@misc{ZupokIobbiNivolMejeanetal.2019, author = {Zupok, Arkadiusz and Iobbi-Nivol, Chantal and Mejean, Vincent and Leimk{\"u}hler, Silke}, title = {The regulation of Moco biosynthesis and molybdoenzyme gene expression by molybdenum and iron in bacteria}, series = {Metallomics : integrated biometal science}, volume = {11}, journal = {Metallomics : integrated biometal science}, number = {10}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1756-5901}, doi = {10.1039/c9mt00186g}, pages = {1602 -- 1624}, year = {2019}, abstract = {Bacterial molybdoenzymes are key enzymes involved in the global sulphur, nitrogen and carbon cycles. These enzymes require the insertion of the molybdenum cofactor (Moco) into their active sites and are able to catalyse a large range of redox-reactions. Escherichia coli harbours nineteen different molybdoenzymes that require a tight regulation of their synthesis according to substrate availability, oxygen availability and the cellular concentration of molybdenum and iron. The synthesis and assembly of active molybdoenzymes are regulated at the level of transcription of the structural genes and of translation in addition to the genes involved in Moco biosynthesis. The action of global transcriptional regulators like FNR, NarXL/QP, Fur and ArcA and their roles on the expression of these genes is described in detail. In this review we focus on what is known about the molybdenum- and iron-dependent regulation of molybdoenzyme and Moco biosynthesis genes in the model organism E. coli. The gene regulation in E. coli is compared to two other well studied model organisms Rhodobacter capsulatus and Shewanella oneidensis.}, language = {en} } @article{ZupokGorkaSiemiatkowskaetal.2019, author = {Zupok, Arkadiusz and G{\´o}rka, Michał Jakub and Siemiatkowska, Beata and Skirycz, Aleksandra and Leimk{\"u}hler, Silke}, title = {Iron-Dependent Regulation of Molybdenum Cofactor Biosynthesis Genes in Escherichia coli}, series = {Journal of bacteriology}, volume = {201}, journal = {Journal of bacteriology}, number = {17}, publisher = {American Society for Microbiology}, address = {Washington}, issn = {0021-9193}, doi = {10.1128/JB.00382-19}, pages = {15}, year = {2019}, abstract = {Molybdenum cofactor (Moco) biosynthesis is a complex process that involves the coordinated function of several proteins. In recent years it has become obvious that the availability of iron plays an important role in the biosynthesis of Moco. First, the MoaA protein binds two (4Fe-4S] clusters per monomer. Second, the expression of the moaABCDE and moeAB operons is regulated by FNR, which senses the availability of oxygen via a functional NFe-4S) cluster. Finally, the conversion of cyclic pyranopterin monophosphate to molybdopterin requires the availability of the L-cysteine desulfurase IscS, which is a shared protein with a main role in the assembly of Fe-S clusters. In this report, we investigated the transcriptional regulation of the moaABCDE operon by focusing on its dependence on cellular iron availability. While the abundance of selected molybdoenzymes is largely decreased under iron-limiting conditions, our data show that the regulation of the moaABCDE operon at the level of transcription is only marginally influenced by the availability of iron. Nevertheless, intracellular levels of Moco were decreased under iron-limiting conditions, likely based on an inactive MoaA protein in addition to lower levels of the L-cysteine desulfurase IscS, which simultaneously reduces the sulfur availability for Moco production. IMPORTANCE FNR is a very important transcriptional factor that represents the master switch for the expression of target genes in response to anaerobiosis. Among the FNR-regulated operons in Escherichia coli is the moaABCDE operon, involved in Moco biosynthesis. Molybdoenzymes have essential roles in eukaryotic and prokaryotic organisms. In bacteria, molybdoenzymes are crucial for anaerobic respiration using alternative electron acceptors. This work investigates the connection of iron availability to the biosynthesis of Moco and the production of active molybdoenzymes.}, language = {en} } @article{ZimmermannHarmsEppetal.2019, author = {Zimmermann, Heike Hildegard and Harms, Lars and Epp, Laura Saskia and Mewes, Nick and Bernhardt, Nadine and Kruse, Stefan and Stoof-Leichsenring, Kathleen Rosemarie and Pestryakova, Luidmila Agafyevna and Wieczorek, Mareike and Trense, Daronja and Herzschuh, Ulrike}, title = {Chloroplast and mitochondrial genetic variation of larches at the Siberian tundrataiga ecotone revealed by de novo assembly}, series = {PLoS one}, volume = {14}, journal = {PLoS one}, number = {7}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0216966}, pages = {21}, year = {2019}, abstract = {Larix populations at the tundra-taiga ecotone in northern Siberia are highly under-represented in population genetic studies, possibly due to the remoteness of these regions that can only be accessed at extraordinary expense. The genetic signatures of populations in these boundary regions are therefore largely unknown. We aim to generate organelle reference genomes for the detection of single nucleotide polymorphisms (SNPs) that can be used for paleogenetic studies. We present 19 complete chloroplast genomes and mitochondrial genomic sequences of larches from the southern lowlands of the Taymyr Peninsula (northernmost range of Larix gmelinii (Rupr.) Kuzen.), the lower Omoloy River, and the lower Kolyma River (both in the range of Larix cajanderi Mayr). The genomic data reveal 84 chloroplast SNPs and 213 putatively mitochondrial SNPs. Parsimony-based chloroplast haplotype networks show no spatial structure of individuals from different geographic origins, while the mitochondrial haplotype network shows at least a slight spatial structure with haplotypes from the Omoloy and Kolyma populations being more closely related to each other than to most of the haplotypes from the Taymyr populations. Whole genome alignments with publicly available complete chloroplast genomes of different Larix species show that among official plant barcodes only the rcbL gene contains sufficient polymorphisms, but has to be sequenced completely to distinguish the different provenances. We provide 8 novel mitochondrial SNPs that are putatively diagnostic for the separation of L. gmelinii and L. cajanderi, while 4 chloroplast SNPs have the potential to distinguish the L. gmelinii/ L. cajanderi group from other Larix species. Our organelle references can be used for a targeted primer and probe design allowing the generation of short amplicons. This is particularly important with regard to future investigations of, for example, the biogeographic history of Larix by screening ancient sedimentary DNA of Larix.}, language = {en} } @article{ZhangRammingHeinkeetal.2019, author = {Zhang, Yunming and Ramming, Anna and Heinke, Lisa and Altschmied, Lothar and Slotkin, R. Keith and Becker, J{\"o}rg D. and Kappel, Christian and Lenhard, Michael}, title = {The poly(A) polymerase PAPS1 interacts with the RNA-directed DNA-methylation pathway in sporophyte and pollen development}, series = {The plant journal}, volume = {99}, journal = {The plant journal}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {0960-7412}, doi = {10.1111/tpj.14348}, pages = {655 -- 672}, year = {2019}, abstract = {RNA-based processes play key roles in the regulation of eukaryotic gene expression. This includes both the processing of pre-mRNAs into mature mRNAs ready for translation and RNA-based silencing processes, such as RNA-directed DNA methylation (RdDM). Polyadenylation of pre-mRNAs is one important step in their processing and is carried out by three functionally specialized canonical nuclear poly(A) polymerases in Arabidopsis thaliana. Null mutations in one of these, termed PAPS1, result in a male gametophytic defect. Using a fluorescence-labelling strategy, we have characterized this defect in more detail using RNA and small-RNA sequencing. In addition to global defects in the expression of pollen-differentiation genes, paps1 null-mutant pollen shows a strong overaccumulation of transposable element (TE) transcripts, yet a depletion of 21- and particularly 24-nucleotide-long short interfering RNAs (siRNAs) and microRNAs (miRNAs) targeting the corresponding TEs. Double-mutant analyses support a specific functional interaction between PAPS1 and components of the RdDM pathway, as evident from strong synergistic phenotypes in mutant combinations involving paps1, but not paps2 paps4, mutations. In particular, the double-mutant of paps1 and rna-dependent rna polymerase 6 (rdr6) shows a synergistic developmental phenotype disrupting the formation of the transmitting tract in the female gynoecium. Thus, our findings in A. thaliana uncover a potentially general link between canonical poly(A) polymerases as components of mRNA processing and RdDM, reflecting an analogous interaction in fission yeast.}, language = {en} } @phdthesis{Zhang2019, author = {Zhang, Xiaorong}, title = {Electrosynthesis and characterization of molecularly imprinted polymers for peptides and proteins}, school = {Universit{\"a}t Potsdam}, pages = {116}, year = {2019}, language = {en} } @article{ZhangBramskiTutusetal.2019, author = {Zhang, Shuhao and Bramski, Julia and Tutus, Murat and Pietruszka, J{\"o}rg and B{\"o}ker, Alexander and Reinicke, Stefan}, title = {A Biocatalytically Active Membrane Obtained from Immobilization of 2-Deoxy-D-ribose-5-phosphate Aldolase on a Porous Support}, series = {ACS applied materials \& interfaces}, volume = {11}, journal = {ACS applied materials \& interfaces}, number = {37}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/acsami.9b12029}, pages = {34441 -- 34453}, year = {2019}, abstract = {Aldol reactions play an important role in organic synthesis, as they belong to the class of highly beneficial C-C-linking reactions. Aldol-type reactions can be efficiently and stereoselectively catalyzed by the enzyme 2-deoxy-D-ribose-5-phosphate aldolase (DERA) to gain key intermediates for pharmaceuticals such as atorvastatin. The immobilization of DERA would open the opportunity for a continuous operation mode which gives access to an efficient, large-scale production of respective organic intermediates. In this contribution, we synthesize and utilize DERA/polymer conjugates for the generation and fixation of a DERA bearing thin film on a polymeric membrane support. The conjugation strongly increases the tolerance of the enzyme toward the industrial relevant substrate acetaldehyde while UV-cross-linkable groups along the conjugated polymer chains provide the opportunity for covalent binding to the support. First, we provide a thorough characterization of the conjugates followed by immobilization tests on representative, nonporous cycloolefinic copolymer supports. Finally, immobilization on the target supports constituted of polyacrylonitrile (PAN) membranes is performed, and the resulting enzymatically active membranes are implemented in a simple membrane module setup for the first assessment of biocatalytic performance in the continuous operation mode using the combination hexanal/acetaldehyde as the substrate.}, language = {en} } @article{ZeitlerYeAndreyevaetal.2019, author = {Zeitler, Stefanie and Ye, Lian and Andreyeva, Aksana and Schumacher, Fabian and Monti, Juliana and N{\"u}rnberg, Bernd and Nowak, Gabriel and Kleuser, Burkhard and Reichel, Martin and Fejtova, Anna and Kornhuber, Johannes and Rhein, Cosima and Friedland, Kristina}, title = {Acid sphingomyelinase - a regulator of canonical transient receptor potential channel 6 (TRPC6) activity}, series = {Journal of neurochemistry}, volume = {150}, journal = {Journal of neurochemistry}, number = {6}, publisher = {Wiley}, address = {Hoboken}, issn = {0022-3042}, doi = {10.1111/jnc.14823}, pages = {678 -- 690}, year = {2019}, abstract = {Recent investigations propose the acid sphingomyelinase (ASM)/ceramide system as a novel target for antidepressant action. ASM catalyzes the breakdown of the abundant membrane lipid sphingomyelin to the lipid messenger ceramide. This ASM-induced lipid modification induces a local shift in membrane properties, which influences receptor clustering and downstream signaling. Canonical transient receptor potential channels 6 (TRPC6) are non-selective cation channels located in the cell membrane that play an important role in dendritic growth, synaptic plasticity and cognition in the brain. They can be activated by hyperforin, an ingredient of the herbal remedy St. John's wort for treatment of depression disorders. Because of their role in the context of major depression, we investigated the crosstalk between the ASM/ceramide system and TRPC6 ion channels in a pheochromocytoma cell line 12 neuronal cell model (PC12 rat pheochromocytoma cell line). Ca2+ imaging experiments indicated that hyperforin-induced Ca2+ influx through TRPC6 channels is modulated by ASM activity. While antidepressants, known as functional inhibitors of ASM activity, reduced TRPC6-mediated Ca2+ influx, extracellular application of bacterial sphingomyelinase rebalanced TRPC6 activity in a concentration-related way. This effect was confirmed in whole-cell patch clamp electrophysiology recordings. Lipidomic analyses revealed a decrease in very long chain ceramide/sphingomyelin molar ratio after ASM inhibition, which was connected with changes in the abundance of TRPC6 channels in flotillin-1-positive lipid rafts as visualized by western blotting. Our data provide evidence that the ASM/ceramide system regulates TRPC6 channels likely by controlling their recruitment to specific lipid subdomains and thereby fine-tuning their physical properties.}, language = {en} } @article{YuanHouBarlowetal.2019, author = {Yuan, Jun-Xia and Hou, Xin-Dong and Barlow, Axel and Preick, Michaela and Taron, Ulrike H. and Alberti, Federica and Basler, Nikolas and Deng, Tao and Lai, Xu-Long and Hofreiter, Michael and Sheng, Gui-Lian}, title = {Molecular identification of late and terminal Pleistocene Equus ovodovi from northeastern China}, series = {PLOS ONE}, volume = {14}, journal = {PLOS ONE}, number = {5}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0216883}, pages = {12}, year = {2019}, abstract = {The extant diversity of horses (family Equidae) represents a small fraction of that occurring over their evolutionary history. One such lost lineage is the subgenus Sussemionus, which is thought to have become extinct during the Middle Pleistocene. However, recent molecular studies and morphological analysis have revealed that one of their representatives, E. ovodovi, did exist in Siberia during the Late Pleistocene. Fossil materials of E. ovodovi have thus far only been found in Russia. In this study, we extracted DNA from three equid fossil specimens excavated from northeastern China dated at 12,770-12,596, 29,525-28,887 and 40,201-38,848 cal. yBP, respectively, and retrieved three near-complete mitochondrial genomes from the specimens. Phylogenetic analyses cluster the Chinese haplotypes together with previously published Russian E. ovodovi, strongly supporting the assignment of these samples to this taxon. The molecular identification of E. ovodovi in northeastern China extends the known geographical range of this fossil species by several thousand kilometers to the east. The estimated coalescence time of all E. ovodovi haplotypes is approximately 199 Kya, with the Chinese haplotypes coalescing approximately 130 Kya. With a radiocarbon age of 12,770-12,596 cal. yBP, the youngest sample in this study represents the first E. ovodovi sample dating to the terminal Pleistocene, moving the extinction date of this species forwards considerably compared to previously documented fossils. Overall, comparison of our three mitochondrial genomes with the two published ones suggests a genetic diversity similar to several extant species of the genus Equus.}, language = {en} } @article{YuWuNowaketal.2019, author = {Yu, Yanjun and Wu, Shenjie and Nowak, Jacqueline and Wang, Guangda and Han, Libo and Feng, Zhidi and Mendrinna, Amelie and Ma, Yinping and Wang, Huan and Zhang, Xiaxia and Tian, Juan and Dong, Li and Nikoloski, Zoran and Persson, Staffan and Kong, Zhaosheng}, title = {Live-cell imaging of the cytoskeleton in elongating cotton fibres}, series = {Nature plants}, volume = {5}, journal = {Nature plants}, number = {5}, publisher = {Nature Publ. Group}, address = {London}, issn = {2055-026X}, doi = {10.1038/s41477-019-0418-8}, pages = {498 -- 504}, year = {2019}, abstract = {Cotton (Gossypium hirsutum) fibres consist of single cells that grow in a highly polarized manner, assumed to be controlled by the cytoskeleton(1-3). However, how the cytoskeletal organization and dynamics underpin fibre development remains unexplored. Moreover, it is unclear whether cotton fibres expand via tip growth or diffuse growth(2-4). We generated stable transgenic cotton plants expressing fluorescent markers of the actin and microtubule cytoskeleton. Live-cell imaging revealed that elongating cotton fibres assemble a cortical filamentous actin network that extends along the cell axis to finally form actin strands with closed loops in the tapered fibre tip. Analyses of F-actin network properties indicate that cotton fibres have a unique actin organization that blends features of both diffuse and tip growth modes. Interestingly, typical actin organization and endosomal vesicle aggregation found in tip-growing cell apices were not observed in fibre tips. Instead, endomembrane compartments were evenly distributed along the elongating fibre cells and moved bi-directionally along the fibre shank to the fibre tip. Moreover, plus-end tracked microtubules transversely encircled elongating fibre shanks, reminiscent of diffusely growing cells. Collectively, our findings indicate that cotton fibres elongate via a unique tip-biased diffuse growth mode.}, language = {en} } @phdthesis{Yishai2019, author = {Yishai, Oren}, title = {Engineering the reductive glycine pathway in Escherichia coli}, school = {Universit{\"a}t Potsdam}, pages = {86}, year = {2019}, language = {en} } @article{YangPerreraSaplaouraetal.2019, author = {Yang, Lei and Perrera, Valentina and Saplaoura, Eleftheria and Apelt, Federico and Bahin, Mathieu and Kramdi, Amira and Olas, Justyna Jadwiga and M{\"u}ller-R{\"o}ber, Bernd and Sokolowska, Ewelina and Zhang, Wenna and Li, Runsheng and Pitzalis, Nicolas and Heinlein, Manfred and Zhang, Shoudong and Genovesio, Auguste and Colot, Vincent and Kragler, Friedrich}, title = {m(5)C Methylation Guides Systemic Transport of Messenger RNA over Graft Junctions in Plants}, series = {Current biology}, volume = {29}, journal = {Current biology}, number = {15}, publisher = {Cell Press}, address = {Cambridge}, issn = {0960-9822}, doi = {10.1016/j.cub.2019.06.042}, pages = {2465 -- 2476.e5}, year = {2019}, abstract = {In plants, transcripts move to distant body parts to potentially act as systemic signals regulating development and growth. Thousands of messenger RNAs (mRNAs) are transported across graft junctions via the phloem to distinct plant parts. Little is known regarding features, structural motifs, and potential base modifications of transported transcripts and how these may affect their mobility. We identified Arabidopsis thalianam RNAs harboring the modified base 5-methylcytosine (m(5)C) and found that these are significantly enriched in mRNAs previously described as mobile, moving over graft junctions to distinct plant parts. We confirm this finding with graft-mobile methylated mRNAs TRANSLATIONALLY CONTROLLED TUMOR PROTEIN 1 (TCTP1) and HEAT SHOCK COGNATE PROTEIN 70.1 (HSC70.1), whose mRNA transport is diminished in mutants deficient in m(5)C mRNA methylation. Together, our results point toward an essential role of cytosine methylation in systemic mRNA mobility in plants and that TCTP1 mRNA mobility is required for its signaling function.}, language = {en} } @article{YanChenSchumacheretal.2019, author = {Yan, Wenhao and Chen, Dijun and Schumacher, Julia and Durantini, Diego and Engelhorn, Julia and Chen, Ming and Carles, Cristel C. and Kaufmann, Kerstin}, title = {Dynamic control of enhancer activity drives stage-specific gene expression during flower morphogenesis}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-019-09513-2}, pages = {16}, year = {2019}, abstract = {Enhancers are critical for developmental stage-specific gene expression, but their dynamic regulation in plants remains poorly understood. Here we compare genome-wide localization of H3K27ac, chromatin accessibility and transcriptomic changes during flower development in Arabidopsis. H3K27ac prevalently marks promoter-proximal regions, suggesting that H3K27ac is not a hallmark for enhancers in Arabidopsis. We provide computational and experimental evidence to confirm that distal DNase. hypersensitive sites are predictive of enhancers. The predicted enhancers are highly stage-specific across flower development, significantly associated with SNPs for flowering-related phenotypes, and conserved across crucifer species. Through the integration of genome-wide transcription factor (TF) binding datasets, we find that floral master regulators and stage-specific TFs are largely enriched at developmentally dynamic enhancers. Finally, we show that enhancer clusters and intronic enhancers significantly associate with stage-specific gene regulation by floral master TFs. Our study provides insights into the functional flexibility of enhancers during plant development, as well as hints to annotate plant enhancers.}, language = {en} } @misc{YamamichiKlauschiesMineretal.2019, author = {Yamamichi, Masato and Klauschies, Toni and Miner, Brooks E. and van Velzen, Ellen}, title = {Modelling inducible defences in predator-prey interactions}, series = {Ecology letters}, volume = {22}, journal = {Ecology letters}, number = {2}, publisher = {Wiley}, address = {Hoboken}, issn = {1461-023X}, doi = {10.1111/ele.13183}, pages = {390 -- 404}, year = {2019}, abstract = {Inducible defences against predation are widespread in the natural world, allowing prey to economise on the costs of defence when predation risk varies over time or is spatially structured. Through interspecific interactions, inducible defences have major impacts on ecological dynamics, particularly predator-prey stability and phase lag. Researchers have developed multiple distinct approaches, each reflecting assumptions appropriate for particular ecological communities. Yet, the impact of inducible defences on ecological dynamics can be highly sensitive to the modelling approach used, making the choice of model a critical decision that affects interpretation of the dynamical consequences of inducible defences. Here, we review three existing approaches to modelling inducible defences: Switching Function, Fitness Gradient and Optimal Trait. We assess when and how the dynamical outcomes of these approaches differ from each other, from classic predator-prey dynamics and from commonly observed eco-evolutionary dynamics with evolving, but non-inducible, prey defences. We point out that the Switching Function models tend to stabilise population dynamics, and the Fitness Gradient models should be carefully used, as the difference with evolutionary dynamics is important. We discuss advantages of each approach for applications to ecological systems with particular features, with the goal of providing guidelines for future researchers to build on.