonie and Schwerdtle, Tanja and Buerki-Thurnherr, Tina and Bornhorst, Julia}, title = {Manganese translocation across an in vitro model of human villous trophoblast}, series = {Placenta}, volume = {112}, booktitle = {Placenta}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, issn = {0143-4004}, pages = {E63 -- E64}, year = {2021}, language = {en} } @article{NicolaiWeishauptBaesleretal.2021, author = {Nicolai, Merle Marie and Weishaupt, Ann-Kathrin and Baesler, Jessica and Brinkmann, Vanessa and Wellenberg, Anna and Winkelbeiner, Nicola Lisa and Gremme, Anna and Aschner, Michael and Fritz, Gerhard and Schwerdtle, Tanja and Bornhorst, Julia}, title = {Effects of manganese on genomic integrity in the multicellular model organism Caenorhabditis elegans}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {20}, publisher = {MDPI}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms222010905}, pages = {16}, year = {2021}, abstract = {Although manganese (Mn) is an essential trace element, overexposure is associated with Mn-induced toxicity and neurological dysfunction. Even though Mn-induced oxidative stress is discussed extensively, neither the underlying mechanisms of the potential consequences of Mn-induced oxidative stress on DNA damage and DNA repair, nor the possibly resulting toxicity are characterized yet. In this study, we use the model organism Caenorhabditis elegans to investigate the mode of action of Mn toxicity, focusing on genomic integrity by means of DNA damage and DNA damage response. Experiments were conducted to analyze Mn bioavailability, lethality, and induction of DNA damage. Different deletion mutant strains were then used to investigate the role of base excision repair (BER) and dePARylation (DNA damage response) proteins in Mn-induced toxicity. The results indicate a dose- and time-dependent uptake of Mn, resulting in increased lethality. Excessive exposure to Mn decreases genomic integrity and activates BER. Altogether, this study characterizes the consequences of Mn exposure on genomic integrity and therefore broadens the molecular understanding of pathways underlying Mn-induced toxicity. Additionally, studying the basal poly(ADP-ribosylation) (PARylation) of worms lacking poly(ADP-ribose) glycohydrolase (PARG) parg-1 or parg-2 (two orthologue of PARG), indicates that parg-1 accounts for most of the glycohydrolase activity in worms.}, language = {en} } @article{KuhnTavaresJacquesTeixeiraetal.2021, author = {Kuhn, Eug{\^e}nia Carla and Tavares Jacques, Maur{\´i}cio and Teixeira, Daniela and Meyer, S{\"o}ren and Gralha, Thiago and Roehrs, Rafael and Camargo, Sandro and Schwerdtle, Tanja and Bornhorst, Julia and {\´A}vila, Daiana Silva}, title = {Ecotoxicological assessment of Uruguay River and affluents pre- and biomonitoring}, series = {Environmental science and pollution research : ESPR}, volume = {28}, journal = {Environmental science and pollution research : ESPR}, number = {17}, publisher = {Springer}, address = {Berlin ; Heidelberg}, issn = {0944-1344}, doi = {10.1007/s11356-020-11986-4}, pages = {21730 -- 21741}, year = {2021}, abstract = {Uruguay River is the most important river in western Rio Grande do Sul, separating Brazil from Argentina and Uruguay. However, its pollution is of great concern due to agricultural activities in the region and the extensive use of pesticides. In a long term, this practice leads to environmental pollution, especially to the aquatic system. The objective of this study was to analyze the physicochemical characteristics, metals and pesticides levels in water samples obtained before and after the planting and pesticides' application season from three sites: Uruguay River and two minor affluents, Mezomo Dam and Salso Stream. For biomonitoring, the free-living nematode Caenorhabditis elegans was used, which were exposed for 24 h. We did not find any significant alteration in physicochemical parameters. In the pre- and post-pesticides' samples we observed a residual presence of three pesticides (tebuconazole, imazethapyr, and clomazone) and metals which levels were above the recommended (As, Hg, Fe, and Mn). Exposure to both pre- and post-pesticides' samples impaired C. elegans reproduction and post-pesticides samples reduced worms' survival rate and lifespan. PCA analysis indicated that the presence of metals and pesticides are important variables that impacted C. elegans biological endpoints. Our data demonstrates that Uruguay River and two affluents are contaminated independent whether before or after pesticides' application season. In addition, it reinforces the usefulness of biological indicators, since simple physicochemical analyses are not sufficient to attest water quality and ecological safety.