@article{KotzWenzStechemesseretal.2021, author = {Kotz, Maximilian and Wenz, Leonie and Stechemesser, Annika and Kalkuhl, Matthias and Levermann, Anders}, title = {Day-to-day temperature variability reduces economic growth}, series = {Nature climate change}, volume = {11}, journal = {Nature climate change}, number = {4}, publisher = {Nature Publishing Group}, address = {London}, issn = {1758-678X}, doi = {10.1038/s41558-020-00985-5}, pages = {319 -- 325}, year = {2021}, abstract = {Elevated annual average temperature has been found to impact macro-economic growth. However, various fundamental elements of the economy are affected by deviations of daily temperature from seasonal expectations which are not well reflected in annual averages. Here we show that increases in seasonally adjusted day-to-day temperature variability reduce macro-economic growth independent of and in addition to changes in annual average temperature. Combining observed day-to-day temperature variability with subnational economic data for 1,537 regions worldwide over 40 years in fixed-effects panel models, we find that an extra degree of variability results in a five percentage-point reduction in regional growth rates on average. The impact of day-to-day variability is modulated by seasonal temperature difference and income, resulting in highest vulnerability in low-latitude, low-income regions (12 percentage-point reduction). These findings illuminate a new, global-impact channel in the climate-economy relationship that demands a more comprehensive assessment in both climate and integrated assessment models.}, language = {en} } @article{WenzKalkuhlSteckeletal.2016, author = {Wenz, Leonie and Kalkuhl, Matthias and Steckel, Jan Christoph and Creutzig, Felix}, title = {Teleconnected food supply shocks}, series = {Environmental research letters}, volume = {11}, journal = {Environmental research letters}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/11/3/035007}, pages = {10}, year = {2016}, abstract = {The 2008-2010 food crisis might have been a harbinger of fundamental climate-induced food crises with geopolitical implications. Heat-wave-induced yield losses in Russia and resulting export restrictions led to increases in market prices for wheat across the Middle East, likely contributing to the Arab Spring. With ongoing climate change, temperatures and temperature variability will rise, leading to higher uncertainty in yields for major nutritional crops. Here we investigate which countries are most vulnerable to teleconnected supply-shocks, i.e. where diets strongly rely on the import of wheat, maize, or rice, and where a large share of the population is living in poverty. We find that the Middle East is most sensitive to teleconnected supply shocks in wheat, Central America to supply shocks in maize, and Western Africa to supply shocks in rice. Weighing with poverty levels, Sub-Saharan Africa is most affected. Altogether, a simultaneous 10\% reduction in exports of wheat, rice, and maize would reduce caloric intake of 55 million people living in poverty by about 5\%. Export bans in major producing regions would put up to 200 million people below the poverty line at risk, 90\% of which live in Sub-Saharan Africa. Our results suggest that a region-specific combination of national increases in agricultural productivity and diversification of trade partners and diets can effectively decrease future food security risks.}, language = {en} } @article{KalkuhlWenz2020, author = {Kalkuhl, Matthias and Wenz, Leonie}, title = {The impact of climate conditions on economic production}, series = {Journal of Environmental Economics and Management}, volume = {103}, journal = {Journal of Environmental Economics and Management}, publisher = {Elsevier}, address = {San Diego}, issn = {0095-0696}, doi = {10.1016/j.jeem.2020.102360}, pages = {20}, year = {2020}, abstract = {We present a novel data set of subnational economic output, Gross Regional Product (GRP), for more than 1500 regions in 77 countries that allows us to empirically estimate historic climate impacts at different time scales. Employing annual panel models, long-difference regressions and cross-sectional regressions, we identify effects on productivity levels and productivity growth. We do not find evidence for permanent growth rate impacts but we find robust evidence that temperature affects productivity levels considerably. An increase in global mean surface temperature by about 3.5°C until the end of the century would reduce global output by 7-14\% in 2100, with even higher damages in tropical and poor regions. Updating the DICE damage function with our estimates suggests that the social cost of carbon from temperature-induced productivity losses is on the order of 73-142\$/tCO2 in 2020, rising to 92-181\$/tCO2 in 2030. These numbers exclude non-market damages and damages from extreme weather events or sea-level rise.}, language = {en} }