}, language = {en} } @article{WuHanRodriguezSillkeetal.2019, author = {Wu, Hao and Han, Yijie and Rodriguez Sillke, Yasmina and Deng, Hongzhang and Siddiqui, Sophiya and Treese, Christoph and Schmidt, Franziska and Friedrich, Marie and Keye, Jacqueline and Wan, Jiajia and Qin, Yue and K{\"u}hl, Anja A. and Qin, Zhihai and Siegmund, Britta and Glauben, Rainer}, title = {Lipid droplet-dependent fatty acid metabolism controls the immune suppressive phenotype of tumor-associated macrophages}, series = {EMBO molecular medicine}, volume = {11}, journal = {EMBO molecular medicine}, number = {11}, publisher = {Wiley}, address = {Hoboken}, issn = {1757-4676}, doi = {10.15252/emmm.201910698}, pages = {17}, year = {2019}, abstract = {Tumor-associated macrophages (TAMs) promote tumor growth and metastasis by suppressing tumor immune surveillance. Herein, we provide evidence that the immunosuppressive phenotype of TAMs is controlled by long-chain fatty acid metabolism, specifically unsaturated fatty acids, here exemplified by oleate. Consequently, en-route enriched lipid droplets were identified as essential organelles, which represent effective targets for chemical inhibitors to block in vitro polarization of TAMs and tumor growth in vivo. In line, analysis of human tumors revealed that myeloid cells infiltrating colon cancer but not gastric cancer tissue indeed accumulate lipid droplets. Mechanistically, our data indicate that oleate-induced polarization of myeloid cells depends on the mammalian target of the rapamycin pathway. Thus, our findings reveal an alternative therapeutic strategy by targeting the pro-tumoral myeloid cells on a metabolic level.}, language = {en} } @phdthesis{Wozniak2019, author = {Wozniak, Natalia Joanna}, title = {Convergent evolution of the selfing syndrome in the genus Capsella}, school = {Universit{\"a}t Potsdam}, pages = {229}, year = {2019}, language = {en} } @article{WitzelAbuRishaAlbersetal.2019, author = {Witzel, Katja and Abu Risha, Marua and Albers, Philip and B{\"o}rnke, Frederik and Hanschen, Franziska S.}, title = {Identification and Characterization of Three Epithiospecifier Protein Isoforms in Brassica oleracea}, series = {Frontiers in plant science}, volume = {10}, journal = {Frontiers in plant science}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2019.01552}, pages = {14}, year = {2019}, abstract = {Glucosinolates present in Brassicaceae play a major role in herbivory defense. Upon tissue disruption, glucosinolates come into contact with myrosinase, which initiates their breakdown to biologically active compounds. Among these, the formation of epithionitriles is triggered by the presence of epithiospecifier protein (ESP) and a terminal double bond in the glucosinolate side chain. One ESP gene is characterized in the model plant Arabidopsis thaliana (AtESP; At1g54040.2). However, Brassica species underwent genome triplication since their divergence from the Arabidopsis lineage. This indicates the presence of multiple ESP isoforms in Brassica crops that are currently poorly characterized. We identified three B. oleracea ESPs, specifically BoESP1 (LOC106296341), BoESP2 (LOC106306810), and BoESP3 (LOC106325105) based on in silico genome analysis. Transcript and protein abundance were assessed in shoots and roots of four B. oleracea vegetables, namely broccoli, kohlrabi, white, and red cabbage, because these genotypes showed a differential pattern for the formation of glucosinolate hydrolysis products as well for their ESP activity. BoESP1 and BoESP2 were expressed mainly in shoots, while BoESP3 was abundant in roots. Biochemical characterization of heterologous expressed BoESP isoforms revealed different substrate specificities towards seven glucosinolates: all isoforms showed epithiospecifier activity on alkenyl glucosinolates, but not on non-alkenyl glucosinolates. The pH-value differently affected BoESP activity: while BoESP1 and BoESP2 activities were optimal at pH 6-7, BoESP3 activity remained relatively stable from pH 4 to 7. In order test their potential for the in vivo modification of glucosinolate breakdown, the three isoforms were expressed in A. thaliana Hi-0, which lacks AtESP expression, and analyzed for the effect on their respective hydrolysis products. The BoESPs altered the hydrolysis of allyl glucosinolate in the A. thaliana transformants to release 1-cyano-2,3-epithiopropane and reduced formation of the corresponding 3-butenenitrile and allyl isothiocyanate. Plants expressing BoESP2 showed the highest percentage of released epithionitriles. Given these results, we propose a model for isoform-specific roles of B. oleracea ESPs in glucosinolate breakdown.}, language = {en} } @article{Wiebke2019, author = {Wiebke, Ullmann}, title = {Warum hat Bayern mehr Feldhasen als Brandenburg?}, series = {Vielfalt in der Uckermark : Forschungsprojekte 2015 - 2018}, journal = {Vielfalt in der Uckermark : Forschungsprojekte 2015 - 2018}, publisher = {oerding print GmbH}, address = {Braunschweig}, pages = {46 -- 47}, year = {2019}, language = {de} } @article{WerchmeisterTangXiaoetal.2019, author = {Werchmeister, Rebecka Maria Larsen and Tang, Jing and Xiao, Xinxin and Wollenberger, Ulla and Hjuler, Hans Aage and Ulstrup, Jens and Zhang, Jingdong}, title = {Three-Dimensional Bioelectrodes Utilizing Graphene Based Bioink}, series = {Journal of The Electrochemical Society}, volume = {166}, journal = {Journal of The Electrochemical Society}, number = {16}, publisher = {The Electrochemical Society}, address = {Pennington}, issn = {0013-4651}, doi = {10.1149/2.0261916jes}, pages = {G170 -- G177}, year = {2019}, abstract = {Enzyme immobilization using nanomaterials offers new approaches to enhanced bioelectrochemical performance and is essential for the preparation of bioelectrodes with high reproducibility and low cost. In this report, we describe the development of new three-dimensional (3D) bioelectrodes by immobilizing a "bioink" of glucose oxidase (GOD) in a matrix of reduced graphene oxides (RGOs), polyethylenimine (PEI), and ferrocene carboxylic acid (FcCOOH) on carbon paper (CP). CP with 3D interwoven carbon fibers serves as a solid porous and electronically conducting skeleton, providing large surface areas and space for loading the bioink and diffusion of substrate molecules, respectively. RGO enhances contact between the GOD-matrix and CP, maintaining high conductivity. The composition of the bioink has been systematically optimized. The GOD bioelectrodes show linearly increasing electrocatalytic oxidation current toward glucose concentration up to 48 mM. A hybrid enzymatic biofuel cell equipped with the GOD bioelectrode as a bioanode and a platinum cathode furthermore registers a maximum power density of 5.1 mu W cm(-2) and an open circuit voltage of 0.40 V at 25 degrees C. The new method reported of preparing a bioelectrode by drop-casting the bioink onto the substrate electrode is facile and versatile, with the potential of application also for other enzymatic bioelectrodes.}, language = {en} } @article{WendlerEnenkel2019, author = {Wendler, Petra and Enenkel, Cordula}, title = {Nuclear Transport of Yeast Proteasomes}, series = {Frontiers in molecular biosciences}, volume = {6}, journal = {Frontiers in molecular biosciences}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {2296-889X}, doi = {10.3389/fmolb.2019.00034}, pages = {12}, year = {2019}, abstract = {Proteasomes are key proteases in regulating protein homeostasis. Their holo-enzymes are composed of 40 different subunits which are arranged in a proteolytic core (CP) flanked by one to two regulatory particles (RP). Proteasomal proteolysis is essential for the degradation of proteins which control time-sensitive processes like cell cycle progression and stress response. In dividing yeast and human cells, proteasomes are primarily nuclear suggesting that proteasomal proteolysis is mainly required in the nucleus during cell proliferation. In yeast, which have a closed mitosis, proteasomes are imported into the nucleus as immature precursors via the classical import pathway. During quiescence, the reversible absence of proliferation induced by nutrient depletion or growth factor deprivation, proteasomes move from the nucleus into the cytoplasm. In the cytoplasm of quiescent yeast, proteasomes are dissociated into CP and RP and stored in membrane-less cytoplasmic foci, named proteasome storage granules (PSGs). With the resumption of growth, PSGs clear and mature proteasomes are transported into the nucleus by Blm10, a conserved 240 kDa protein and proteasome-intrinsic import receptor. How proteasomes are exported from the nucleus into the cytoplasm is unknown.}, language = {en} } @article{WeissWulff2019, author = {Weiß, Lina and Wulff, Monika}, title = {Ver{\"a}nderung der Landnutzung in der nord-westlichen Uckermark von 1780 bis heute}, series = {Vielfalt in der Uckermark : Forschungsprojekte 2015 - 2018}, journal = {Vielfalt in der Uckermark : Forschungsprojekte 2015 - 2018}, publisher = {oerding print GmbH}, address = {Braunschweig}, pages = {20 -- 21}, year = {2019}, language = {de} } @article{WeissSchalowJeltschetal.2019, author = {Weiss, Lina and Schalow, Linda and Jeltsch, Florian and Geissler, Katja}, title = {Experimental evidence for root competition effects on community evenness in one of two phytometer species}, series = {Journal of plant ecology}, volume = {12}, journal = {Journal of plant ecology}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1752-9921}, doi = {10.1093/jpe/rty021}, pages = {281 -- 291}, year = {2019}, abstract = {Aims Plant-plant interactions, being positive or negative, are recognized to be key factors in structuring plant communities. However, it is thought that root competition may be less important than shoot competition due to greater size symmetry belowground. Because direct experimental tests on the importance of root competition are scarce, we aim at elucidating whether root competition may have direct or indirect effects on community structure. Indirect effects may occur by altering the overall size asymmetry of competition through root-shoot competitive interactions. Methods We used a phytometer approach to examine the effects of root, shoot and total competition intensity and importance on evenness of experimental plant communities. Thereby two different phytometer species, Festuca brevipila and Dianthus carthusianorum, were grown in small communities of six grassland species over three levels of light and water availability, interacting with neighbouring shoots, roots, both or not at all. Important Findings We found variation in community evenness to be best explained if root and shoot (but not total) competition were considered. However, the effects were species specific: in Dianthus communities increasing root competition increased plant community evenness, while in Festuca communities shoot competition was the driving force of this evenness response. Competition intensities were influenced by environmental conditions in Dianthus, but not in Festuca phytometer plants. While we found no evidence for root-shoot interactions for neither phytometer species root competition in Dianthus communities led to increased allocation to shoots, thereby increasing the potential ability to perform in size-asymmetric competition for light. Our experiment demonstrates the potential role of root competition in structuring plant communities.}, language = {en} } @article{VonRaabStraubeRausBazosetal.2019, author = {Von Raab-Straube, Eckhard and Raus, Thomas and Bazos, Ioannis and Cornec, J. P. and De Belair, Gerard. and Dimitrakopoulos, P. G. and El Mokni, Ridha and Fateryga, Alexander V. and Fateryga, Valentina V. and Fridlender, Alain and Gil, Jaime and Grigorenko, V. N. and Hand, Ralf and Kovalchuk, A. and Mastrogianni, A. and Otto, R. and R{\"a}tzel, Stefan and Raus, Th. and Ristow, Michael and Salas Pascual, M. and Strid, Arne and Svirin, S. A. and Tsiripidis, Ioannis. and Uhlich, Holger and Vela, Errol and Verloove, Filip and Vidakis, K. and Yena, Andriy Vasylyovych and Yevseyenkov, P. E. and Zeddam, A.}, title = {Euro plus Med-Checklist Notulae, 11}, series = {Willdenowia}, volume = {49}, journal = {Willdenowia}, number = {3}, publisher = {Botanischer Garten \& botanisches Museum Berlin-Dahlem}, address = {Berlin}, issn = {0511-9618}, doi = {10.3372/wi.49.49312}, pages = {421 -- 445}, year = {2019}, abstract = {This is the eleventh of a series of miscellaneous contributions, by various authors, where hitherto unpublished data relevant to both the Med-Checklist and the Euro+Med (or Sisyphus) projects are presented. This instalment deals with the families Anacardiaceae, Asparagaceae (incl. Hyacinthaceae), Bignoniaceae, Cactaceae, Compositae, Cruciferae, Cyperaceae, Ericaceae, Gramineae, Labiatae, Leguminosae, Orobanchaceae, Polygonaceae, Rosaceae, Solanaceae and Staphyleaceae. It includes new country and area records and taxonomic and distributional considerations for taxa in Bidens, Campsis, Centaurea, Cyperus, Drymocallis, Engem, Hoffmannseggia, Hypopitys, Lavandula, Lithraea, Melilotus, Nicotiana, Olimarabidopsis, Opuntia, Orobanche, Phelipanche, Phragmites, Rumex, Salvia, Schinus, Staphylea, and a new combination in Drimia.}, language = {en} } @article{VeloAntonBoratyńskiFerreiraetal.2019, author = {Velo-Ant{\´o}n, Guillermo and Boratyński, Zbyszek and Ferreira, Clara Mendes and Lima, Vanessa O. and Alves, Paulo C. and Brito, Jos{\´e} C.}, title = {Intraspecific genetic diversity and distribution of North African hedgehogs (Mammalia: Erinaceidae)}, series = {Biological journal of the Linnean Society : a journal of evolution}, volume = {127}, journal = {Biological journal of the Linnean Society : a journal of evolution}, number = {1}, publisher = {Oxford University Press}, address = {Oxford}, issn = {0024-4066}, doi = {10.1093/biolinnean/blz030}, pages = {156 -- 163}, year = {2019}, abstract = {Despite growing efforts to halt biodiversity loss, knowledge of species diversity and distribution is highly geographically biased, leaving some areas unexplored. Taxa distributed in remote, desert areas, such as hedgehogs (Mammalia; Eulipotyphla) in North Africa, are good examples of current knowledge gaps in systematics and biogeography. Here we studied the geographical distribution and intraspecific genetic diversity of hedgehogs in North Africa. Specimens belonging to North African and Eurasian species were analysed with mitochondrial (control region, CR) and nuclear (recombination activating gene 1, RAG1) gene fragments. This revealed a broader geographical distribution of Atelerix algirus in south-western Libya and of Paraechinus aethiopicus along the Atlantic Sahara. High intraspecific genetic differentiation was found in A. algirus and A. albiventris at the mitochondrial level, with nuclear haplotype sharing across their ranges. These findings suggest that biogeographical patterns of hedgehogs in North Africa are more complex than previously suggested, highlighting a need for further investigation in this remote and poorly known area.}, language = {en} } @phdthesis{Vandrich2019, author = {Vandrich, Jasmina}, title = {Metabolic Engineering in Halomonas elongata}, school = {Universit{\"a}t Potsdam}, pages = {80}, year = {2019}, language = {en} } @article{ToulouseSchmuckerMeteschetal.2019, author = {Toulouse, Charlotte Marguerite and Schmucker, Sonja and Metesch, Kristina and Pfannstiel, Jens and Michel, Bernd and Starke, Ines and M{\"o}ller, Heiko Michael and Stefanski, Volker and Steuber, Julia}, title = {Mechanism and impact of catecholamine conversion by Vibrio cholerae}, series = {Biochimica et biophysica acta : Bioenergetics}, volume = {1860}, journal = {Biochimica et biophysica acta : Bioenergetics}, number = {6}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0005-2728}, doi = {10.1016/j.bbabio.2019.04.003}, pages = {478 -- 487}, year = {2019}, abstract = {Bacterial pathogens are influenced by signaling molecules including the catecholamines adrenaline and noradrenaline which are host-derived hormones and neurotransmitters. Adrenaline and noradrenaline modulate growth, motility and virulence of bacteria. We show that adrenaline is converted by the pathogen Vibrio cholerae to adrenochrome in the course of respiration, and demonstrate that superoxide produced by the respiratory, Na+ - translocating NADH:quinone oxidoreductase (NQR) acts as electron acceptor in the oxidative conversion of adrenaline to adrenochrome. Adrenochrome stimulates growth of V. cholerae, and triggers specific responses in V. cholerae and in immune cells. We performed a quantitative proteome analysis of V. cholerae grown in minimal medium with glucose as carbon source without catecholamines, or with adrenaline, noradrenaline or adrenochrome. Significant regulation of proteins participating in iron transport and iron homeostasis, in energy metabolism, and in signaling was observed upon exposure to adrenaline, noradrenaline or adrenochrome. On the host side, adrenochrome inhibited lipopolysaccharide-triggered formation of TNF-alpha by THP-1 monocytes, though to a lesser extent than adrenaline. It is proposed that adrenochrome produced from adrenaline by respiring V. cholerae functions as effector molecule in pathogen-host interaction.}, language = {en} } @phdthesis{Tong2019, author = {Tong, Hao}, title = {Dissection of genetic architecture of intermediate phenotypes and predictions in plants}, school = {Universit{\"a}t Potsdam}, pages = {127}, year = {2019}, abstract = {Determining the relationship between genotype and phenotype is the key to understand the plasticity and robustness of phenotypes in nature. While the directly observable plant phenotypes (e.g. agronomic, yield and stress resistance traits) have been well-investigated, there is still a lack in our knowledge about the genetic basis of intermediate phenotypes, such as metabolic phenotypes. Dissecting the links between genotype and phenotype depends on suitable statistical models. The state-of-the-art models are developed for directly observable phenotypes, regardless the characteristics of intermediate phenotypes. This thesis aims to fill the gaps in understanding genetic architecture of intermediate phenotypes, and how they tie to composite traits, namely plant growth. The metabolite levels and reaction fluxes, as two aspects of metabolic phenotypes, are shaped by the interrelated chemical reactions formed in genome-scale metabolic network. Here, I attempt to answer the question: Can the knowledge of underlying genome-scale metabolic network improve the model performance for prediction of metabolic phenotypes and associated plant growth? To this end, two projects are investigated in this thesis. Firstly, we propose an approach that couples genomic selection with genome-scale metabolic network and metabolic profiles in Arabidopsis thaliana to predict growth. This project is the first integration of genomic data with fluxes predicted based on constraint-based modeling framework and data on biomass composition. We demonstrate that our approach leads to a considerable increase of prediction accuracy in comparison to the state-of-the-art methods in both within and across environment predictions. Therefore, our work paves the way for combining knowledge on metabolic mechanisms in the statistical approach underlying genomic selection to increase the efficiency of future plant breeding approaches. Secondly, we investigate how reliable is genomic selection for metabolite levels, and which single nucleotide polymorphisms (SNPs), obtained from different neighborhoods of a given metabolic network, contribute most to the accuracy of prediction. The results show that the local structure of first and second neighborhoods are not sufficient for predicting the genetic basis of metabolite levels in Zea mays. Furthermore, we find that the enzymatic SNPs can capture most the genetic variance and the contribution of non-enzymatic SNPs is in fact small. To comprehensively understand the genetic architecture of metabolic phenotypes, I extend my study to a local Arabidopsis thaliana population and their hybrids. We analyze the genetic architecture in primary and secondary metabolism as well as in growth. In comparison to primary metabolites, compounds from secondary metabolism were more variable and show more non-additive inheritance patterns which could be attributed to epistasis. Therefore, our study demonstrates that heterozygosity in local Arabidopsis thaliana population generates metabolic variation and may impact several tasks directly linked to metabolism. The studies in this thesis improve the knowledge of genetic architecture of metabolic phenotypes in both inbreed and hybrid population. The approaches I proposed to integrate genome-scale metabolic network with genomic data provide the opportunity to obtain mechanistic insights about the determinants of agronomically important polygenic traits.}, language = {en} } @article{TiegsCostelloIskenetal.2019, author = {Tiegs, Scott D. and Costello, David M. and Isken, Mark W. and Woodward, Guy and McIntyre, Peter B. and Gessner, Mark O. and Chauvet, Eric and Griffiths, Natalie A. and Flecker, Alex S. and Acuna, Vicenc and Albarino, Ricardo and Allen, Daniel C. and Alonso, Cecilia and Andino, Patricio and Arango, Clay and Aroviita, Jukka and Barbosa, Marcus V. M. and Barmuta, Leon A. and Baxter, Colden V. and Bell, Thomas D. C. and Bellinger, Brent and Boyero, Luz and Brown, Lee E. and Bruder, Andreas and Bruesewitz, Denise A. and Burdon, Francis J. and Callisto, Marcos and Canhoto, Cristina and Capps, Krista A. and Castillo, Maria M. and Clapcott, Joanne and Colas, Fanny and Colon-Gaud, Checo and Cornut, Julien and Crespo-Perez, Veronica and Cross, Wyatt F. and Culp, Joseph M. and Danger, Michael and Dangles, Olivier and de Eyto, Elvira and Derry, Alison M. and Diaz Villanueva, Veronica and Douglas, Michael M. and Elosegi, Arturo and Encalada, Andrea C. and Entrekin, Sally and Espinosa, Rodrigo and Ethaiya, Diana and Ferreira, Veronica and Ferriol, Carmen and Flanagan, Kyla M. and Fleituch, Tadeusz and Shah, Jennifer J. Follstad and Frainer, Andre and Friberg, Nikolai and Frost, Paul C. and Garcia, Erica A. and Lago, Liliana Garcia and Garcia Soto, Pavel Ernesto and Ghate, Sudeep and Giling, Darren P. and Gilmer, Alan and Goncalves, Jose Francisco and Gonzales, Rosario Karina and Graca, Manuel A. S. and Grace, Mike and Grossart, Hans-Peter and Guerold, Francois and Gulis, Vlad and Hepp, Luiz U. and Higgins, Scott and Hishi, Takuo and Huddart, Joseph and Hudson, John and Imberger, Samantha and Iniguez-Armijos, Carlos and Iwata, Tomoya and Janetski, David J. and Jennings, Eleanor and Kirkwood, Andrea E. and Koning, Aaron A. and Kosten, Sarian and Kuehn, Kevin A. and Laudon, Hjalmar and Leavitt, Peter R. and Lemes da Silva, Aurea L. and Leroux, Shawn J. and Leroy, Carri J. and Lisi, Peter J. and MacKenzie, Richard and Marcarelli, Amy M. and Masese, Frank O. and Mckie, Brendan G. and Oliveira Medeiros, Adriana and Meissner, Kristian and Milisa, Marko and Mishra, Shailendra and Miyake, Yo and Moerke, Ashley and Mombrikotb, Shorok and Mooney, Rob and Moulton, Tim and Muotka, Timo and Negishi, Junjiro N. and Neres-Lima, Vinicius and Nieminen, Mika L. and Nimptsch, Jorge and Ondruch, Jakub and Paavola, Riku and Pardo, Isabel and Patrick, Christopher J. and Peeters, Edwin T. H. M. and Pozo, Jesus and Pringle, Catherine and Prussian, Aaron and Quenta, Estefania and Quesada, Antonio and Reid, Brian and Richardson, John S. and Rigosi, Anna and Rincon, Jose and Risnoveanu, Geta and Robinson, Christopher T. and Rodriguez-Gallego, Lorena and Royer, Todd V. and Rusak, James A. and Santamans, Anna C. and Selmeczy, Geza B. and Simiyu, Gelas and Skuja, Agnija and Smykla, Jerzy and Sridhar, Kandikere R. and Sponseller, Ryan and Stoler, Aaron and Swan, Christopher M. and Szlag, David and Teixeira-de Mello, Franco and Tonkin, Jonathan D. and Uusheimo, Sari and Veach, Allison M. and Vilbaste, Sirje and Vought, Lena B. M. and Wang, Chiao-Ping and Webster, Jackson R. and Wilson, Paul B. and Woelfl, Stefan and Xenopoulos, Marguerite A. and Yates, Adam G. and Yoshimura, Chihiro and Yule, Catherine M. and Zhang, Yixin X. and Zwart, Jacob A.