}, language = {en} } @misc{NicolaiWeishauptBaesleretal.2021, author = {Nicolai, Merle Marie and Weishaupt, Ann-Kathrin and Baesler, Jessica and Brinkmann, Vanessa and Wellenberg, Anna and Winkelbeiner, Nicola Lisa and Gremme, Anna and Aschner, Michael and Fritz, Gerhard and Schwerdtle, Tanja and Bornhorst, Julia}, title = {Effects of manganese on genomic integrity in the multicellular model organism Caenorhabditis elegans}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1173}, issn = {1866-8372}, doi = {10.25932/publishup-52327}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-523275}, pages = {18}, year = {2021}, abstract = {Although manganese (Mn) is an essential trace element, overexposure is associated with Mn-induced toxicity and neurological dysfunction. Even though Mn-induced oxidative stress is discussed extensively, neither the underlying mechanisms of the potential consequences of Mn-induced oxidative stress on DNA damage and DNA repair, nor the possibly resulting toxicity are characterized yet. In this study, we use the model organism Caenorhabditis elegans to investigate the mode of action of Mn toxicity, focusing on genomic integrity by means of DNA damage and DNA damage response. Experiments were conducted to analyze Mn bioavailability, lethality, and induction of DNA damage. Different deletion mutant strains were then used to investigate the role of base excision repair (BER) and dePARylation (DNA damage response) proteins in Mn-induced toxicity. The results indicate a dose- and time-dependent uptake of Mn, resulting in increased lethality. Excessive exposure to Mn decreases genomic integrity and activates BER. Altogether, this study characterizes the consequences of Mn exposure on genomic integrity and therefore broadens the molecular understanding of pathways underlying Mn-induced toxicity. Additionally, studying the basal poly(ADP-ribosylation) (PARylation) of worms lacking poly(ADP-ribose) glycohydrolase (PARG) parg-1 or parg-2 (two orthologue of PARG), indicates that parg-1 accounts for most of the glycohydrolase activity in worms.}, language = {en} } @misc{BaeslerMichaelisStibolleretal.2021, author = {Baesler, Jessica and Michaelis, Vivien and Stiboller, Michael and Haase, Hajo and Aschner, Michael and Schwerdtle, Tanja and Sturzenbaum, Stephen R. and Bornhorst, Julia}, title = {Nutritive manganese and zinc overdosing in aging c. elegans result in a metallothionein-mediated alteration in metal homeostasis}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {8}, issn = {1866-8372}, doi = {10.25932/publishup-51499}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-514995}, pages = {13}, year = {2021}, abstract = {Manganese (Mn) and zinc (Zn) are not only essential trace elements, but also potential exogenous risk factors for various diseases. Since the disturbed homeostasis of single metals can result in detrimental health effects, concerns have emerged regarding the consequences of excessive exposures to multiple metals, either via nutritional supplementation or parenteral nutrition. This study focuses on Mn-Zn-interactions in the nematode Caenorhabditis elegans (C. elegans) model, taking into account aspects related to aging and age-dependent neurodegeneration.}, language = {en} } @article{BaeslerMichaelisStibolleretal.2021, author = {Baesler, Jessica and Michaelis, Vivien and Stiboller, Michael and Haase, Hajo and Aschner, Michael and Schwerdtle, Tanja and Sturzenbaum, Stephen R. and Bornhorst, Julia}, title = {Nutritive manganese and zinc overdosing in aging c. elegans result in a metallothionein-mediated alteration in metal homeostasis}, series = {Molecular Nutrition and Food Research}, volume = {65}, journal = {Molecular Nutrition and Food Research}, number = {8}, publisher = {Wiley-VCH GmbH}, address = {Weinheim}, issn = {1613-4133}, doi = {10.1002/mnfr.202001176}, pages = {1 -- 11}, year = {2021}, abstract = {Manganese (Mn) and zinc (Zn) are not only essential trace elements, but also potential exogenous risk factors for various diseases. Since the disturbed homeostasis of single metals can result in detrimental health effects, concerns have emerged regarding the consequences of excessive exposures to multiple metals, either via nutritional supplementation or parenteral nutrition. This study focuses on Mn-Zn-interactions in the nematode Caenorhabditis elegans (C. elegans) model, taking into account aspects related to aging and age-dependent neurodegeneration.}, language = {en} } @article{WandtWinkelbeinerBornhorstetal.2021, author = {Wandt, Viktoria Klara Veronika and Winkelbeiner, Nicola Lisa and Bornhorst, Julia and Witt, Barbara and Raschke, Stefanie and Simon, Luise and Ebert, Franziska and Kipp, Anna Patricia and Schwerdtle, Tanja}, title = {A matter of concern}, series = {Redox Biology}, volume = {41}, journal = {Redox Biology}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.redox.2021.101877}, pages = {13}, year = {2021}, abstract = {Neurons are post-mitotic cells in the brain and their integrity is of central importance to avoid neurodegeneration. Yet, the inability of self-replenishment of post-mitotic cells results in the need to withstand challenges from numerous stressors during life. Neurons are exposed to oxidative stress due to high oxygen consumption during metabolic activity in the brain. Accordingly, DNA damage can occur and accumulate, resulting in genome instability. In this context, imbalances in brain trace element homeostasis are a matter of concern, especially regarding iron, copper, manganese, zinc, and selenium. Although trace elements are essential for brain physiology, excess and deficient conditions are considered to impair neuronal maintenance. Besides increasing oxidative stress, DNA damage response and repair of oxidative DNA damage are affected by trace elements. Hence, a balanced trace element homeostasis is of particular importance to safeguard neuronal genome integrity and prevent neuronal loss. This review summarises the current state of knowledge on the impact of deficient, as well as excessive iron, copper, manganese, zinc, and selenium levels on neuronal genome stability}, language = {en} }