}, title = {Global patterns and drivers of ecosystem functioning in rivers and riparian zones}, series = {Science Advances}, volume = {5}, journal = {Science Advances}, number = {1}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {2375-2548}, doi = {10.1126/sciadv.aav0486}, pages = {8}, year = {2019}, abstract = {River ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth's biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constraints toward the poles and greater roles for other environmental drivers (e.g., nutrient loading) toward the equator. These results and data set the stage for unprecedented "next-generation biomonitoring" by establishing baselines to help quantify environmental impacts to the functioning of ecosystems at a global scale.}, language = {en} } @article{ThomasCarvalhoHaileetal.2019, author = {Thomas, Jessica E. and Carvalho, Gary R. and Haile, James and Rawlence, Nicolas J. and Martin, Michael D. and Ho, Simon Y. W. and Sigfusson, Arnor P. and Josefsson, Vigfus A. and Frederiksen, Morten and Linnebjerg, Jannie F. and Castruita, Jose A. Samaniego and Niemann, Jonas and Sinding, Mikkel-Holger S. and Sandoval-Velasco, Marcela and Soares, Andre E. R. and Lacy, Robert and Barilaro, Christina and Best, Juila and Brandis, Dirk and Cavallo, Chiara and Elorza, Mikelo and Garrett, Kimball L. and Groot, Maaike and Johansson, Friederike and Lifjeld, Jan T. and Nilson, Goran and Serjeanston, Dale and Sweet, Paul and Fuller, Errol and Hufthammer, Anne Karin and Meldgaard, Morten and Fjeldsa, Jon and Shapiro, Beth and Hofreiter, Michael and Stewart, John R. and Gilbert, M. Thomas P. and Knapp, Michael}, title = {Demographic reconstruction from ancient DNA supports rapid extinction of the great auk}, series = {eLife}, volume = {8}, journal = {eLife}, publisher = {eLife Sciences Publications}, address = {Cambridge}, issn = {2050-084X}, doi = {10.7554/eLife.47509}, pages = {35}, year = {2019}, abstract = {The great auk was once abundant and distributed across the North Atlantic. It is now extinct, having been heavily exploited for its eggs, meat, and feathers. We investigated the impact of human hunting on its demise by integrating genetic data, GPS-based ocean current data, and analyses of population viability. We sequenced complete mitochondrial genomes of 41 individuals from across the species' geographic range and reconstructed population structure and population dynamics throughout the Holocene. Taken together, our data do not provide any evidence that great auks were at risk of extinction prior to the onset of intensive human hunting in the early 16th century. In addition, our population viability analyses reveal that even if the great auk had not been under threat by environmental change, human hunting alone could have been sufficient to cause its extinction. Our results emphasise the vulnerability of even abundant and widespread species to intense and localised exploitation.}, language = {en} } @phdthesis{Thirumalaikumar2019, author = {Thirumalaikumar, Venkatesh P.}, title = {Investigating drought and heat stress regulatory networks in Arabidopsis and tomato}, school = {Universit{\"a}t Potsdam}, pages = {154}, year = {2019}, language = {en} } @article{TeckentrupKramerSchadtJeltsch2019, author = {Teckentrup, Lisa and Kramer-Schadt, Stephanie and Jeltsch, Florian}, title = {The risk of ignoring fear: underestimating the effects of habitat loss and fragmentation on biodiversity}, series = {Landscape ecology}, volume = {34}, journal = {Landscape ecology}, number = {12}, publisher = {Springer}, address = {Dordrecht}, issn = {0921-2973}, doi = {10.1007/s10980-019-00922-8}, pages = {2851 -- 2868}, year = {2019}, language = {en} } @article{Teckentrup2019, author = {Teckentrup, Lisa}, title = {Gefahr an jeder Ecke}, series = {Vielfalt in der Uckermark : Forschungsprojekte 2015 - 2018}, journal = {Vielfalt in der Uckermark : Forschungsprojekte 2015 - 2018}, publisher = {oerding print GmbH}, address = {Braunschweig}, pages = {54 -- 55}, year = {2019}, language = {de} } @phdthesis{Taube2019, author = {Taube, Robert}, title = {Characterisations of Fungal Communities in Temperate Lakes}, school = {Universit{\"a}t Potsdam}, pages = {139}, year = {2019}, language = {en} } @article{TarazonaMachatschekSchulzetal.2019, author = {Tarazona, Natalia A. and Machatschek, Rainhard Gabriel and Schulz, Burkhard and Auxiliadora Prieto Jim{\´e}nez, M. and Lendlein, Andreas}, title = {Molecular Insights into the Physical Adsorption of Amphiphilic Protein PhaF onto Copolyester Surfaces}, series = {Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences}, volume = {20}, journal = {Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences}, number = {9}, publisher = {American Chemical Society}, address = {Washington}, issn = {1525-7797}, doi = {10.1021/acs.biomac.9b00069}, pages = {3242 -- 3252}, year = {2019}, abstract = {Phasins are amphiphilic proteins located at the polymer-cytoplasm interface of bacterial polyhydroxyalkanoates (PHA). The immobilization of phasins on biomaterial surfaces is a promising way to enhance the hydrophilicity and supply cell- directing elements in bioinstructing processes. Optimizing the physical adsorption of phasins requires deep insights into molecular processes during polymer-protein interactions to preserve their structural conformation while optimizing surface coverage. Here, the assembly, organization, and stability of phasin PhaF from Pseudomonas putida at interfaces is disclosed. The Langmuir technique, combined with in situ microscopy and spectroscopic methods, revealed that PhaF forms stable and robust monolayers at different temperatures, with an almost flat orientation of its alpha-helix at the air-water interface. PhaF adsorption onto preformed monolayers of poly[(3-R-hydroxyoctanoate)-co-(3-R-hydroxyhexanoate)] (PHOHHx), yields stable mixed layers below pi = similar to 15.7 mN/m. Further insertion induces a molecular reorganization. PHOHHx with strong surface hydrophobicity is a more adequate substrate for PhaF adsorption than the less hydrophobic poly[(rac-lactide)-co-glycolide] (PLGA). The observed orientation of the main axis of the protein in relation to copolyester interfaces ensures the best exposure of the hydrophobic residues, providing a suitable coating strategy for polymer functionalization.}, language = {en} } @article{TarazonaMachatschekLendlein2019, author = {Tarazona, Natalia A. and Machatschek, Rainhard Gabriel and Lendlein, Andreas}, title = {Unraveling the interplay between abiotic hydrolytic degradation and crystallization of bacterial polyesters comprising short and medium side-chain-length Polyhydroxyalkanoates}, series = {Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences}, volume = {21}, journal = {Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences}, number = {2}, publisher = {American Chemical Society}, address = {Washington}, issn = {1525-7797}, doi = {10.1021/acs.biomac.9b01458}, pages = {761 -- 771}, year = {2019}, abstract = {Polyhydroxyalkanoates (PHAs) have attracted attention as degradable (co)polyesters which can be produced by microorganisms with variations in the side chain. This structural variation influences not only the thermomechanical properties of the material but also its degradation behavior. Here, we used Langmuir monolayers at the air-water (A-W) interface as suitable models for evaluating the abiotic degradation of two PHAs with different side-chain lengths and crystallinity. By controlling the polymer state (semi crystalline, amorphous), the packing density, the pH, and the degradation mechanism, we could draw several significant conclusions. (i) The maximum degree of crystallinity for a PHA film to be efficiently degraded up to pH = 12.3 is 40\%. (ii) PHA made of repeating units with shorter side-chain length are more easily hydrolyzed under alkaline conditions. The efficiency of alkaline hydrolysis decreased by about 65\% when the polymer was 40\% crystalline. (iii) In PHA films with a relatively high initial crystallinity, abiotic degradation initiated a chemicrystallization phenomenon, detected as an increase in the storage modulus (E'). This could translate into an increase in brittleness and reduction in the material degradability. Finally, we demonstrate the stability of the measurement system for long-term experiments, which allows degradation conditions for polymers that could closely simulate real-time degradation.}, language = {en} } @article{TannerLichtenbergKraag2019, author = {Tanner, Norman and Lichtenberg-Kraag, Birgit}, title = {Identification and Quantification of Single and Multi-Adulteration of Beeswax by FTIR-ATR Spectroscopy}, series = {European journal of lipid science and technology}, volume = {121}, journal = {European journal of lipid science and technology}, number = {12}, publisher = {Wiley}, address = {Hoboken}, issn = {1438-7697}, doi = {10.1002/ejlt.201900245}, pages = {10}, year = {2019}, abstract = {Marketing of adulterated beeswax foundation has recently become a major economic problem for beekeepers. Paraffin contamination leads to collapse of combs, and stearic acid has a negative influence on the development of bee brood. The quality of beeswax for beekeeping has not been standardized in EU regulations. Recently, it was shown that attenuated total reflectance Fourier-transform infrared spectroscopy (FTIR-ATR) can be used to determine beeswax adulteration. Differences in the IR spectra of authentic beeswax can be identified and calculated through comparison with authentic beeswax. In this study, the method is further validated by employing a high number of samples of authentic beeswax from different origins. Low quantification and detection limits are achieved for paraffin, stearic acid, tallow, carnauba wax, and candelilla wax. Furthermore, the FTIR-ATR analytical conditions are verified by analyzing 358 samples of commercial and beekeeper-produced beeswax foundations. Multi-adulterated samples with as many as five different additives in beeswax mixtures are identified with the same accuracy as single substances. Additionally, the spectra of a further 14 different natural and synthetic waxes and hardened fats are analyzed and are compared with beeswax. Finally, a spectral library is established that can be used for further studies. Practical Applications: FTIR-ATR is a fast and cost-efficient tool in beeswax analysis for accurately monitoring a high sample volume. Analysis of 358 beeswax foundations showed an adulteration of 21.8\% of the samples with paraffin, stearic acid, tallow, and combinations. Based on the results of this study, it is possible to detect beeswax adulteration of less than 3\% of these adulterants and their combinations by FTIR-ATR spectroscopy. This method can be used for monitoring beeswax foundations to identify adulterated materials, exclude these materials from the recycling process, and produce high-quality beeswax, which is essential for bee health.}, language = {en} } @article{TangBackhausRiemannetal.2019, author = {Tang, Kam W. and Backhaus, Liv and Riemann, Lasse and Koski, Marja and Grossart, Hans-Peter and Munk, Peter and Nielsen, Torkel Gissel}, title = {Copepod carcasses in the subtropical convergence zone of the Sargasso Sea}, series = {Journal of plankton research}, volume = {41}, journal = {Journal of plankton research}, number = {4}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0142-7873}, doi = {10.1093/plankt/fbz038}, pages = {549 -- 560}, year = {2019}, abstract = {The oligotrophic subtropical gyre covers a vast area of the Atlantic Ocean. Decades of time-series monitoring have generated detailed temporal information about zooplankton species and abundances at fixed locations within the gyre, but their live/dead status is often omitted, especially in the dynamic subtropical convergence zone (STCZ) where the water column stratification pattern can change considerably across the front as warm and cold water masses converge. We conducted a detailed survey in the North Atlantic STCZ and showed that over 85\% of the copepods were typically concentrated in the upper 200 m. Copepod carcasses were present in all samples and their proportional numerical abundances increased with depth, reaching up to 91\% at 300-400 m. Overall, 14-19\% of the copepods within the upper 200 m were carcasses. Shipboard experiments showed that during carcass decomposition, microbial respiration increased, and the bacterial community associated with the carcasses diverged from that in the ambient water. Combining field and experimental data, we estimated that decomposing copepod carcasses constitute a negligible oxygen sink in the STCZ, but sinking carcasses may represent an overlooked portion of the passive carbon sinking flux and should be incorporated in future studies of carbon flux in this area.}, language = {en} } @article{TangWerchmeisterPredaetal.2019, author = {Tang, Jing and Werchmeister, Rebecka Maria Larsen and Preda, Loredana and Huang, Wei and Zheng, Zhiyong and Leimk{\"u}hler, Silke and Wollenberger, Ulla and Xiao, Xinxin and Engelbrekt, Christian and Ulstrup, Jens and Zhang, Jingdong}, title = {Three-dimensional sulfite oxidase bioanodes based on graphene functionalized carbon paper for sulfite/O-2 biofuel cells}, series = {ACS catalysis}, volume = {9}, journal = {ACS catalysis}, number = {7}, publisher = {American Chemical Society}, address = {Washington}, issn = {2155-5435}, doi = {10.1021/acscatal.9b01715}, pages = {6543 -- 6554}, year = {2019}, abstract = {We have developed a three-dimensional (3D) graphene electrode suitable for the immobilization of human sulfite oxidase (hSO), which catalyzes the electrochemical oxidation of sulfite via direct electron transfer (DET). The electrode is fabricated by drop-casting graphene-polyethylenimine (G-P) composites on carbon papers (CPs) precoated with graphene oxide (GO). The negatively charged hSO can be adsorbed electrostatically on the positively charged matrix (G-P) on CP electrodes coated with GO (CPG), with a proper orientation for accelerated DET. Notably, further electrochemical reduction of G-P on CPG electrodes leads to a 9-fold increase of the saturation catalytic current density (j(m)) for sulfite oxidation reaching 24.4 +/- 0.3 mu A to cm(-2), the highest value among reported DET-based hSO bioelectrodes. The increased electron transfer rate plays a dominating role in the enhancement of direct enzymatic current because of the improved electric contact of hSO with the electrode, The optimized hSO bioelectrode shows a significant catalytic rate (k(cat): 25.6 +/- 0.3 s(-1)) and efficiency (k(cat)/K-m: 0.231 +/- 0.003 s(-1) mu M-1) compared to the reported hSO bioelectrodes. The assembly of the hSO bioanode and a commercial platinum biocathode allows the construction of sulfite/O-2 enzymatic biofuel cells (EBFCs) with flowing fuels. The optimized EBFC displays an open-circuit voltage (OCV) of 0.64 +/- 0.01 V and a maximum power density of 61 +/- 6 mu W cm(-2) (122 +/- 12 mW m(-3)) at 30 degrees C, which exceeds the best reported value by more than 6 times.}, language = {en} } @article{TangSullivanHongetal.2019, author = {Tang, Alan T. and Sullivan, Katie Rose and Hong, Courtney C. and Goddard, Lauren M. and Mahadevan, Aparna and Ren, Aileen and Pardo, Heidy and Peiper, Amy and Griffin, Erin and Tanes, Ceylan and Mattei, Lisa M. and Yang, Jisheng and Li, Li and Mericko-Ishizuka, Patricia and Shen, Le and Hobson, Nicholas and Girard, Romuald and Lightle, Rhonda and Moore, Thomas and Shenkar, Robert and Polster, Sean P. and Roedel, Claudia Jasmin and Li, Ning and Zhu, Qin and Whitehead, Kevin J. and Zheng, Xiangjian and Akers, Amy and Morrison, Leslie and Kim, Helen and Bittinger, Kyle and Lengner, Christopher J. and Schwaninger, Markus and Velcich, Anna and Augenlicht, Leonard and Abdelilah-Seyfried, Salim and Min, Wang and Marchuk, Douglas A. and Awad, Issam A. and Kahn, Mark L.}, title = {Distinct cellular roles for PDCD10 define a gut-brain axis in cerebral cavernous malformation}, series = {Science Translational Medicine}, volume = {11}, journal = {Science Translational Medicine}, number = {520}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {1946-6234}, doi = {10.1126/scitranslmed.aaw3521}, pages = {14}, year = {2019}, abstract = {Cerebral cavernous malformation (CCM) is a genetic, cerebrovascular disease. Familial CCM is caused by genetic mutations in KRIT1, CCM2, or PDCD10. Disease onset is earlier and more severe in individuals with PDCD10 mutations. Recent studies have shown that lesions arise from excess mitogen-activated protein kinase kinase kinase 3 (MEKK3) signaling downstream of Toll-like receptor 4 (TLR4) stimulation by lipopolysaccharide derived from the gut microbiome. These findings suggest a gut-brain CCM disease axis but fail to define it or explain the poor prognosis of patients with PDCD10 mutations. Here, we demonstrate that the gut barrier is a primary determinant of CCM disease course, independent of microbiome configuration, that explains the increased severity of CCM disease associated with PDCD10 deficiency. Chemical disruption of the gut barrier with dextran sulfate sodium augments CCM formation in a mouse model, as does genetic loss of Pdcd10, but not Krit1, in gut epithelial cells. Loss of gut epithelial Pdcd10 results in disruption of the colonic mucosal barrier. Accordingly, loss of Mucin-2 or exposure to dietary emulsifiers that reduce the mucus barrier increases CCM burden analogous to loss of Pdcd10 in the gut epithelium. Last, we show that treatment with dexamethasone potently inhibits CCM formation in mice because of the combined effect of action at both brain endothelial cells and gut epithelial cells. These studies define a gut-brain disease axis in an experimental model of CCM in which a single gene is required for two critical components: gut epithelial function and brain endothelial signaling.}, language = {en} } @article{TanabeLeimkuehlerDahl2019, author = {Tanabe, Tomohisa Sebastian and Leimk{\"u}hler, Silke and Dahl, Christiane}, title = {The functional diversity of the prokaryotic sulfur carrier protein TusA}, series = {Advances in microbial physiology}, volume = {75}, journal = {Advances in microbial physiology}, editor = {Poole, RK}, publisher = {Elsevier Acad. Press}, address = {Amsterdam}, isbn = {978-0-12-817715-0}, issn = {0065-2911}, doi = {10.1016/bs.ampbs.2019.07.004}, pages = {233 -- 277}, year = {2019}, abstract = {Persulfide groups participate in a wide array of biochemical pathways and are chemically very versatile. The TusA protein has been identified as a central element supplying and transferring sulfur as persulfide to a number of important biosynthetic pathways, like molybdenum cofactor biosynthesis or thiomodifications in nucleosides of tRNAs. In recent years, it has furthermore become obvious that this protein is indispensable for the oxidation of sulfur compounds in the cytoplasm. Phylogenetic analyses revealed that different TusA protein variants exists in certain organisms, that have evolved to pursue specific roles in cellular pathways. The specific TusA-like proteins thereby cannot replace each other in their specific roles and are rather specific to one sulfur transfer pathway or shared between two pathways. While certain bacteria like Escherichia coli contain several copies of TusA-like proteins, in other bacteria like Allochromatium vinosum a single copy of TusA is present with an essential role for this organism. Here, we give an overview on the multiple roles of the various TusA-like proteins in sulfur transfer pathways in different organisms to shed light on the remaining mysteries of this versatile protein.}, language = {en} } @article{TabaresJimenezZimmermannDietzeetal.2019, author = {Tabares Jimenez, Ximena del Carmen and Zimmermann, Heike Hildegard and Dietze, Elisabeth and Ratzmann, Gregor and Belz, Lukas and Vieth-Hillebrand, Andrea and Dupont, Lydie and Wilkes, Heinz and Mapani, Benjamin and Herzschuh, Ulrike}, title = {Vegetation state changes in the course of shrub encroachment in an African savanna since about 1850 CE and their potential drivers}, series = {Ecology and evolution}, volume = {10}, journal = {Ecology and evolution}, number = {2}, publisher = {Wiley}, address = {Hoboken}, issn = {2045-7758}, doi = {10.1002/ece3.5955}, pages = {962 -- 979}, year = {2019}, abstract = {Shrub encroachment has far-reaching ecological and economic consequences in many ecosystems worldwide. Yet, compositional changes associated with shrub encroachment are often overlooked despite having important effects on ecosystem functioning. We document the compositional change and potential drivers for a northern Namibian Combretum woodland transitioning into a Terminalia shrubland. We use a multiproxy record (pollen, sedimentary ancient DNA, biomarkers, compound-specific carbon (delta C-13) and deuterium (delta D) isotopes, bulk carbon isotopes (delta(13)Corg), grain size, geochemical properties) from Lake Otjikoto at high taxonomical and temporal resolution. We provide evidence that state changes in semiarid environments may occur on a scale of one century and that transitions between stable states can span around 80 years and are characterized by a unique vegetation composition. We demonstrate that the current grass/woody ratio is exceptional for the last 170 years, as supported by n-alkane distributions and the delta C-13 and delta(13)Corg records. Comparing vegetation records to environmental proxy data and census data, we infer a complex network of global and local drivers of vegetation change. While our delta D record suggests physiological adaptations of woody species to higher atmospheric pCO(2) concentration and drought, our vegetation records reflect the impact of broad-scale logging for the mining industry, and the macrocharcoal record suggests a decrease in fire activity associated with the intensification of farming. Impact of selective grazing is reflected by changes in abundance and taxonomical composition of grasses and by an increase of nonpalatable and trampling-resistant taxa. In addition, grain-size and spore records suggest changes in the erodibility of soils because of reduced grass cover. Synthesis. We conclude that transitions to an encroached savanna state are supported by gradual environmental changes induced by management strategies, which affected the resilience of savanna ecosystems. In addition, feedback mechanisms that reflect the interplay between management legacies and climate change maintain the encroached state.}, language = {en} } @article{StegerKimGanzertetal.2019, author = {Steger, Kristin and Kim, Amy Taeyen and Ganzert, Lars and Grossart, Hans-Peter and Smart, David R.}, title = {Floodplain soil and its bacterial composition are strongly affected by depth}, series = {FEMS microbiology ecology}, volume = {95}, journal = {FEMS microbiology ecology}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0168-6496}, doi = {10.1093/femsec/fiz014}, pages = {11}, year = {2019}, abstract = {We studied bacterial abundance and community structure of five soil cores using high-throughput sequencing of the 16S rRNA gene. Shifts in the soil bacterial composition were more pronounced within a vertical profile than across the landscape. Soil organic carbon (SOC) and nitrogen (N) concentrations decreased exponentially with soil depth and revealed a buried carbon-rich horizon between 0.8 and 1.3 m across all soil cores. This buried horizon was phylogenetically similar to its surrounding subsoils supporting the idea that the type of carbon, not necessarily the amount of carbon was driving the apparent similarities. In contrast to other studies, Nitrospirae was one of our major phyla with relatively high abundances throughout the soil profile except for the surface soil. Although depth is the major driver shaping soil bacterial community structure, positive correlations with SOC and N concentrations, however, were revealed with the bacterial abundance of Acidobacteria, one of the major, and Gemmatimonadetes, one of the minor phyla in our study. Our study showed that bacterial diversity in soils below 2.0 m can be still as high if not higher than in the above laying subsurface soil suggesting that various bacteria throughout the soil profile influence major biogeochemical processes in floodplain soils.}, language = {en} } @article{StaszekKrasuskaOtulakKozieletal.2019, author = {Staszek, Pawel and Krasuska, Urszula and Otulak-Koziel, Katarzyna and Fettke, J{\"o}rg and Gniazdowska, Agnieszka}, title = {Canavanine-Induced Decrease in Nitric Oxide Synthesis Alters Activity of Antioxidant System but Does Not Impact S-Nitrosoglutathione Catabolism in Tomato Roots}, series = {Frontiers in plant science}, volume = {10}, journal = {Frontiers in plant science}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2019.01077}, pages = {18}, year = {2019}, abstract = {Canavanine (CAN) is a nonproteinogenic amino acid synthesized in legumes. In mammalians, as arginine analogue, it is an inhibitor of nitric oxide synthase (NOS) activity. The aim of this study was to investigate the impact of CAN-induced nitric oxide level limitation on the antioxidant system and S-nitrosoglutathione (GSNO) metabolism in roots of tomato seedlings. Treatment with CAN (10 or 50 mu M) for 24-72 h led to restriction in root growth. Arginine-dependent NOS-like activity was almost completely inhibited, demonstrating direct effect of CAN action. CAN increased total antioxidant capacity and the level of sulphydryl groups. Catalase (CAT) and superoxide dismutase (SOD) activity decreased in CAN exposed roots. CAN supplementation resulted in the decrease of transcript levels of genes coding CAT (with the exception of CAT1). Genes coding SOD (except MnSOD and CuSOD) were upregulated by CAN short treatment; prolonged exposition to 50-mu M CAN resulted in downregulation of FeSOD, CuSOD, and SODP-2. Activity of glutathione reductase dropped down after short-term (10-mu M CAN) supplementation, while glutathione peroxidase activity was not affected. Transcript levels of glutathione reductase genes declined in response to CAN. Genes coding glutathione peroxidase were upregulated by 50-mu M CAN, while 10-mu M CAN downregulated GSHPx1. Inhibition of NOS-like activity by CAN resulted in lower GSNO accumulation in root tips. Activity of GSNO reductase was decreased by short-term supplementation with CAN. In contrast, GSNO reductase protein abundance was higher, while transcript levels were slightly altered in roots exposed to CAN. This is the first report on identification of differentially nitrated proteins in response to supplementation with nonproteinogenic amino acid. Among nitrated proteins differentially modified by CAN, seed storage proteins (after short-term CAN treatment) and components of the cellular redox system (after prolonged CAN supplementation) were identified. The findings demonstrate that due to inhibition of NOS-like activity, CAN leads to modification in antioxidant system. Limitation in GSNO level is due to lower nitric oxide formation, while GSNO catabolism is less affected. We demonstrated that monodehydroascorbate reductase, activity of which is inhibited in roots of CAN-treated plants, is the protein preferentially modified by tyrosine nitration.}, language = {en} } @article{SrokaGodunkoRutschmannetal.2019, author = {Sroka, Pavel and Godunko, Roman J. and Rutschmann, Sereina and Angeli, Kamila B. and Salles, Frederico F. and Gattolliat, Jean-Luc}, title = {A new species of Bungona in Turkey (Ephemeroptera, Baetidae)}, series = {Zoosytematics and evolution}, volume = {95}, journal = {Zoosytematics and evolution}, number = {1}, publisher = {Pensoft Publ.}, address = {Sofia}, issn = {1860-0743}, doi = {10.3897/zse.95.29487}, pages = {1 -- 13}, year = {2019}, abstract = {By using an integrative approach, we describe a new species of mayfly, Bungona (Chopralla) pontica sp. n., from Turkey. The discovery of a representative of the tropical mayfly genus Bungona in the Middle East is rather unexpected. The new species shows all the main morphological characters of the subgenus Chopralla, which has its closest related species occurring in southeastern Asia. Barcoding clearly indicated that the new species represents an independent lineage isolated for a very long time from other members of the complex. The claw is equipped with two rows of three or four flattened denticles. This condition is a unique feature of Bungona (Chopralla) pontica sp. n. among West Palaearctic mayfly species. Within the subgenus Chopralla, the species can be identified by the presence of a simple, not bifid right prostheca (also present only in Bungona (Chopralla) liebenauae (Soldan, Braasch \& Muu, 1987)), the shape of the labial palp, and the absence of protuberances on pronotum.}, language = {en} } @article{SperberWelkePetazzietal.2019, author = {Sperber, Hannah Sabeth and Welke, Robert-William and Petazzi, Roberto Arturo and Bergmann, Ronny and Schade, Matthias and Shai, Yechiel and Chiantia, Salvatore and Herrmann, Andreas and Schwarzer, Roland}, title = {Self-association and subcellular localization of Puumala hantavirus envelope proteins}, series = {Scientific reports}, volume = {9}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-018-36879-y}, pages = {15}, year = {2019}, abstract = {Hantavirus assembly and budding are governed by the surface glycoproteins Gn and Gc. In this study, we investigated the glycoproteins of Puumala, the most abundant Hantavirus species in Europe, using fluorescently labeled wild-type constructs and cytoplasmic tail (CT) mutants. We analyzed their intracellular distribution, co-localization and oligomerization, applying comprehensive live, single-cell fluorescence techniques, including confocal microscopy, imaging flow cytometry, anisotropy imaging and Number\&Brightness analysis. We demonstrate that Gc is significantly enriched in the Golgi apparatus in absence of other viral components, while Gn is mainly restricted to the endoplasmic reticulum (ER). Importantly, upon co-expression both glycoproteins were found in the Golgi apparatus. Furthermore, we show that an intact CT of Gc is necessary for efficient Golgi localization, while the CT of Gn influences protein stability. Finally, we found that Gn assembles into higher-order homo-oligomers, mainly dimers and tetramers, in the ER while Gc was present as mixture of monomers and dimers within the Golgi apparatus. Our findings suggest that PUUV Gc is the driving factor of the targeting of Gc and Gn to the Golgi region, while Gn possesses a significantly stronger self-association potential.}, language = {en} } @article{SowemimoKnoxBrownBorcherdsetal.2019, author = {Sowemimo, Oluwakemi T. and Knox-Brown, Patrick and Borcherds, Wade and Rindfleisch, Tobias and Thalhammer, Anja and Daughdrill, Gary W.}, title = {Conserved Glycines Control Disorder and Function in the Cold-Regulated Protein, COR15A}, series = {Biomolecules}, volume = {9}, journal = {Biomolecules}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {2218-273X}, doi = {10.3390/biom9030084}, pages = {17}, year = {2019}, abstract = {Cold-regulated (COR) 15A is an intrinsically disordered protein (IDP) from Arabidopsis thaliana important for freezing tolerance. During freezing-induced cellular dehydration, COR15A transitions from a disordered to mostly alpha-helical structure. We tested whether mutations that increase the helicity of COR15A also increase its protective function. Conserved glycine residues were identified and mutated to alanine. Nuclear magnetic resonance (NMR) spectroscopy was used to identify residue-specific changes in helicity for wildtype (WT) COR15A and the mutants. Circular dichroism (CD) spectroscopy was used to monitor the coil-helix transition in response to increasing concentrations of trifluoroethanol (TFE) and ethylene glycol. The impact of the COR15A mutants on the stability of model membranes during a freeze-thaw cycle was investigated by fluorescence spectroscopy. The results of these experiments showed the mutants had a higher content of alpha-helical structure and the increased alpha-helicity improved membrane stabilization during freezing. Comparison of the TFE- and ethylene glycol-induced coil-helix transitions support our conclusion that increasing the transient helicity of COR15A in aqueous solution increases its ability to stabilize membranes during freezing. Altogether, our results suggest the conserved glycine residues are important for maintaining the disordered structure of COR15A but are also compatible with the formation of alpha-helical structure during freezing induced dehydration.}, language = {en} } @misc{SowemimoBorcherdsKnoxBrownetal.2019, author = {Sowemimo, Oluwakemi and Borcherds, Wade and Knox-Brown, Patrick and Rindfleisch, Tobias and Thalhammer, Anja and Daughdrill, Gary}, title = {Evolution of Transient Helicity and Disorder in Late Embryogenesis Abundant Protein COR15A}, series = {Biophysical journal}, volume = {116}, journal = {Biophysical journal}, number = {3}, publisher = {Cell Press}, address = {Cambridge}, issn = {0006-3495}, doi = {10.1016/j.bpj.2018.11.2553}, pages = {473A -- 473A}, year = {2019}, abstract = {Cold regulated protein 15A (COR15A) is a nuclear encoded, intrinsically disordered protein that is found in Arabidopsis thaliana. It belongs to the Late Embryogenesis Abundant (LEA) family of proteins and is responsible for increased freezing tolerance in plants. COR15A is intrinsically disordered in dilute solutions and adopts a helical structure upon dehydration or in the presence of co-solutes such as TFE and ethylene glycol. This helical structure is thought to be important for protecting plants from dehydration induced by freezing. Multiple protein sequence alignments revealed the presence of several conserved glycine residues that we hypothesize keeps COR15A from becoming helical in dilute solutions. Using AGADIR, the change in helical content of COR15A when these conserved glycine residues were mutated to alanine residues was predicted. Based on the predictions, glycine to alanine mutants were made at position 68, and 54,68,81, and 84. Labeled samples of wildtype COR15A and mutant proteins were purified and NMR experiments were performed to examine any structural changes induced by the mutations. To test the effects of dehydration on the structure of COR15A, trifluoroethanol, an alcohol based co solvent that is proposed to induce/stabilize helical structure in peptides was added to the NMR samples, and the results of the experiment showed an increase in helical content, compared to the samples without TFE. To test the functional differences between wild type and the mutants, liposome leakage assays were performed. The results from these assays suggest the more helical mutants may augment membrane stability.}, language = {en} } @article{SongLiNowaketal.2019, author = {Song, Yu and Li, Gang and Nowak, Jacqueline and Zhang, Xiaoqing and Xu, Dongbei and Yang, Xiujuan and Huang, Guoqiang and Liang, Wanqi and Yang, Litao and Wang, Canhua and Bulone, Vincent and Nikoloski, Zoran and Hu, Jianping and Persson, Staffan and Zhang, Dabing}, title = {The Rice Actin-Binding Protein RMD Regulates Light-Dependent Shoot Gravitropism}, series = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, volume = {181}, journal = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, number = {2}, publisher = {American Society of Plant Physiologists}, address = {Rockville}, issn = {0032-0889}, doi = {10.1104/pp.19.00497}, pages = {630 -- 644}, year = {2019}, abstract = {Light and gravity are two key determinants in orientating plant stems for proper growth and development. The organization and dynamics of the actin cytoskeleton are essential for cell biology and critically regulated by actin-binding proteins. However, the role of actin cytoskeleton in shoot negative gravitropism remains controversial. In this work, we report that the actin-binding protein Rice Morphology Determinant (RMD) promotes reorganization of the actin cytoskeleton in rice (Oryza sativa) shoots. The changes in actin organization are associated with the ability of the rice shoots to respond to negative gravitropism. Here, light-grown rmd mutant shoots exhibited agravitropic phenotypes. By contrast, etiolated rmd shoots displayed normal negative shoot gravitropism. Furthermore, we show that RMD maintains an actin configuration that promotes statolith mobility in gravisensing endodermal cells, and for proper auxin distribution in light-grown, but not dark-grown, shoots. RMD gene expression is diurnally controlled and directly repressed by the phytochrome-interacting factor-like protein OsPIL16. Consequently, overexpression of OsPIL16 led to gravisensing and actin patterning defects that phenocopied the rmd mutant. Our findings outline a mechanism that links light signaling and gravity perception for straight shoot growth in rice.}, language = {en} } @article{SmithDupontMcCarthyetal.2019, author = {Smith, Sarah R. and Dupont, Chris L. and McCarthy, James K. and Broddrick, Jared T. and Obornik, Miroslav and Horak, Ales and F{\"u}ssy, Zolt{\´a}n and Cihlar, Jaromir and Kleessen, Sabrina and Zheng, Hong and McCrow, John P. and Hixson, Kim K. and Araujo, Wagner L. and Nunes-Nesi, Adriano and Fernie, Alisdair R. and Nikoloski, Zoran and Palsson, Bernhard O. and Allen, Andrew E.}, title = {Evolution and regulation of nitrogen flux through compartmentalized metabolic networks in a marine diatom}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-019-12407-y}, pages = {14}, year = {2019}, abstract = {Diatoms outcompete other phytoplankton for nitrate, yet little is known about the mechanisms underpinning this ability. Genomes and genome-enabled studies have shown that diatoms possess unique features of nitrogen metabolism however, the implications for nutrient utilization and growth are poorly understood. Using a combination of transcriptomics, proteomics, metabolomics, fluxomics, and flux balance analysis to examine short-term shifts in nitrogen utilization in the model pennate diatom in Phaeodactylum tricornutum, we obtained a systems-level understanding of assimilation and intracellular distribution of nitrogen. Chloroplasts and mitochondria are energetically integrated at the critical intersection of carbon and nitrogen metabolism in diatoms. Pathways involved in this integration are organelle-localized GS-GOGAT cycles, aspartate and alanine systems for amino moiety exchange, and a split-organelle arginine biosynthesis pathway that clarifies the role of the diatom urea cycle. This unique configuration allows diatoms to efficiently adjust to changing nitrogen status, conferring an ecological advantage over other phytoplankton taxa.}, language = {en} } @article{SignorePaijmansHofreiteretal.2019, author = {Signore, Anthony V. and Paijmans, Johanna L. A. and Hofreiter, Michael and Fago, Angela and Weber, Roy E. and Springer, Mark S. and Campbell, Kevin L.}, title = {Emergence of a chimeric globin pseudogene and increased Hemoglobin Oxygen Affinity Underlie the evolution of aquatic specializations in Sirenia}, series = {Molecular biology and evolution}, volume = {36}, journal = {Molecular biology and evolution}, number = {6}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0737-4038}, doi = {10.1093/molbev/msz044}, pages = {1134 -- 1147}, year = {2019}, abstract = {As limits on O2 availability during submergence impose severe constraints on aerobic respiration, the oxygen binding globin proteins of marine mammals are expected to have evolved under strong evolutionary pressures during their land-to-sea transition. Here, we address this question for the order Sirenia by retrieving, annotating, and performing detailed selection analyses on the globin repertoire of the extinct Steller's sea cow (Hydrodamalis gigas), dugong (Dugong dugon), and Florida manatee (Trichechus manatus latirostris) in relation to their closest living terrestrial relatives (elephants and hyraxes). These analyses indicate most loci experienced elevated nucleotide substitution rates during their transition to a fully aquatic lifestyle. While most of these genes evolved under neutrality or strong purifying selection, the rate of nonsynonymous/synonymous replacements increased in two genes (Hbz-T1 and Hba-T1) that encode the α-type chains of hemoglobin (Hb) during each stage of life. Notably, the relaxed evolution of Hba-T1 is temporally coupled with the emergence of a chimeric pseudogene (Hba-T2/Hbq-ps) that contributed to the tandemly linked Hba-T1 of stem sirenians via interparalog gene conversion. Functional tests on recombinant Hb proteins from extant and ancestral sirenians further revealed that the molecular remodeling of Hba-T1 coincided with increased Hb-O2 affinity in early sirenians. Available evidence suggests that this trait evolved to maximize O2 extraction from finite lung stores and suppress tissue O2 offloading, thereby facilitating the low metabolic intensities of extant sirenians. In contrast, the derived reduction in Hb-O2 affinity in (sub)Arctic Steller's sea cows is consistent with fueling increased thermogenesis by these once colossal marine herbivores.}, language = {en} } @article{ShengBaslerJietal.2019, author = {Sheng, Gui-Lian and Basler, Nikolas and Ji, Xue-Ping and Paijmans, Johanna L. A. and Alberti, Federica and Preick, Michaela and Hartmann, Stefanie and Westbury, Michael V. and Yuan, Jun-Xia and Jablonski, Nina G. and Xenikoudakis, Georgios and Hou, Xin-Dong and Xiao, Bo and Liu, Jian-Hui and Hofreiter, Michael and Lai, Xu-Long and Barlow, Axel}, title = {Paleogenome reveals genetic contribution of extinct giant panda to extant populations}, series = {Current biology}, volume = {29}, journal = {Current biology}, number = {10}, publisher = {Cell Press}, address = {Cambridge}, issn = {0960-9822}, doi = {10.1016/j.cub.2019.04.021}, pages = {1695 -- 1700}, year = {2019}, abstract = {Historically, the giant panda was widely distributed from northern China to southwestern Asia [1]. As a result of range contraction and fragmentation, extant individuals are currently restricted to fragmented mountain ranges on the eastern margin of the Qinghai-Tibet plateau, where they are distributed among three major population clusters [2]. However, little is known about the genetic consequences of this dramatic range contraction. For example, were regions where giant pandas previously existed occupied by ancestors of present-day populations, or were these regions occupied by genetically distinct populations that are now extinct? If so, is there any contribution of these extinct populations to the genomes of giant pandas living today? To investigate these questions, we sequenced the nuclear genome of an similar to 5,000-year-old giant panda from Jiangdongshan, Teng-chong County in Yunnan Province, China. We find that this individual represents a genetically distinct population that diverged prior to the diversification of modern giant panda populations. We find evidence of differential admixture with this ancient population among modern individuals originating from different populations as well as within the same population. We also find evidence for directional gene flow, which transferred alleles from the ancient population into the modern giant panda lineages. A variable proportion of the genomes of extant individuals is therefore likely derived from the ancient population represented by our sequenced individual. Although extant giant panda populations retain reasonable genetic diversity, our results suggest that this represents only part of the genetic diversity this species harbored prior to its recent range contractions.}, language = {en} } @article{SeitzSchumacherBakeretal.2019, author = {Seitz, Aaron P. and Schumacher, Fabian and Baker, Jennifer and Soddemann, Matthias and Wilker, Barbara and Caldwell, Charles C. and Gobble, Ryan M. and Kamler, Markus and Becker, Katrin Anne and Beck, Sascha and Kleuser, Burkhard and Edwards, Michael J. and Gulbins, Erich}, title = {Sphingosine-coating of plastic surfaces prevents ventilator-associated pneumonia}, series = {Journal of molecular medicine}, volume = {97}, journal = {Journal of molecular medicine}, number = {8}, publisher = {Springer}, address = {Heidelberg}, issn = {0946-2716}, doi = {10.1007/s00109-019-01800-1}, pages = {1195 -- 1211}, year = {2019}, abstract = {Ventilator-associated pneumonia (VAP) is a major cause of morbidity and mortality in critically ill patients. Here, we employed the broad antibacterial effects of sphingosine to prevent VAP by developing a novel method of coating surfaces of endotracheal tubes with sphingosine and sphingosine analogs. Sphingosine and phytosphingosine coatings of endotracheal tubes prevent adherence and mediate killing of Pseudomonas aeruginosa, Acinetobacter baumannii, and Staphylococcus aureus, even in biofilms. Most importantly, sphingosine-coating of endotracheal tubes also prevented P. aeruginosa and S. aureus pneumonia in vivo. Coating of the tubes with sphingosine was stable, without obvious side effects on tracheal epithelial cells and did not induce inflammation. In summary, we describe a novel method to coat plastic surfaces and provide evidence for the application of sphingosine and phytosphingosine as novel antimicrobial coatings to prevent bacterial adherence and induce killing of pathogens on the surface of endotracheal tubes with potential to prevent biofilm formation and VAP.Key messagesNovel dip-coating method to coat plastic surfaces with lipids.Sphingosine and phytosphingosine as novel antimicrobial coatings on plastic surface.Sphingosine coatings of endotracheal tubes prevent bacterial adherence and biofilms.Sphingosine coatings of endotracheal tubes induce killing of pathogens.Sphingosine coatings of endotracheal tubes ventilator-associated pneumonia.}, language = {en} } @article{SedaghatmehrThirumalaikumarKamranfaretal.2019, author = {Sedaghatmehr, Mastoureh and Thirumalaikumar, Venkatesh P. and Kamranfar, Iman and Marmagne, Anne and Masclaux-Daubresse, Celine and Balazadeh, Salma}, title = {A regulatory role of autophagy for resetting the memory of heat stress in plants}, series = {Plant, cell \& environment : cell physiology, whole-plant physiology, community physiology}, volume = {42}, journal = {Plant, cell \& environment : cell physiology, whole-plant physiology, community physiology}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {0140-7791}, doi = {10.1111/pce.13426}, pages = {1054 -- 1064}, year = {2019}, abstract = {As sessile life forms, plants are repeatedly confronted with adverse environmental conditions, which can impair development, growth, and reproduction. During evolution, plants have established mechanisms to orchestrate the delicate balance between growth and stress tolerance, to reset cellular biochemistry once stress vanishes, or to keep a molecular memory, which enables survival of a harsher stress that may arise later. Although there are several examples of memory in diverse plants species, the molecular machinery underlying the formation, duration, and resetting of stress memories is largely unknown so far. We report here that autophagy, a central self-degradative process, assists in resetting cellular memory of heat stress (HS) in Arabidopsis thaliana. Autophagy is induced by thermopriming (moderate HS) and, intriguingly, remains high long after stress termination. We demonstrate that autophagy mediates the specific degradation of heat shock proteins at later stages of the thermorecovery phase leading to the accumulation of protein aggregates after the second HS and a compromised heat tolerance. Autophagy mutants retain heat shock proteins longer than wild type and concomitantly display improved thermomemory. Our findings reveal a novel regulatory mechanism for HS memory in plants.}, language = {en} } @article{SchoepkeHeinzePaetzigetal.2019, author = {Sch{\"o}pke, Benito and Heinze, Johannes and P{\"a}tzig, Marlene and Heinken, Thilo}, title = {Do dispersal traits of wetland plant species explain tolerance against isolation effects in naturally fragmented habitats?}, series = {Plant ecology : an international journal}, volume = {220}, journal = {Plant ecology : an international journal}, number = {9}, publisher = {Springer}, address = {Dordrecht}, issn = {1385-0237}, doi = {10.1007/s11258-019-00955-8}, pages = {801 -- 815}, year = {2019}, abstract = {The effects of habitat fragmentation and isolation on plant species richness have been verified for a wide range of anthropogenically fragmented habitats, but there is currently little information about their effects in naturally small and isolated habitats. We tested whether habitat area, heterogeneity, and isolation affect the richness of wetland vascular plant species in kettle holes, i.e., small glacially created wetlands, in an agricultural landscape of 1 km(2) in NE Germany. We compared fragmentation effects with those of forest fragments in the same landscape window. Since wetland and forest species might differ in their tolerance to isolation, and because isolation effects on plant species may be trait dependent, we asked which key life history traits might foster differences in isolation tolerance between wetland and forest plants. We recorded the flora and vegetation types in 83 isolated sites that contained 81 kettle holes and 25 forest fragments. Overall, the number of wetland species increased with increasing area and heterogeneity, i.e., the number of vegetation types, while area was not a surrogate for heterogeneity in these naturally fragmented systems. Isolation did not influence the number of wetland species but decreased the number of forest species. We also found that seeds of wetland species were on average lighter, more persistent and better adapted to epizoochory, e.g., by waterfowl, than seeds of forest species. Therefore, we suggest that wetland species are more tolerant to isolation than forest species due to their higher dispersal potential in space and time, which may counterbalance the negative effects of isolation.}, language = {en} } @article{SchaelickeTeubnerMartinCreuzburgetal.2019, author = {Sch{\"a}licke, Svenja and Teubner, Johannes and Martin-Creuzburg, Dominik and Wacker, Alexander}, title = {Fitness response variation within and among consumer species can be co-mediated by food quantity and biochemical quality}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, publisher = {Macmillan Publishers Limited}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-019-52538-2}, pages = {9}, year = {2019}, abstract = {In natural heterogeneous environments, the fitness of animals is strongly influenced by the availability and composition of food. Food quantity and biochemical quality constraints may affect individual traits of consumers differently, mediating fitness response variation within and among species. Using a multifactorial experimental approach, we assessed population growth rate, fecundity, and survival of six strains of the two closely related freshwater rotifer species Brachionus calyciflorus sensu stricto and Brachionus fernandoi. Therefore, rotifers fed low and high concentrations of three algal species differing in their biochemical food quality. Additionally, we explored the potential of a single limiting biochemical nutrient to mediate variations in population growth response. Therefore, rotifers fed a sterol-free alga, which we supplemented with cholesterol-containing liposomes. Co-limitation by food quantity and biochemical food quality resulted in differences in population growth rates among strains, but not between species, although effects on fecundity and survival differed between species. The effect of cholesterol supplementation on population growth was strain-specific but not species-specific. We show that fitness response variations within and among species can be mediated by biochemical food quality. Dietary constraints thus may act as evolutionary drivers on physiological traits of consumers, which may have strong implications for various ecological interactions.}, language = {en} } @article{SchaelickeSobischMartinCreuzburgetal.2019, author = {Sch{\"a}licke, Svenja and Sobisch, Lydia-Yasmin and Martin-Creuzburg, Dominik and Wacker, Alexander}, title = {Food quantity-quality co-limitation}, series = {Freshwater biology}, volume = {64}, journal = {Freshwater biology}, number = {5}, publisher = {Wiley}, address = {Hoboken}, issn = {0046-5070}, doi = {10.1111/fwb.13272}, pages = {903 -- 912}, year = {2019}, abstract = {Food quantity and quality are highly variable in natural systems. Therefore, their interplay and the associated effects on consumer population growth are important for predator-prey interactions and community dynamics. Experiments in which consumers were exposed to elemental nutrient limitations along food quantity gradients suggest that food quality effects on consumer performance are relevant only at high food quantities. However, elemental nutrients act differently on physiological processes than biochemical nutrients. So far, the interactive effects of food quantity and biochemical compounds on consumer performance have been insufficiently studied. We studied interactive effects of food quantity and biochemical food quality on population growth, including fecundity and survival, of the freshwater rotifer Brachionus calyciflorus. We hypothesised that these life history traits are differently affected by the availability of biochemical nutrients and that food quality effects gain importance with increasing food quantity. In a first experiment, we established food quantity and quality gradients by providing rotifers with different concentrations of a low-quality food, the sterol-free cyanobacterium Synechococcus elongatus, supplemented with increasing amounts of cholesterol. In a second experiment, food quantity and quality gradients were established by providing different proportions of two prey species differing in biochemical food quality, i.e. S.elongatus and the lipid-rich alga Nannochloropsis limnetica, at different total food concentrations. We found that the effects of cholesterol supplementation on population growth increased with increasing food quantity. This interactive effect on population growth was mainly due to food quality effects on fecundity, as effects on survival remained constant along the food quantity gradient. In contrast, when feeding on the mixed algal diet, the food quality effect associated with increasing the proportion of the high-quality alga did not change along the food quantity gradient. The data on survival and fecundity demonstrate the missing interactive effect of food quantity and quality on population growth, as both traits were oppositely affected. Survival was affected by food quality primarily at low food quantity, whereas food quality effects on fecundity were stronger at high food quantity. Our results highlight the significance of essential biochemicals in mediating the interactive effects of food quantity and quality on population growth. The interplay between food quantity and biochemical food quality limitation seems to influence resource allocation patterns in order to optimise survival or reproduction, which may strongly affect population dynamics in variable environments. As opposed to exploring the function of a single nutrient via supplementation, using algae mixtures allowed us to assess food quality effects on consumer performance in a more natural context by taking potential interactive effects of multiple co-limiting nutrients into account.}, language = {en} } @article{Schaefer2019, author = {Sch{\"a}fer, Merlin}, title = {Mut macht einsam}, series = {Vielfalt in der Uckermark : Forschungsprojekte 2015 - 2018}, journal = {Vielfalt in der Uckermark : Forschungsprojekte 2015 - 2018}, publisher = {oerding print GmbH}, address = {Braunschweig}, pages = {52 -- 53}, year = {2019}, language = {de} } @phdthesis{Schwuchow2019, author = {Schwuchow, Viola}, title = {Charakterisierung der periplasmatischen Aldehyd-Oxidoreduktase (PaoABC) aus Escherichia coli}, school = {Universit{\"a}t Potsdam}, pages = {119}, year = {2019}, abstract = {Im Mittelpunkt dieser Arbeit standen Analysen zur Charakterisierung der periplasmatischen Aldehyd Oxidoreduktase aus E. coli. Kinetische Untersuchungen mit Ferricyanid als Elektronenakzeptor unter anaeroben Bedingungen zeigten f{\"u}r dieses Enzym eine h{\"o}here Aktivit{\"a}t als unter aeroben Bedingungen. Die getroffene Hypothese, dass PaoABC f{\"a}hig ist Elektronen an molekularen Sauerstoff weiter zu geben, konnte best{\"a}tigt werden. F{\"u}r den Umsatz aromatischer Aldehyde mit molekularem Sauerstoff wurde ein Optimum von pH 6,0 ermittelt. Dies steht im Gegensatz zur Reaktion mit Ferricyanid, mit welchem ein pH-Optimum von 4,0 gezeigt wurde. Die Reaktion von PaoABC mit molekularem Sauerstoff generiert zwar Wasserstoffperoxid, die Produktion von Superoxid konnte dagegen nicht beobachtet werden. Dass aerobe Bedingungen einen Einfluss auf das Ausl{\"o}sen der Expression von PaoABC haben, wurde in dieser Arbeit ebenfalls ermittelt. Im Zusammenhang mit der Produktion von ROS durch PaoABC wurde die Funktion eines k{\"u}rzlich in Elektronentransfer-Distanz zum FAD identifizierten [4Fe4S]-Clusters untersucht. Ein Austausch der f{\"u}r die Bindung des Clusters zust{\"a}ndigen Cysteine f{\"u}hrte zur Instabilit{\"a}t der Proteinvarianten, weswegen f{\"u}r diese keine weiteren Untersuchungen erfolgten. Daher wird zumindest ein struktur-stabilisierender Einfluss des [4Fe4S]-Clusters angenommen. Zur weiteren Untersuchung der Funktion dieses Clusters, wurde ein zwischen FAD und [4Fe4S]-Cluster lokalisiertes Arginin gegen ein Alanin ausgetauscht. Diese Proteinvariante zeigte eine reduzierte Geschwindigkeit der Reaktion gegen{\"u}ber dem Wildtyp. Die Bildung von Superoxid konnte auch hier nicht beobachtet werden. Die Vermutung, dass dieser Cluster einen elektronen-sammelnden Mechanismus unterst{\"u}tzt, welcher die Radikalbildung verhindert, kann trotz allem nicht ausgeschlossen werden. Da im Umkreis des Arginins weitere geladene und aromatische Aminos{\"a}uren lokalisiert sind, k{\"o}nnen diese den notwendigen Elektronentransfer {\"u}bernehmen. Neben der Ermittlung eines physiologischen Elektronenakzeptors und dessen Einfluss auf die Expression von PaoABC zeigt diese Arbeit auch, dass die Chaperone PaoD und MocA w{\"a}hrend der Reifung des MCD-Kofaktor eine gemeinsame Bindung an PaoABC realisieren. Es konnte im aktiven Zentrum von PaoABC ein Arginin beschrieben werden, welches auf Grund der engen Nachbarschaft zum MCD-Kofaktor und zum Glutamat (PaoABC-EC692) am Prozess der Substratbindung beteiligt ist. Im Zusammenhang mit dem Austausch dieses Arginins gegen ein Histidin oder ein Lysin wurden die Enzymspezifit{\"a}t und der Einfluss physiologischer Bedingungen, wie pH und Ionenst{\"a}rke, auf die Reaktion des Enzyms untersucht. Gegen{\"u}ber dem Wildtyp zeigten die Varianten mit molekularem Sauerstoff eine geringere Affinit{\"a}t zum Substrat aber auch eine h{\"o}here Geschwindigkeit der Reaktion. Vor allem f{\"u}r die Histidin-Variante konnte im gesamten pH-Bereich ein instabiles Verhalten bestimmt werden. Der Grund daf{\"u}r wurde durch das L{\"o}sen der Struktur der Histidin-Variante beschreiben. Durch den Austausch der Aminos{\"a}uren entf{\"a}llt die stabilisierende Wirkung der delokalisierten Elektronen des Arginins und es kommt zu einer Konformations{\"a}nderung im aktiven Zentrum. Neben der Reaktion von PaoABC mit einer Vielzahl aromatischer Aldehyde konnte auch der Umsatz von Salicylaldehyd zu Salicyls{\"a}ure durch PaoABC in einer Farbreaktion bestimmt werden. Durch Ausschluss von molekularem Sauerstoff als terminaler Elektronenakzeptor, in einer enzym-gekoppelten Reaktion, erfolgte ein Elektronentransport auf Ferrocencarboxyls{\"a}ure. Die Kombination aus beiden Methoden erm{\"o}glichte eine Verwendung von Ferrocen-Derivaten zur Generierung einer enzym-gekoppelten Reaktion mit PaoABC. Die Untersuchungen zu PaoABC zeigen, dass die Vielfalt der durch das Enzym katalysierten Rektionen weitere M{\"o}glichkeiten der enzymatischen Bestimmung biokatalytischer Prozesse bietet.}, language = {de} } @article{SchwarzerJoshi2019, author = {Schwarzer, Christian and Joshi, Jasmin Radha}, title = {Ecotypic differentiation, hybridization and clonality facilitate the persistence of a cold-adapted sedge in European bogs}, series = {Biological journal of the Linnean Society : a journal of evolution}, volume = {128}, journal = {Biological journal of the Linnean Society : a journal of evolution}, number = {4}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0024-4066}, doi = {10.1093/biolinnean/blz141}, pages = {909 -- 925}, year = {2019}, abstract = {Recent research has shown that many cold-adapted species survived the last glacial maximum (LGM) in northern refugia. Whether this evolutionary history has had consequences for their genetic diversity and adaptive potential remains unknown. We sampled 14 populations of Carex limosa, a sedge specialized to bog ecosystems, along a latitudinal gradient from its Scandinavian core to the southern lowland range-margin in Germany. Using microsatellite and experimental common-garden data, we evaluated the impacts of global climate change along this gradient and assessed the conservation status of the southern marginal populations. Microsatellite data revealed two highly distinct genetic groups and hybrid individuals. In our common-garden experiment, the two groups showed divergent responses to increased nitrogen/phosphorus (N/P) availability, suggesting ecotypic differentiation. Each group formed genetically uniform populations at both northern and southern sampling areas. Mixed populations occurred throughout our sampling area, an area that was entirely glaciated during the LGM. The fragmented distribution implies allopatric divergence at geographically separated refugia that putatively differed in N/P availability. Molecular data and an observed low hybrid fecundity indicate the importance of clonal reproduction for hybrid populations. At the southern range-margin, however, all populations showed effects of clonality, lowered fecundity and low competitiveness, suggesting abiotic and biotic constraints to population persistence.}, language = {en} } @article{SchwarzLossowKoppetal.2019, author = {Schwarz, Maria and Lossow, Kristina and Kopp, Johannes Florian and Schwerdtle, Tanja and Kipp, Anna Patricia}, title = {Crosstalk of Nrf2 with the Trace Elements Selenium, Iron, Zinc, and Copper}, series = {Nutrients}, volume = {11}, journal = {Nutrients}, number = {9}, publisher = {MDPI}, address = {Basel}, issn = {2072-6643}, doi = {10.3390/nu11092112}, pages = {18}, year = {2019}, abstract = {Trace elements, like Cu, Zn, Fe, or Se, are important for the proper functioning of antioxidant enzymes. However, in excessive amounts, they can also act as pro-oxidants. Accordingly, trace elements influence redox-modulated signaling pathways, such as the Nrf2 pathway. Vice versa, Nrf2 target genes belong to the group of transport and metal binding proteins. In order to investigate whether Nrf2 directly regulates the systemic trace element status, we used mice to study the effect of a constitutive, whole-body Nrf2 knockout on the systemic status of Cu, Zn, Fe, and Se. As the loss of selenoproteins under Se-deprived conditions has been described to further enhance Nrf2 activity, we additionally analyzed the combination of Nrf2 knockout with feeding diets that provide either suboptimal, adequate, or supplemented amounts of Se. Experiments revealed that the Nrf2 knockout partially affected the trace element concentrations of Cu, Zn, Fe, or Se in the intestine, liver, and/or plasma. However, aside from Fe, the other three trace elements were only marginally modulated in an Nrf2-dependent manner. Selenium deficiency mainly resulted in increased plasma Zn levels. One putative mediator could be the metal regulatory transcription factor 1, which was up-regulated with an increasing Se supply and downregulated in Se-supplemented Nrf2 knockout mice.}, language = {en} } @article{SchwabeTischewBergmeieretal.2019, author = {Schwabe, Angelika and Tischew, Sabine and Bergmeier, Erwin and Garve, Eckhard and H{\"a}rdtle, Werner and Heinken, Thilo and H{\"o}lzel, Norbert and Peppler-Lisbach, Cord and Remy, Dominique and Dierschke, Hartmut}, title = {Pflanzengesellschaft des Jahres 2020}, series = {Tuexenia : Mitteilungen der Floristisch-Soziologischen Arbeitsgemeinschaft}, journal = {Tuexenia : Mitteilungen der Floristisch-Soziologischen Arbeitsgemeinschaft}, number = {39}, publisher = {Floristisch-soziologischen Arbeitsgemeinschaft e.V.}, address = {G{\"o}ttingen}, issn = {0722-494X}, doi = {10.14471/2019.39.017}, pages = {287 -- 308}, year = {2019}, abstract = {Wie erstmals 2019 wird auch f{\"u}r das Jahr 2020 von der „Floristisch-soziologischen Arbeitsgemeinschaft" (FlorSoz) f{\"u}r Deutschland die „Pflanzengesellschaft des Jahres" vorgestellt. Damit soll wiederum f{\"u}r die {\"O}ffentlichkeit die Notwendigkeit des Schutzes gef{\"a}hrdeter Pflanzengesellschaften aufgezeigt werden. F{\"u}r das Jahr 2020 wurden die Borstgrasrasen ausgew{\"a}hlt. Wie alle Pflanzengemeinschaften n{\"a}hrstoffarmer Standorte, sind auch die Borstgrasrasen stark gef{\"a}hrdet und regional sogar unmittelbar vom Aussterben bedroht. Wir konzentrieren uns vor allem auf die Best{\"a}nde der planaren bis montanen Stufe (Unterverband Violenion caninae: Hundsveilchen-Borstgrasrasen). Die Standorte von Violenion caninae-Gesellschaften werden nicht ged{\"u}ngt und sind auf extensive Beweidung, z.T. auch auf einsch{\"u}rige Mahd angewiesen. F{\"u}r Borstgrasrasen bezeichnend sind eine F{\"u}lle gef{\"a}hrdeter Pflanzenarten wie z.B. Arnica montana (Arnika) und Antennaria dioica (Zweih{\"a}usiges Katzenpf{\"o}tchen). Bei den Borstgrasrasen spielen f{\"u}r die zunehmend hohe Gef{\"a}hrdung nicht nur Fl{\"a}chenr{\"u}ckg{\"a}nge durch Nutzungsaufgabe, Aufforstung, Sport- und Freizeitaktivit{\"a}ten und {\"U}berbauung eine Rolle, sondern auch {\"A}nderungen der Struktur und Artenzusammensetzung durch direkte D{\"u}ngung sowie atmogene Stickstoffeintr{\"a}ge sind von Bedeutung. N{\"a}hrstoffanreicherungen f{\"u}hren zum Verlust der konkurrenzschwachen, gef{\"a}hrdeten Arten zugunsten einiger allgemein verbreiteter, h{\"a}ufig dominanter Gr{\"a}ser sowie konkurrenzkr{\"a}ftiger Kr{\"a}uter. Wir skizzieren die Bedeutung der Borstgrasrasen als gef{\"a}hrdete Lebensgemeinschaften, geben Hinweise zur floristisch-soziologischen Erforschung und zu weiteren Naturschutz-Aspekten (R{\"u}ckgang, Erhaltung, M{\"o}glichkeiten der Restitution). Ein wirksamer Schutz ist nur bei einem integrativen Naturschutzansatz mit geeigneter Nutzung m{\"o}glich.}, language = {de} } @phdthesis{Schumacher2019, author = {Schumacher, Julia}, title = {Regulation and function of STERILE APETALA in Arabidopsis flower development}, school = {Universit{\"a}t Potsdam}, pages = {144}, year = {2019}, abstract = {STERILE APETALA (SAP) is known to be an essential regulator of flower development for over 20 years. Loss of SAP function in the model plant Arabidopsis thaliana is associated with a reduction of floral organ number, size and fertility. In accordance with the function of SAP during early flower development, its spatial expression in flowers is confined to meristematic stages and to developing ovules. However, to date, despite extensive research, the molecular function of SAP and the regulation of its spatio-temporal expression still remain elusive. In this work, amino acid sequence analysis and homology modeling revealed that SAP belongs to the rare class of plant F-box proteins with C-terminal WD40 repeats. In opisthokonts, this type of F-box proteins constitutes the substrate binding subunit of SCF complexes, which catalyze the ubiquitination of proteins to initiate their proteasomal degradation. With LC-MS/MS-based protein complex isolation, the interaction of SAP with major SCF complex subunits was confirmed. Additionally, candidate substrate proteins, such as the growth repressor PEAPOD 1 and 2 (PPD1/2), could be revealed during early stages of flower development. Also INDOLE-3-BUTYRIC ACID RESPONSE 5 (IBR5) was identified among putative interactors. Genetic analyses indicated that, different from substrate proteins, IBR5 is required for SAP function. Protein complex isolation together with transcriptome profiling emphasized that the SCFSAP complex integrates multiple biological processes, such as proliferative growth, vascular development, hormonal signaling and reproduction. Phenotypic analysis of sap mutant and SAP overexpressing plants positively correlated SAP function with plant growth during reproductive and vegetative development. Furthermore, to elaborate on the transcriptional regulation of SAP, publicly available ChIP-seq data of key floral homeotic proteins were reanalyzed. Here, it was shown that the MADS-domain transcription factors APETALA 1 (AP1), APETALA 3 (AP3), PISTILLATA (PI), AGAMOUS (AG) and SEPALLATA 3 (SEP3) bind to the SAP locus, which indicates that SAP is expressed in a floral organ-specific manner. Reporter gene analyses in combination with CRISPR/Cas9-mediated deletion of putative regulatory regions further demonstrated that the intron contains major regulatory elements of SAP in Arabidopsis thaliana. In conclusion, these data indicate that SAP is a pleiotropic developmental regulator that acts through tissue-specific destabilization of proteins. The presumed transcriptional regulation of SAP by the floral MADS-domain transcription factors could provide a missing link between the specification of floral organ identity and floral organ growth pathways.}, language = {en} } @article{SchornSalmanCarvalhoLittmannetal.2019, author = {Schorn, Sina and Salman-Carvalho, Verena and Littmann, Sten and Ionescu, Danny and Grossart, Hans-Peter and Cypionka, Heribert}, title = {Cell architecture of the giant sulfur bacterium achromatium oxaliferum}, series = {FEMS Microbiology Ecology}, volume = {96}, journal = {FEMS Microbiology Ecology}, number = {2}, publisher = {Oxford University Press}, address = {Oxford}, issn = {1574-6941}, doi = {10.1093/femsec/fiz200}, pages = {1 -- 8}, year = {2019}, abstract = {Achromatium oxaliferum is a large sulfur bacterium easily recognized by large intracellular calcium carbonate bodies. Although these bodies often fill major parts of the cells' volume, their role and specific intracellular location are unclear. In this study, we used various microscopy and staining techniques to identify the cell compartment harboring the calcium carbonate bodies. We observed that Achromatium cells often lost their calcium carbonate bodies, either naturally or induced by treatments with diluted acids, ethanol, sodium bicarbonate and UV radiation which did not visibly affect the overall shape and motility of the cells (except for UV radiation). The water-soluble fluorescent dye fluorescein easily diffused into empty cavities remaining after calcium carbonate loss. Membranes (stained with Nile Red) formed a network stretching throughout the cell and surrounding empty or filled calcium carbonate cavities. The cytoplasm (stained with FITC and SYBR Green for nucleic acids) appeared highly condensed and showed spots of dissolved Ca2+ (stained with Fura-2). From our observations, we conclude that the calcium carbonate bodies are located in the periplasm, in extra-cytoplasmic pockets of the cytoplasmic membrane and are thus kept separate from the cell's cytoplasm. This periplasmic localization of the carbonate bodies might explain their dynamic formation and release upon environmental changes.}, language = {en} } @article{SchoenauerLarpinBabiychuketal.2019, author = {Schoenauer, Roman and Larpin, Yu and Babiychuk, Eduard B. and Drucker, Patrick and Babiychuk, Viktoriia S. and Avota, Elita and Schneider-Schaulies, Sibylle and Schumacher, Fabian and Kleuser, Burkhard and Koffel, Rene and Draeger, Annette}, title = {Down-regulation of acid sphingomyelinase and neutral sphingomyelinase-2 inversely determines the cellular resistance to plasmalemmal injury by pore-forming toxins}, series = {The FASEB journal : the official journal of the Federation of American Societies for Experimental Biology}, volume = {33}, journal = {The FASEB journal : the official journal of the Federation of American Societies for Experimental Biology}, number = {1}, publisher = {Federation of American Societies for Experimental Biology}, address = {Bethesda}, issn = {0892-6638}, doi = {10.1096/fj.201800033R}, pages = {275 -- 285}, year = {2019}, abstract = {Bacterial pore-forming toxins compromise plasmalemmal integrity, leading to Ca2+ influx, leakage of the cytoplasm, and cell death. Such lesions can be repaired by microvesicular shedding or by the endocytic uptake of the injured membrane sites. Cells have at their disposal an entire toolbox of repair proteins for the identification and elimination of membrane lesions. Sphingomyelinases catalyze the breakdown of sphingomyelin into ceramide and phosphocholine. Sphingomyelin is predominantly localized in the outer leaflet, where it is hydrolyzed by acid sphingomyelinase (ASM) after lysosomal fusion with the plasma membrane. The magnesium-dependent neutral sphingomyelinase (NSM)-2 is found at the inner leaflet of the plasmalemma. Because either sphingomyelinase has been ascribed a role in the cellular stress response, we investigated their role in plasma membrane repair and cellular survival after treatment with the pore-forming toxins listeriolysin O (LLO) or pneumolysin (PLY). Jurkat T cells, in which ASM or NSM-2 was down-regulated [ASM knockdown (KD) or NSM-2 KD cells], showed inverse reactions to toxin-induced membrane damage: ASM KD cells displayed reduced toxin resistance, decreased viability, and defects in membrane repair. In contrast, the down-regulation of NSM-2 led to an increase in viability and enhanced plasmalemmal repair. Yet, in addition to the increased plasmalemmal repair, the enhanced toxin resistance of NSM-2 KD cells also appeared to be dependent on the activation of p38/MAPK, which was constitutively activated, whereas in ASM KD cells, the p38/MAPK activation was constitutively blunted.Schoenauer, R., Larpin, Y., Babiychuk, E. B., Drucker, P., Babiychuk, V. S., Avota, E., Schneider-Schaulies, S., Schumacher, F., Kleuser, B., Koffel, R., Draeger, A. Down-regulation of acid sphingomyelinase and neutral sphingomyelinase-2 inversely determines the cellular resistance to plasmalemmal injury by pore-forming toxins.}, language = {en} } @article{SchlaegelSignerHerdeetal.2019, author = {Schl{\"a}gel, Ulrike E. and Signer, Johannes and Herde, Antje and Eden, Sophie and Jeltsch, Florian and Eccard, Jana and Dammhahn, Melanie}, title = {Estimating interactions between individuals from concurrent animal movements}, series = {Methods in ecology and evolution : an official journal of the British Ecological Society}, volume = {10}, journal = {Methods in ecology and evolution : an official journal of the British Ecological Society}, number = {8}, publisher = {Wiley}, address = {Hoboken}, issn = {2041-210X}, doi = {10.1111/2041-210X.13235}, pages = {1234 -- 1245}, year = {2019}, abstract = {Animal movements arise from complex interactions of individuals with their environment, including both conspecific and heterospecific individuals. Animals may be attracted to each other for mating, social foraging, or information gain, or may keep at a distance from others to avoid aggressive encounters related to, e.g., interference competition, territoriality, or predation. With modern tracking technology, more datasets are emerging that allow to investigate fine-scale interactions between free-ranging individuals from movement data, however, few methods exist to disentangle fine-scale behavioural responses of interacting individuals when these are highly individual-specific. In a framework of step-selection functions, we related movements decisions of individuals to dynamic occurrence distributions of other individuals obtained through kriging of their movement paths. Using simulated data, we tested the method's ability to identify various combinations of attraction, avoidance, and neutrality between individuals, including asymmetric (i.e. non-mutual) behaviours. Additionally, we analysed radio-telemetry data from concurrently tracked small rodents (bank vole, Myodes glareolus) to test whether our method could detect biologically plausible behaviours. We found that our method was able to successfully detect and distinguish between fine-scale interactions (attraction, avoidance, neutrality), even when these were asymmetric between individuals. The method worked best when confounding factors were taken into account in the step-selection function. However, even when failing to do so (e.g. due to missing information), interactions could be reasonably identified. In bank voles, responses depended strongly on the sexes of the involved individuals and matched expectations. Our approach can be combined with conventional uses of step-selection functions to tease apart the various drivers of movement, e.g. the influence of the physical and the social environment. In addition, the method is particularly useful in studying interactions when responses are highly individual-specific, i.e. vary between and towards different individuals, making our method suitable for both single-species and multi-species analyses (e.g. in the context of predation or competition).}, language = {en} } @inproceedings{SchlaadLuedecke2019, author = {Schlaad, Helmut and Luedecke, Nils}, title = {Bio-sourced chelating poly(2-oxazoline)s}, series = {Abstracts of papers : joint conference / The Chemical Institute of Cananda, CIC, American Chemical Society, ACS}, volume = {257}, booktitle = {Abstracts of papers : joint conference / The Chemical Institute of Cananda, CIC, American Chemical Society, ACS}, publisher = {American Chemical Society}, address = {Washington}, issn = {0065-7727}, pages = {1}, year = {2019}, language = {en} } @article{SchiroColangeliMueller2019, author = {Schiro, Gabriele and Colangeli, Pierluigi and M{\"u}ller, Marina E. H.}, title = {A Metabarcoding Analysis of the Mycobiome of Wheat Ears Across a Topographically Heterogeneous Field}, series = {Frontiers in microbiology}, volume = {10}, journal = {Frontiers in microbiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-302X}, doi = {10.3389/fmicb.2019.02095}, pages = {12}, year = {2019}, language = {en} } @phdthesis{Schiro2019, author = {Schiro, Gabriele}, title = {Spatial distribution of phyllosphere fungi in topographically heterogeneous wheat fields}, school = {Universit{\"a}t Potsdam}, pages = {105}, year = {2019}, language = {en} } @article{SchirmerHerdeEccardetal.2019, author = {Schirmer, Annika and Herde, Antje and Eccard, Jana and Dammhahn, Melanie}, title = {Individuals in space: personality-dependent space use, movement and microhabitat use facilitate individual spatial niche specialization}, series = {Oecologia}, volume = {189}, journal = {Oecologia}, number = {3}, publisher = {Springer}, address = {New York}, issn = {0029-8549}, doi = {10.1007/s00442-019-04365-5}, pages = {647 -- 660}, year = {2019}, abstract = {Personality-dependent space use and movement might be crucially influencing ecological interactions, giving way to individual niche specialization. This new approach challenges classical niche theory with potentially great ecological consequences, but so far has only scarce empirical support. Here, we investigated if and how consistent inter-individual differences in behavior predict space use and movement patterns in free-ranging bank voles (Myodes glareolus) and thereby contribute to individual niche specialization. Individuals were captured and marked from three different subpopulations in North-East Germany. Inter-individual differences in boldness and exploration were quantified via repeated standardized tests directly in the field after capture. Subsequently, space use and movement patterns of a representative sample of the behavioral variation (n=21 individuals) were monitored via automated VHF telemetry for a period of four days, yielding on average 384 locations per individual. Bolder individuals occupied larger home ranges and core areas (estimated via kernel density analyses), moved longer distances, spatially overlapped with fewer conspecifics and preferred different microhabitats based on vegetation cover compared to shyer individuals. We found evidence for personality-dependent space use, movement, and occupation of individual spatial niches in bank voles. Thus, besides dietary niche specialization also spatial dimensions of ecological niches vary among individuals within populations, which may have important consequences for ecological interactions within- and between species.}, language = {en} } @phdthesis{Schirmer2019, author = {Schirmer, Annika}, title = {Consistent individual differences in movement-related behaviour as equalising and/or stabilising mechanisms for species coexistence}, school = {Universit{\"a}t Potsdam}, pages = {154}, year = {2019}, abstract = {The facilitation of species coexistence has been a central theme in ecological research for years, highlighting two key aspects: ecological niches and competition between species. According to the competitive exclusion principle, the overlap of species niches predicts the amount of shared resources and therefore competition between species, determining their ability to coexist. Only if niches of two species are sufficiently different, thus niche overlap is low, competition within species is higher than competition between species and stable coexistence is possible. Thereby, differences in species mean traits are focused on and conspecific individuals are assumed to be interchangeable. This approach might be outdated since behaviour, as a key aspect mediating niche differentiation between species, is individual based. Individuals from one species consistently differ across time and situations in their behavioural traits. Causes and consequences of consistent behavioural differences have been thoroughly investigated stimulating their recent incorporation into ecological interactions and niche theory. Spatial components have so far been largely overlooked, although animal movement is strongly connected to several aspects of ecological niches and interactions between individuals. Furthermore, numerous movement aspects haven been proven to be crucially influenced by consistent individual differences. Considering spatial parameters could therefore crucially broaden our understanding of how individual niches are formed and ecological interactions are shaped. Furthermore, extending established concepts on species interactions by an individual component could provide new insights into how species coexistence is facilitated and local biodiversity is maintained. The main aim of this thesis was to test whether consistent inter-individual differences can facilitate the coexistence of ecological similar species. Therefore, the effects of consistent inter-individual differences on the spatial behaviour of two rodent species, the bank vole (Myodes glareolus) and the striped field mouse (Apodemus agrarius), were investigated and put in the context of: (i) individual spatial niches, (ii) interactions between species, and (iii) the importance of different levels of behavioural variation within species for their interactions. Consistent differences of study animals in boldness and exploration were quantified with the same tests in all presented studies and always combined with observations of movement and space use via automated VHF radio telemetry. Consequently, results are comparable throughout the thesis and the methods provide a common denominator for all chapters. The first two chapters are based on observations of free-ranging rodents in natural populations, while chapter III represents an experimental approach under semi-natural conditions. Chapter I focusses on the effect of consistent differences in boldness and exploration on movement and space use of bank voles and their contribution to individual spatial niche separation. Results show boldness to be the dominating predictor for spatial parameters in bank voles. Irrespective of sex, bolder individuals had larger home ranges, moved longer distances, had less spatial interactions with conspecifics and occupied different microhabitats compared to shy individuals. The same boldness-dependent spatial patterns could be observed in striped field mice which is reported in chapter II. Therefore, both study species showed individual spatial niche occupation. Chapter II builds on findings from the first chapter, investigating the effect of boldness driven individual spatial niche occupation on the interactions between species. Irrespective of species and sex, bolder individuals had more interspecific spatial interactions, but less intraspecific interactions, compared to shy individuals. Due to individual niches occupation the competitive environment individuals experience is not random. Interactions are restricted to individuals of similar behavioural type with presumably similar competitive ability, which could balance differences on the species level and support coexistence. In chapter III the experimental populations were either comprised of only shy or only bold bank voles, while striped field mice varied, creating either a shy- or bold-biased competitive community. Irrespective of behavioural type, striped field mice had more intraspecific interactions in bold-biased competitive communities. Only in a shy-biased competitive community, bolder striped field mice had less interspecific interactions compared to shy individuals. Bank voles showed no difference in intra- or interspecific interactions between populations. Chapter III highlights, that not only consistent inter-individual differences per se are important for interactions within and between species, but also the amount of behavioural variation within coexisting species. Overall, this thesis highlights the importance of considering consistent inter-individual differences in a spatial context and their connection to individual spatial niche occupation, as well as the resulting effects on interactions within and between species. Individual differences are discussed in the context of similarity of individuals, individual and species niche width, and individual and species niche overlap. Thereby, this thesis makes one step further from the existing research on individual niches towards integrating consistent inter-individual differences into the larger framework of species coexistence.}, language = {en} } @article{SchieferdeckerWendler2019, author = {Schieferdecker, Anne and Wendler, Petra}, title = {Structural Mapping of Missense Mutations in the Pex1/Pex6 Complex}, series = {International journal of molecular sciences}, volume = {20}, journal = {International journal of molecular sciences}, number = {15}, publisher = {MDPI}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms20153756}, pages = {25}, year = {2019}, abstract = {Peroxisome biogenesis disorders (PBDs) are nontreatable hereditary diseases with a broad range of severity. Approximately 65\% of patients are affected by mutations in the peroxins Pex1 and Pex6. The proteins form the heteromeric Pex1/Pex6 complex, which is important for protein import into peroxisomes. To date, no structural data are available for this AAA+ ATPase complex. However, a wealth of information can be transferred from low-resolution structures of the yeast scPex1/scPex6 complex and homologous, well-characterized AAA+ ATPases. We review the abundant records of missense mutations described in PBD patients with the aim to classify and rationalize them by mapping them onto a homology model of the human Pex1/Pex6 complex. Several mutations concern functionally conserved residues that are implied in ATP hydrolysis and substrate processing. Contrary to fold destabilizing mutations, patients suffering from function-impairing mutations may not benefit from stabilizing agents, which have been reported as potential therapeutics for PBD patients.}, language = {en} } @phdthesis{Scherer2019, author = {Scherer, Philipp C{\´e}dric}, title = {Infection on the move}, school = {Universit{\"a}t Potsdam}, pages = {x, 107, XXXVIII}, year = {2019}, abstract = {Movement plays a major role in shaping population densities and contact rates among individuals, two factors that are particularly relevant for disease outbreaks. Although any differences in movement behaviour due to individual characteristics of the host and heterogeneity in landscape structure are likely to have considerable consequences for disease dynamics, these mechanisms are neglected in most epidemiological studies. Therefore, developing a general understanding how the interaction of movement behaviour and spatial heterogeneity shapes host densities, contact rates and ultimately pathogen spread is a key question in ecological and epidemiological research. In my thesis, I address this gap using both theoretical and empirical modelling approaches. In the theoretical part of my thesis, I investigated bottom-up effects of individual movement behaviour and landscape structure on host density, contact rates, and ultimately disease dynamics. I extended an established agent-based model that simulates ecological and epidemiological key processes to incorporate explicit movement of host individuals and landscape complexity. Neutral landscape models are a powerful basis for spatially-explicit modelling studies to imitate the complex characteristics of natural landscapes. In chapter 2, the first study of my thesis, I introduce two complementary R packages, NLMR and landscapetools, that I have co-developed to simplify the workflow of simulation and customization of such landscapes. To demonstrate the use of the packages I present a case study using the spatially explicit eco-epidemiological model and show that landscape complexity per se increases the probability of disease persistence. By using simple rules to simulate explicit host movement, I highlight in chapter 3 how disease dynamics are affected by population-level properties emerging from different movement rules leading to differences in the realized movement distance, spatiotemporal host density, and heterogeneity in transmission rates. As a consequence, mechanistic movement decisions based on the underlying landscape or conspecific competition led to considerably higher probabilities than phenomenological random walk approaches due directed movement leading to spatiotemporal differences in host densities. The results of these two chapters highlight the need to explicitly consider spatial heterogeneity and host movement behaviour when theoretical approaches are used to assess control measures to prevent outbreaks or eradicate diseases. In the empirical part of my thesis (chapter 4), I focus on the spatiotemporal dynamics of Classical Swine Fever in a wild boar population by analysing epidemiological data that was collected during an outbreak in Northern Germany persisting for eight years. I show that infection risk exhibits different seasonal patterns on the individual and the regional level. These patterns on the one hand show a higher infection risk in autumn and winter that may arise due to onset of mating behaviour and hunting intensity, which result in increased movement ranges. On the other hand, the increased infection risk of piglets, especially during the birth season, indicates the importance of new susceptible host individuals for local pathogen spread. The findings of this chapter underline the importance of different spatial and temporal scales to understand different components of pathogen spread that can have important implications for disease management. Taken together, the complementary use of theoretical and empirical modelling in my thesis highlights that our inferences about disease dynamics depend heavily on the spatial and temporal resolution used and how the inclusion of explicit mechanisms underlying hosts movement are modelled. My findings are an important step towards the incorporation of spatial heterogeneity and a mechanism-based perspective in eco-epidemiological approaches. This will ultimately lead to an enhanced understanding of the feedbacks of contact rates on pathogen spread and disease persistence that are of paramount importance to improve predictive models at the interface of ecology and epidemiology.}, language = {en} } @article{SchererRadchukStaubachetal.2019, author = {Scherer, Cedric and Radchuk, Viktoriia and Staubach, Christoph and Mueller, Sophie and Blaum, Niels and Thulke, Hans-Hermann and Kramer-Schadt, Stephanie}, title = {Seasonal host life-history processes fuel disease dynamics at different spatial scales}, series = {Journal of animal ecology : a journal of the British Ecological Society}, volume = {88}, journal = {Journal of animal ecology : a journal of the British Ecological Society}, number = {11}, publisher = {Wiley}, address = {Hoboken}, issn = {0021-8790}, doi = {10.1111/1365-2656.13070}, pages = {1812 -- 1824}, year = {2019}, abstract = {Understanding the drivers underlying disease dynamics is still a major challenge in disease ecology, especially in the case of long-term disease persistence. Even though there is a strong consensus that density-dependent factors play an important role for the spread of diseases, the main drivers are still discussed and, more importantly, might differ between invasion and persistence periods. Here, we analysed long-term outbreak data of classical swine fever, an important disease in both wild boar and livestock, prevalent in the wild boar population from 1993 to 2000 in Mecklenburg-Vorpommern, Germany. We report outbreak characteristics and results from generalized linear mixed models to reveal what factors affected infection risk on both the landscape and the individual level. Spatiotemporal outbreak dynamics showed an initial wave-like spread with high incidence during the invasion period followed by a drop of incidence and an increase in seroprevalence during the persistence period. Velocity of spread increased with time during the first year of outbreak and decreased linearly afterwards, being on average 7.6 km per quarter. Landscape- and individual-level analyses of infection risk indicate contrasting seasonal patterns. During the persistence period, infection risk on the landscape level was highest during autumn and winter seasons, probably related to spatial behaviour such as increased long-distance movements and contacts induced by rutting and escaping movements. In contrast, individual-level infection risk peaked in spring, probably related to the concurrent birth season leading to higher densities, and was significantly higher in piglets than in reproductive animals. Our findings highlight that it is important to investigate both individual- and landscape-level patterns of infection risk to understand long-term persistence of wildlife diseases and to guide respective management actions. Furthermore, we highlight that exploring different temporal aggregation of the data helps to reveal important seasonal patterns, which might be masked otherwise.}, language = {en} } @misc{SchellerZhangYarmanetal.2019, author = {Scheller, Frieder W. and Zhang, Xiaorong and Yarman, Aysu and Wollenberger, Ulla and Gyurcs{\´a}nyi, R{\´o}bert E.}, title = {Molecularly imprinted polymer-based electrochemical sensors for biopolymers}, series = {Current opinion in electrochemistry}, volume = {14}, journal = {Current opinion in electrochemistry}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2451-9103}, doi = {10.1016/j.coelec.2018.12.005}, pages = {53 -- 59}, year = {2019}, abstract = {Electrochemical synthesis and signal generation dominate among the almost 1200 articles published annually on protein-imprinted polymers. Such polymers can be easily prepared directly on the electrode surface, and the polymer thickness can be precisely adjusted to the size of the target to enable its free exchange. In this architecture, the molecularly imprinted polymer (MIP) layer represents only one 'separation plate'; thus, the selectivity does not reach the values of 'bulk' measurements. The binding of target proteins can be detected straightforwardly by their modulating effect on the diffusional permeability of a redox marker through the thin MIP films. However, this generates an 'overall apparent' signal, which may include nonspecific interactions in the polymer layer and at the electrode surface. Certain targets, such as enzymes or redox active proteins, enables a more specific direct quantification of their binding to MIPs by in situ determination of the enzyme activity or direct electron transfer, respectively.}, language = {en} } @article{SauerKleineVehn2019, author = {Sauer, Michael and Kleine-Vehn, J{\"u}rgen}, title = {PIN-FORMED and PIN-LIKES auxin transport facilitators}, series = {Development : Company of Biologists}, volume = {146}, journal = {Development : Company of Biologists}, number = {15}, publisher = {Company biologists ltd}, address = {Cambridge}, issn = {0950-1991}, doi = {10.1242/dev.168088}, pages = {5}, year = {2019}, abstract = {The phytohormone auxin influences virtually all aspects of plant growth and development. Auxin transport across membranes is facilitated by, among other proteins, members of the PIN-FORMED (PIN) and the structurally similar PIN-LIKES (PILS) families, which together govern directional cell-to-cell transport and intracellular accumulation of auxin. Canonical PIN proteins, which exhibit a polar localization in the plasma membrane, determine many patterning and directional growth responses. Conversely, the less-studied noncanonical PINs and PILS proteins, which mostly localize to the endoplasmic reticulum, attenuate cellular auxin responses. Here, and in the accompanying poster, we provide a brief summary of current knowledge of the structure, evolution, function and regulation of these auxin transport facilitators.}, language = {en} } @article{RuehlPietznerVilcinskasetal.2019, author = {R{\"u}hl, Martin and Pietzner, Verena and Vilcinskas, Andreas and Zorn, Holger}, title = {Insects and molds as bio-resources: food biotechnology}, series = {Chemie in unserer Zeit}, volume = {53}, journal = {Chemie in unserer Zeit}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0009-2851}, doi = {10.1002/ciuz.201900833}, pages = {342 -- 348}, year = {2019}, abstract = {Microorganisms are used for the production of foodstuffs since thousands of years. By now, these biotechnological processes are not restricted to some of the known microorganisms. The possibility to produce enzymes independently from their host organisms extended their range of application. Since then, exploration of new bioresources leads to novel enzymes and peptides applicable for a diverse set of food production processes: peptidases of grain pest beetles are able to hydrolyse gluten and antimicrobial active peptides of insects maybe of use for preservation of food. Examples of our own work depict strategies to identify novel biocatalysts for food biotechnology.}, language = {en} } @article{RoedelOttenDonatetal.2019, author = {R{\"o}del, Claudia Jasmin and Otten, Cecile and Donat, Stefan and Louren{\c{c}}o, Marta Sofia Rocha and Fischer, Dorothea and Kuropka, Benno and Paolini, Alessio and Freund, Christian and Abdelilah-Seyfried, Salim}, title = {Blood Flow Suppresses Vascular Anomalies in a Zebrafish Model of Cerebral Cavernous Malformations}, series = {Circulation Research}, volume = {125}, journal = {Circulation Research}, number = {10}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {0009-7330}, doi = {10.1161/CIRCRESAHA.119.315076}, pages = {E43 -- E54}, year = {2019}, abstract = {RATIONALE: Pathological biomechanical signaling induces vascular anomalies including cerebral cavernous malformations (CCM), which are caused by a clonal loss of CCM1/KRIT1 (Krev interaction trapped protein 1), CCM2/MGC4607, or CCM3/PDCD10. Why patients typically experience lesions only in lowly perfused venous capillaries of the cerebrovasculature is completely unknown. OBJECTIVE: In contrast, animal models with a complete loss of CCM proteins lack a functional heart and blood flow and exhibit vascular anomalies within major blood vessels as well. This finding raises the possibility that hemodynamics may play a role in the context of this vascular pathology. METHODS AND RESULTS: Here, we used a genetic approach to restore cardiac function and blood flow in a zebrafish model of CCM1. We find that blood flow prevents cardiovascular anomalies including a hyperplastic expansion within a large Ccm1-deficient vascular bed, the lateral dorsal aorta. CONCLUSIONS: This study identifies blood flow as an important physiological factor that is protective in the cause of this devastating vascular pathology.}, language = {en} } @article{RyserHaeusslerStarketal.2019, author = {Ryser, Remo and H{\"a}ussler, Johanna and Stark, Markus and Brose, Ulrich and Rall, Bj{\"o}rn C. and Guill, Christian}, title = {The biggest losers: habitat isolation deconsructs complex food webs from top to bottom}, series = {Proceedings of the Royal Society of London : B, Biological sciences}, volume = {286}, journal = {Proceedings of the Royal Society of London : B, Biological sciences}, number = {1908}, publisher = {Royal Society}, address = {London}, issn = {0962-8452}, doi = {10.1098/rspb.2019.1177}, pages = {8}, year = {2019}, abstract = {Habitat fragmentation threatens global biodiversity. To date, there is only limited understanding of how the different aspects of habitat fragmentation (habitat loss, number of fragments and isolation) affect species diversity within complex ecological networks such as food webs. Here, we present a dynamic and spatially explicit food web model which integrates complex food web dynamics at the local scale and species-specific dispersal dynamics at the landscape scale, allowing us to study the interplay of local and spatial processes in metacommunities. We here explore how the number of habitat patches, i.e. the number of fragments, and an increase of habitat isolation affect the species diversity patterns of complex food webs (alpha-,beta-,gamma-, diversities). We specifically test whether there is a trophic dependency in the effect of these two factors on species diversity. In our model, habitat isolation is the main driver causing species loss and diversity decline. Our results emphasize that large-bodied consumer species at high trophic positions go extinct faster than smaller species at lower trophic levels, despite being superior dispersers that connect fragmented landscapes better. We attribute the loss of top species to a combined effect of higher biomass loss during dispersal with increasing habitat isolation in general, and the associated energy limitation in highly fragmented landscapes, preventing higher trophic levels to persist. To maintain trophic-complex and species-rich communities calls for effective conservation planning which considers the interdependence of trophic and spatial dynamics as well as the spatial context of a landscape and its energy availability.}, language = {en} } @article{RossbergGaedkeKratina2019, author = {Rossberg, Axel G. and Gaedke, Ursula and Kratina, Pavel}, title = {Dome patterns in pelagic size spectra reveal strong trophic cascades}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-019-12289-0}, pages = {11}, year = {2019}, abstract = {In ecological communities, especially the pelagic zones of aquatic ecosystems, certain bodysize ranges are often over-represented compared to others. Community size spectra, the distributions of community biomass over the logarithmic body-mass axis, tend to exhibit regularly spaced local maxima, called "domes", separated by steep troughs. Contrasting established theory, we explain these dome patterns as manifestations of top-down trophic cascades along aquatic food chains. Compiling high quality size-spectrum data and comparing these with a size-spectrum model introduced in this study, we test this theory and develop a detailed picture of the mechanisms by which bottom-up and top-down effects interact to generate dome patterns. Results imply that strong top-down trophic cascades are common in freshwater communities, much more than hitherto demonstrated, and may arise in nutrient rich marine systems as well. Transferring insights from the general theory of nonlinear pattern formation to domes patterns, we provide new interpretations of past lake-manipulation experiments.}, language = {en} } @article{RosenbaumRaatzWeithoffetal.2019, author = {Rosenbaum, Benjamin and Raatz, Michael and Weithoff, Guntram and Fussmann, Gregor F. and Gaedke, Ursula}, title = {Estimating parameters from multiple time series of population dynamics using bayesian inference}, series = {Frontiers in ecology and evolution}, volume = {6}, journal = {Frontiers in ecology and evolution}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {2296-701X}, doi = {10.3389/fevo.2018.00234}, pages = {14}, year = {2019}, abstract = {Empirical time series of interacting entities, e.g., species abundances, are highly useful to study ecological mechanisms. Mathematical models are valuable tools to further elucidate those mechanisms and underlying processes. However, obtaining an agreement between model predictions and experimental observations remains a demanding task. As models always abstract from reality one parameter often summarizes several properties. Parameter measurements are performed in additional experiments independent of the ones delivering the time series. Transferring these parameter values to different settings may result in incorrect parametrizations. On top of that, the properties of organisms and thus the respective parameter values may vary considerably. These issues limit the use of a priori model parametrizations. In this study, we present a method suited for a direct estimation of model parameters and their variability from experimental time series data. We combine numerical simulations of a continuous-time dynamical population model with Bayesian inference, using a hierarchical framework that allows for variability of individual parameters. The method is applied to a comprehensive set of time series from a laboratory predator-prey system that features both steady states and cyclic population dynamics. Our model predictions are able to reproduce both steady states and cyclic dynamics of the data. Additionally to the direct estimates of the parameter values, the Bayesian approach also provides their uncertainties. We found that fitting cyclic population dynamics, which contain more information on the process rates than steady states, yields more precise parameter estimates. We detected significant variability among parameters of different time series and identified the variation in the maximum growth rate of the prey as a source for the transition from steady states to cyclic dynamics. By lending more flexibility to the model, our approach facilitates parametrizations and shows more easily which patterns in time series can be explained also by simple models. Applying Bayesian inference and dynamical population models in conjunction may help to quantify the profound variability in organismal properties in nature.}, language = {en} } @article{RomeroMujalliJeltschTiedemann2019, author = {Romero-Mujalli, Daniel and Jeltsch, Florian and Tiedemann, Ralph}, title = {Elevated mutation rates are unlikely to evolve in sexual species, not even under rapid environmental change}, series = {BMC Evolutionary Biology}, volume = {19}, journal = {BMC Evolutionary Biology}, publisher = {BioMed Central}, address = {London}, issn = {1471-2148}, doi = {10.1186/s12862-019-1494-0}, pages = {9}, year = {2019}, abstract = {Background Organisms are expected to respond to changing environmental conditions through local adaptation, range shift or local extinction. The process of local adaptation can occur by genetic changes or phenotypic plasticity, and becomes especially relevant when dispersal abilities or possibilities are somehow constrained. For genetic changes to occur, mutations are the ultimate source of variation and the mutation rate in terms of a mutator locus can be subject to evolutionary change. Recent findings suggest that the evolution of the mutation rate in a sexual species can advance invasion speed and promote adaptation to novel environmental conditions. Following this idea, this work uses an individual-based model approach to investigate if the mutation rate can also evolve in a sexual species experiencing different conditions of directional climate change, under different scenarios of colored stochastic environmental noise, probability of recombination and of beneficial mutations. The color of the noise mimicked investigating the evolutionary dynamics of the mutation rate in different habitats. Results The results suggest that the mutation rate in a sexual species experiencing directional climate change scenarios can evolve and reach relatively high values mainly under conditions of complete linkage of the mutator locus and the adaptation locus. In contrast, when they are unlinked, the mutation rate can slightly increase only under scenarios where at least 50\% of arising mutations are beneficial and the rate of environmental change is relatively fast. This result is robust under different scenarios of stochastic environmental noise, which supports the observation of no systematic variation in the mutation rate among organisms experiencing different habitats. Conclusions Given that 50\% beneficial mutations may be an unrealistic assumption, and that recombination is ubiquitous in sexual species, the evolution of an elevated mutation rate in a sexual species experiencing directional climate change might be rather unlikely. Furthermore, when the percentage of beneficial mutations and the population size are small, sexual species (especially multicellular ones) producing few offspring may be expected to react to changing environments not by adaptive genetic change, but mainly through plasticity. Without the ability for a plastic response, such species may become - at least locally - extinct.}, language = {en} } @article{RojasJimenezRieckWurzbacheretal.2019, author = {Rojas-Jimenez, Keilor and Rieck, Angelika and Wurzbacher, Christian and J{\"u}rgens, Klaus and Labrenz, Matthias and Grossart, Hans-Peter}, title = {A Salinity Threshold Separating Fungal Communities in the Baltic Sea}, series = {Frontiers in Microbiology}, volume = {10}, journal = {Frontiers in Microbiology}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-302X}, doi = {10.3389/fmicb.2019.00680}, pages = {9}, year = {2019}, abstract = {Salinity is a significant factor for structuring microbial communities, but little is known for aquatic fungi, particularly in the pelagic zone of brackish ecosystems. In this study, we explored the diversity and composition of fungal communities following a progressive salinity decline (from 34 to 3 PSU) along three transects of ca. 2000 km in the Baltic Sea, the world's largest estuary. Based on 18S rRNA gene sequence analysis, we detected clear changes in fungal community composition along the salinity gradient and found significant differences in composition of fungal communities established above and below a critical value of 8 PSU. At salinities below this threshold, fungal communities resembled those from freshwater environments, with a greater abundance of Chytridiomycota, particularly of the orders Rhizophydiales, Lobulomycetales, and Gromochytriales. At salinities above 8 PSU, communities were more similar to those from marine environments and, depending on the season, were dominated by a strain of the LKM11 group (Cryptomycota) or by members of Ascomycota and Basidiomycota. Our results highlight salinity as an important environmental driver also for pelagic fungi, and thus should be taken into account to better understand fungal diversity and ecological function in the aquatic realm.}, language = {en} } @misc{RodriguezSillkeSteinhoffBojarskietal.2019, author = {Rodriguez-Sillke, Yasmina and Steinhoff, U. and Bojarski, Christian and Lissner, Donata and Schumann, Michael and Branchi, F. and Siegmund, Britta and Glauben, Rainer}, title = {Deep immune profiling of human Peyer´s Patches in patients of inflammatory bowel diseases}, series = {European journal of immunology}, volume = {49}, journal = {European journal of immunology}, publisher = {Wiley}, address = {Weinheim}, issn = {0014-2980}, doi = {10.1002/eji.201970300}, pages = {203 -- 204}, year = {2019}, language = {en} } @article{RiedelSiemiatkowskaWatanabeetal.2019, author = {Riedel, Simona and Siemiatkowska, Beata and Watanabe, Mutsumi and M{\"u}ller, Christina S. and Sch{\"u}nemann, Volker and Hoefgen, Rainer and Leimk{\"u}hler, Silke}, title = {The ABCB7-Like Transporter PexA in Rhodobacter capsulatus Is Involved in the Translocation of Reactive Sulfur Species}, series = {Frontiers in Microbiology}, volume = {10}, journal = {Frontiers in Microbiology}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-302X}, doi = {10.3389/fmicb.2019.00406}, pages = {19}, year = {2019}, abstract = {The mitochondrial ATP-binding cassette (ABC) transporters ABCB7 in humans, Atm1 in yeast and ATM3 in plants, are highly conserved in their overall architecture and particularly in their glutathione binding pocket located within the transmembrane spanning domains. These transporters have attracted interest in the last two decades based on their proposed role in connecting the mitochondrial iron sulfur (Fe-S) cluster assembly with its cytosolic Fe-S cluster assembly (CIA) counterpart. So far, the specific compound that is transported across the membrane remains unknown. In this report we characterized the ABCB7-like transporter Rcc02305 in Rhodobacter capsulatus, which shares 47\% amino acid sequence identity with its mitochondrial counterpart. The constructed interposon mutant strain in R. capsulatus displayed increased levels of intracellular reactive oxygen species without a simultaneous accumulation of the cellular iron levels. The inhibition of endogenous glutathione biosynthesis resulted in an increase of total glutathione levels in the mutant strain. Bioinformatic analysis of the amino acid sequence motifs revealed a potential aminotransferase class-V pyridoxal-50-phosphate (PLP) binding site that overlaps with the Walker A motif within the nucleotide binding domains of the transporter. PLP is a well characterized cofactor of L-cysteine desulfurases like IscS and NFS1 which has a role in the formation of a protein-bound persulfide group within these proteins. We therefore suggest renaming the ABCB7-like transporter Rcc02305 in R. capsulatus to PexA for PLP binding exporter. We further suggest that this ABC-transporter in R. capsulatus is involved in the formation and export of polysulfide species to the periplasm.}, language = {en} } @phdthesis{Riedel2019, author = {Riedel, Simona}, title = {Characterization of Mitochondrial ABC Transporter Homologues in Rhodobacter capsulatus}, school = {Universit{\"a}t Potsdam}, pages = {127}, year = {2019}, abstract = {ABC-Transporter (ABC abgeleitet von ATP-Binding Cassette) geh{\"o}ren zur Klasse der Transmembran-Proteine und kommen in allen drei Dom{\"a}nen des Lebens vor. Ihr struktureller Aufbau ist dabei stets {\"a}hnlich, wohingegen konservierte Proteinsequenzen selten vorkommen. Die Transporter sind aus zwei lipophilen, membran-durchspannenden Dom{\"a}nen, welche auch TMDs (abgeleitet von Transmembrane spanning Domains) genannt werden, und zwei hydrophilen Dom{\"a}nen, die auch NBDs (abgeleitet von Nucleotide Binding Domains) genannt werden, aufgebaut. Die Vielzahl der durch ABC-Transporter bef{\"o}rderten Molek{\"u}le erkl{\"a}rt dabei die enorme Anzahl diverser TMDs. In den Mitochondrien des Menschen findet man vier ABC-Transporter (ABCB6, ABCB7, ABCB8 und ABCB10) mit funktionellen Homologen in Hefen und Pflanzen. In Bakterien hingegen k{\"o}nnen, mit Ausnahme von Rickettsiae und verwandten Bakterien, keine Homologen zu mitochondrialen ABC-Transportern identifiziert werden. Die transportierten Molek{\"u}le sowie die damit verbundenen Funktionen sind im Einzelnen bislang weitgehend unbekannt. ABCB7 und die entsprechenden Homologen in Hefen (Atm1) und in Pflanzen (ATM3) konnten mit der cytosolischen Eisen-Schwefel-Cluster-Biosynthese in Zusammenhang gebracht werden. Eine schwefelhaltige Verbindung der mitochondrialen Matrix wird mit Hilfe dieses Transporters der cytosolischen Eisen-Schwefel-Cluster-Assemblierung zur Verf{\"u}gung gestellt. Die 2014 publizierten Kristallstrukturen von Atm1 (Hefe) und Atm1 aus Novosphingobium aromaticivorans offenbarten dabei eine hoch konservierte Glutathion-Bindetasche innerhalb der TMDs f{\"u}r ABCB7 Homologe. In der Modellpflanze Arabidopsis thaliana konnte ATM3 zus{\"a}tzlich mit der Biosynthese des Molybd{\"a}n-Cofaktors in Verbindung gebracht werden. In der vorliegenden Arbeit wurde das α-Proteobacterium Rhodobacter capsulatus als Modellorganismus genutzt, um mitochondriale ABC-Transporter Homologe zu untersuchen. Das Bakterium enth{\"a}lt zwei ABC-Transporter-Gene, rcc03139 und rcc02305, die mit den humanen mitochondrialen Transportern große Sequenz{\"u}bereinstimmungen aufweisen (rcc03139: 41 \% respektive 38 \% Identit{\"a}t mit ABCB8 und ABCB10, rcc02305: 47 \% identisch mit ABCB7 und ABCB6). Mit Hilfe erzeugter Interposon-Mutanten (Δrcc02305I und Δrcc03139I) konnte erstmals gezeigt werden, dass bakterielle Transporter funktionell sehr {\"a}hnliche Aufgaben wie die mitochondrialen ABC-Transporter {\"u}bernehmen. Beispielsweise akkumulierten beide Interposon-Mutanten reaktive Sauerstoff-Spezies (ROS) ohne gleichzeitige Akkumulation von Glutathion oder Eisen. Weiterhin konnten wir zeigen, dass, {\"a}hnlich wie bereits f{\"u}r ATM3 postuliert, die Biosynthese des Molybd{\"a}n-Cofaktors in Δrcc02305I ver{\"a}ndert ist. Mit Hilfe einer lebensf{\"a}higen Doppelmutante, in der beide ABC-Transporter-Gene gleichzeitig deletiert wurden, konnten wir ausschließen, dass die beiden bakteriellen ABC-Transporter grunds{\"a}tzlich redundante Funktionen haben. Durch die Analyse des Proteoms von Δrcc03139I im Vergleich zu der des Wildtyps, konnte eine extreme Beeinflussung der Tetrapyrrol Biosynthese sowie entsprechender Zielproteine identifiziert werden. Dies konnte zus{\"a}tzlich durch die Quantifizierung einzelner Zwischenprodukte der Biosynthese best{\"a}tigt werden. Im Gegensatz dazu konnte anhand der Analyse des Proteoms in Verbindung mit analytischen Methoden in Δrcc02305I ein Ungleichgewicht in der Schwefelverteilung identifiziert werden. Zusammen mit der Entdeckung einer Pyridoxalphosphat (PLP) Bindestelle in Rcc02305 und anderen ABCB7-artigen Transportern, welche direkt mit dem Walker-A-Motiv der NBD {\"u}berlappt, erm{\"o}glichte dies eine v{\"o}llig neue Theorie, wie die schwefelhaltige Verbindung transportiert werden kann. Wir gehen davon aus, dass an PLP zun{\"a}chst ein Persulfid produziert wird, welches unmittelbar mit dem Glutathion der transmembranen Bindetasche zu einem gemischten Polysulfid reagiert. Im Anschluss daran wird die ATP-Bindestelle frei und die Hydrolyse des ATPs l{\"o}st eine Konformations{\"a}nderung aus, welche das gemischte Polysulfid ins Periplasma bzw. in den intermembranen Raum freigibt.}, language = {en} } @article{RieckGeigerMunkertetal.2019, author = {Rieck, Christoph Paul Kurt and Geiger, Daniel and Munkert, Jennifer and Messerschmidt, Katrin and Petersen, Jan and Strasser, Juliane and Meitinger, Nadine and Kreis, Wolfgang}, title = {Biosynthetic approach to combine the first steps of cardenolide formation in Saccharomyces cerevisiae}, series = {Microbiologyopen}, volume = {8}, journal = {Microbiologyopen}, number = {12}, publisher = {Wiley}, address = {Hoboken}, issn = {2045-8827}, doi = {10.1002/mbo3.925}, pages = {11}, year = {2019}, abstract = {A yeast expression plasmid was constructed containing a cardenolide biosynthetic module, referred to as CARD II, using the AssemblX toolkit, which enables the assembly of large DNA constructs. The genes cloned into the vector were (a) a Δ5-3β-hydroxysteroid dehydrogenase gene from Digitalis lanata, (b) a steroid Δ5-isomerase gene from Comamonas testosteronii, (c) a mutated steroid-5β-reductase gene from Arabidopsis thaliana, and (d) a steroid 21-hydroxylase gene from Mus musculus. A second plasmid bearing an ADR/ADX fusion gene from Bos taurus was also constructed. A Saccharomyces cerevisiae strain bearing these two plasmids was generated. This strain, termed "CARD II yeast", was capable of producing 5β-pregnane-3β,21-diol-20-one, a central intermediate in 5β-cardenolide biosynthesis, starting from pregnenolone which was added to the culture medium. Using this approach, five consecutive steps in cardenolide biosynthesis were realized in baker's yeast.}, language = {en} } @article{ReschkeDuffusSchrapersetal.2019, author = {Reschke, Stefan and Duffus, Benjamin R. and Schrapers, Peer and Mebs, Stefan and Teutloff, Christian and Dau, Holger and Haumann, Michael and Leimk{\"u}hler, Silke}, title = {Identification of YdhV as the First Molybdoenzyme Binding a Bis-Mo-MPT Cofactor in Escherichia coli}, series = {Biochemistry}, volume = {58}, journal = {Biochemistry}, number = {17}, publisher = {American Chemical Society}, address = {Washington}, issn = {0006-2960}, doi = {10.1021/acs.biochem.9b00078}, pages = {2228 -- 2242}, year = {2019}, abstract = {The oxidoreductase YdhV in Escherichia coli has been predicted to belong to the family of molybdenum/tungsten cofactor (Moco/Wco)-containing enzymes. In this study, we characterized the YdhV protein in detail, which shares amino acid sequence homology with a tungsten-containing benzoyl-CoA reductase binding the bis-W-MPT (for metal-binding pterin) cofactor. The cofactor was identified to be of a bis-Mo-MPT type with no guanine nucleotides present, which represents a form of Moco that has not been found previously in any molybdoenzyme. Our studies showed that YdhV has a preference for bis-Mo-MPT over bis-W-MPT to be inserted into the enzyme. In-depth characterization of YdhV by X-ray absorption and electron paramagnetic resonance spectroscopies revealed that the bis-Mo-MPT cofactor in YdhV is redox active. The bis-Mo-MPT and bis-W-MPT cofactors include metal centers that bind the four sulfurs from the two dithiolene groups in addition to a cysteine and likely a sulfido ligand. The unexpected presence of a bis-Mo-MPT cofactor opens an additional route for cofactor biosynthesis in E. coli and expands the canon of the structurally highly versatile molybdenum and tungsten cofactors.}, language = {en} } @article{ReimannBeyerMummetal.2019, author = {Reimann, Anna and Beyer, Rudolf and Mumm, Rebekka and Scheffler, Christiane}, title = {Reference tables with centiles of limb to body height ratios of healthy human adults for assessing potential thalidomide embryopathy}, series = {Journal of biological and clinical anthropology : Anthropologischer Anzeiger ; Mitteilungsorgan der Gesellschaft f{\"u}r Anthropologie}, volume = {76}, journal = {Journal of biological and clinical anthropology : Anthropologischer Anzeiger ; Mitteilungsorgan der Gesellschaft f{\"u}r Anthropologie}, number = {5}, publisher = {Schweizerbart}, address = {Stuttgart}, issn = {0003-5548}, doi = {10.1127/anthranz/2019/0981}, pages = {391 -- 400}, year = {2019}, abstract = {Background: Over 60 years ago the biggest drug catastrophe in Germany took place. The drug thalidomide, sold by the German pharmaceutical company Chemie Grunenthal GmbH starting in 1957 under the name "Contergan", caused severe birth defects in newborns. Chemie Grunenthal withdraw Contergan in 1961. Until nearly 30 years later in 1988 there were already over 10.000 children born with severe birth defects (e.g. dysmelia, amelia, congenital heart defect). Due to the high variability of the birth defects caused by thalidomide, later called thalidomide embryopathy, there is still no detailed information about the proportions of limbs. Aim: The aim is to develop reference centiles for limb measurements of men and women aged 19-70 years old. Method: For the calculation, data of healthy men and women (m = 2984, f = 2838) from former East Germany were used and centiles using the LMS-method were developed. Results: Centile tables for arm and leg length of men and women are presented in the results. The variability is small due to a homogeneous distribution of the measurements. A test with randomly chosen patient data shows that women under 171 cm stature and men under 180 cm stature can be assessed correctly. A severe shortening of limbs can be detected with this method.}, language = {en} } @article{RamosSanchezTriozziAliqueetal.2019, author = {Ramos-Sanchez, Jose M. and Triozzi, Paolo M. and Alique, Daniel and Geng, Feng and Gao, Mingjun and Jaeger, Katja E. and Wigge, Philip Anthony and Allona, Isabel and Perales, Mariano}, title = {LHY2 Integrates Night-Length Information to Determine Timing of Poplar Photoperiodic Growth}, series = {Current biology}, volume = {29}, journal = {Current biology}, number = {14}, publisher = {Cell Press}, address = {Cambridge}, issn = {0960-9822}, doi = {10.1016/j.cub.2019.06.003}, pages = {2402 -- 2406}, year = {2019}, abstract = {Day length is a key indicator of seasonal information that determines major patterns of behavior in plants and animals. Photoperiodism has been described in plants for about 100 years, but the underlying molecular mechanisms of day length perception and signal transduction in many systems are not well understood. In trees, photoperiod perception plays a major role in growth cessation during the autumn as well as activating the resumption of shoot growth in the spring, both processes controlled by FLOWERING LOCUS T2 (FT2) expression levels and critical for the survival of perennial plants over winter [1-4]. It has been shown that the conserved role of poplar orthologs to Arabidopsis CONSTANS (CO) directly activates FT2 expression [1, 5]. Overexpression of poplar CO is, however, not sufficient to sustain FT2 expression under short days [5] , pointing to the presence of an additional short-day-dependent FT2 repression pathway in poplar. We find that night length information is transmitted via the expression level of a poplar clock gene, LATE ELONGATED HYPOCOTYL 2 (LHY2), which controls FT2 expression. Repression of FT2 is a function of the night extension and LHY2 expression level. We show that LHY2 is necessary and sufficient to activate night length repressive signaling. We propose that the photoperiodic control of shoot growth in poplar involves a balance between FT2 activating and repressing pathways. Our results show that poplar relies on night length measurement to determine photoperiodism through interaction between light signaling pathways and the circadian clock.}, language = {en} } @phdthesis{Ramming2019, author = {Ramming, Anna}, title = {Specific Roles of POLY(A) POLYMERASE1 in the male Gametophyte and Beyond}, school = {Universit{\"a}t Potsdam}, pages = {143}, year = {2019}, language = {en} } @article{RadchukReedTeplitskyetal.2019, author = {Radchuk, Viktoriia and Reed, Thomas and Teplitsky, Celine and van de Pol, Martijn and Charmantier, Anne and Hassall, Christopher and Adamik, Peter and Adriaensen, Frank and Ahola, Markus P. and Arcese, Peter and Miguel Aviles, Jesus and Balbontin, Javier and Berg, Karl S. and Borras, Antoni and Burthe, Sarah and Clobert, Jean and Dehnhard, Nina and de Lope, Florentino and Dhondt, Andre A. and Dingemanse, Niels J. and Doi, Hideyuki and Eeva, Tapio and Fickel, J{\"o}rns and Filella, Iolanda and Fossoy, Frode and Goodenough, Anne E. and Hall, Stephen J. G. and Hansson, Bengt and Harris, Michael and Hasselquist, Dennis and Hickler, Thomas and Jasmin Radha, Jasmin and Kharouba, Heather and Gabriel Martinez, Juan and Mihoub, Jean-Baptiste and Mills, James A. and Molina-Morales, Mercedes and Moksnes, Arne and Ozgul, Arpat and Parejo, Deseada and Pilard, Philippe and Poisbleau, Maud and Rousset, Francois and R{\"o}del, Mark-Oliver and Scott, David and Carlos Senar, Juan and Stefanescu, Constanti and Stokke, Bard G. and Kusano, Tamotsu and Tarka, Maja and Tarwater, Corey E. and Thonicke, Kirsten and Thorley, Jack and Wilting, Andreas and Tryjanowski, Piotr and Merila, Juha and Sheldon, Ben C. and Moller, Anders Pape and Matthysen, Erik and Janzen, Fredric and Dobson, F. Stephen and Visser, Marcel E. and Beissinger, Steven R. and Courtiol, Alexandre and Kramer-Schadt, Stephanie}, title = {Adaptive responses of animals to climate change are most likely insufficient}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-019-10924-4}, pages = {14}, year = {2019}, abstract = {Biological responses to climate change have been widely documented across taxa and regions, but it remains unclear whether species are maintaining a good match between phenotype and environment, i.e. whether observed trait changes are adaptive. Here we reviewed 10,090 abstracts and extracted data from 71 studies reported in 58 relevant publications, to assess quantitatively whether phenotypic trait changes associated with climate change are adaptive in animals. A meta-analysis focussing on birds, the taxon best represented in our dataset, suggests that global warming has not systematically affected morphological traits, but has advanced phenological traits. We demonstrate that these advances are adaptive for some species, but imperfect as evidenced by the observed consistent selection for earlier timing. Application of a theoretical model indicates that the evolutionary load imposed by incomplete adaptive responses to ongoing climate change may already be threatening the persistence of species.}, language = {en} } @misc{RadchukKramerSchadtGrimm2019, author = {Radchuk, Viktoriia and Kramer-Schadt, Stephanie and Grimm, Volker}, title = {Transferability of mechanistic ecological models is about emergence}, series = {Trends in ecology and evolution}, volume = {34}, journal = {Trends in ecology and evolution}, number = {6}, publisher = {Elsevier}, address = {London}, issn = {0169-5347}, doi = {10.1016/j.tree.2019.01.010}, pages = {487 -- 488}, year = {2019}, language = {en} } @article{RadchukKramerSchadtFickeletal.2019, author = {Radchuk, Viktoriia and Kramer-Schadt, Stephanie and Fickel, J{\"o}rns and Wilting, Andreas}, title = {Distributions of mammals in Southeast Asia: The role of the legacy of climate and species body mass}, series = {Journal of biogeography}, volume = {46}, journal = {Journal of biogeography}, number = {10}, publisher = {Wiley}, address = {Hoboken}, issn = {0305-0270}, doi = {10.1111/jbi.13675}, pages = {2350 -- 2362}, year = {2019}, abstract = {Aim Current species distributions are shaped by present and past biotic and abiotic factors. Here, we assessed whether abiotic factors (habitat availability) in combination with past connectivity and a biotic factor (body mass) can explain the unique distribution pattern of Southeast Asian mammals, which are separated by the enigmatic biogeographic transition zone, the Isthmus of Kra (IoK), for which no strong geophysical barrier exists. Location Southeast Asia. Taxon Mammals. Methods We projected habitat suitability for 125 mammal species using climate data for the present period and for two historic periods: mid-Holocene (6 ka) and last glacial maximum (LGM 21 ka). Next, we employed a phylogenetic linear model to assess how present species distributions were affected by the suitability of areas in these different periods, habitat connectivity during LGM and species body mass. Results Our results show that cooler climate during LGM provided suitable habitat south of IoK for species presently distributed north of IoK (in mainland Indochina). However, the potentially suitable habitat for these Indochinese species did not stretch very far southwards onto the exposed Sunda Shelf. Instead, we found that the emerged landmasses connecting Borneo and Sumatra provided suitable habitat for forest dependent Sundaic species. We show that for species whose current distribution ranges are mainly located in Indochina, the area of the distribution range that is located south of IoK is explained by the suitability of habitat in the past and present in combination with the species body mass. Main conclusions We demonstrate that a strong geophysical barrier may not be necessary for maintaining a biogeographic transition zone for mammals, but that instead a combination of abiotic and biotic factors may suffice.}, language = {en} } @article{RadchukDeLaenderCabraletal.2019, author = {Radchuk, Viktoriia and De Laender, Frederik and Cabral, Juliano Sarmento and Boulangeat, Isabelle and Crawford, Michael Scott and Bohn, Friedrich and De Raedt, Jonathan and Scherer, Cedric and Svenning, Jens-Christian and Thonicke, Kirsten and Schurr, Frank M. and Grimm, Volker and Kramer-Schadt, Stephanie}, title = {The dimensionality of stability depends on disturbance type}, series = {Ecology letters}, volume = {22}, journal = {Ecology letters}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {1461-023X}, doi = {10.1111/ele.13226}, pages = {674 -- 684}, year = {2019}, abstract = {Ecosystems respond in various ways to disturbances. Quantifying ecological stability therefore requires inspecting multiple stability properties, such as resistance, recovery, persistence and invariability. Correlations among these properties can reduce the dimensionality of stability, simplifying the study of environmental effects on ecosystems. A key question is how the kind of disturbance affects these correlations. We here investigated the effect of three disturbance types (random, species-specific, local) applied at four intensity levels, on the dimensionality of stability at the population and community level. We used previously parameterized models that represent five natural communities, varying in species richness and the number of trophic levels. We found that disturbance type but not intensity affected the dimensionality of stability and only at the population level. The dimensionality of stability also varied greatly among species and communities. Therefore, studying stability cannot be simplified to using a single metric and multi-dimensional assessments are still to be recommended.}, language = {en} } @article{RaatzvanVelzenGaedke2019, author = {Raatz, Michael and van Velzen, Ellen and Gaedke, Ursula}, title = {Co-adaptation impacts the robustness of predator-prey dynamics against perturbations}, series = {Ecology and Evolution}, volume = {9}, journal = {Ecology and Evolution}, number = {7}, publisher = {John Wiley \& Sons}, address = {Hoboken, NJ}, issn = {2045-7758}, doi = {10.1002/ece3.5006}, pages = {3823 -- 3836}, year = {2019}, abstract = {Global change threatens the maintenance of ecosystem functions that are shaped by the persistence and dynamics of populations. It has been shown that the persistence of species increases if they possess larger trait adaptability. Here, we investigate whether trait adaptability also affects the robustness of population dynamics of interacting species and thereby shapes the reliability of ecosystem functions that are driven by these dynamics. We model co-adaptation in a predator-prey system as changes to predator offense and prey defense due to evolution or phenotypic plasticity. We investigate how trait adaptation affects the robustness of population dynamics against press perturbations to environmental parameters and against pulse perturbations targeting species abundances and their trait values. Robustness of population dynamics is characterized by resilience, elasticity, and resistance. In addition to employing established measures for resilience and elasticity against pulse perturbations (extinction probability and return time), we propose the warping distance as a new measure for resistance against press perturbations, which compares the shapes and amplitudes of pre- and post-perturbation population dynamics. As expected, we find that the robustness of population dynamics depends on the speed of adaptation, but in nontrivial ways. Elasticity increases with speed of adaptation as the system returns more rapidly to the pre-perturbation state. Resilience, in turn, is enhanced by intermediate speeds of adaptation, as here trait adaptation dampens biomass oscillations. The resistance of population dynamics strongly depends on the target of the press perturbation, preventing a simple relationship with the adaptation speed. In general, we find that low robustness often coincides with high amplitudes of population dynamics. Hence, amplitudes may indicate the robustness against perturbations also in other natural systems with similar dynamics. Our findings show that besides counteracting extinctions, trait adaptation indeed strongly affects the robustness of population dynamics against press and pulse perturbations.}, language = {en} } @article{RaatzBacchiWalzletal.2019, author = {Raatz, Larissa and Bacchi, Nina and Walzl, Karin Pirhofer and Glemnitz, Michael and M{\"u}ller, Marina E. H. and Jasmin Radha, Jasmin and Scherber, Christoph}, title = {How much do we really lose?}, series = {Ecology and evolution}, volume = {9}, journal = {Ecology and evolution}, number = {13}, publisher = {Wiley}, address = {Hoboken}, issn = {2045-7758}, doi = {10.1002/ece3.5370}, pages = {7838 -- 7848}, year = {2019}, abstract = {Natural landscape elements (NLEs) in agricultural landscapes contribute to biodiversity and ecosystem services, but are also regarded as an obstacle for large-scale agricultural production. However, the effects of NLEs on crop yield have rarely been measured. Here, we investigated how different bordering structures, such as agricultural roads, field-to-field borders, forests, hedgerows, and kettle holes, influence agricultural yields. We hypothesized that (a) yield values at field borders differ from mid-field yields and that (b) the extent of this change in yields depends on the bordering structure. We measured winter wheat yields along transects with log-scaled distances from the border into the agricultural field within two intensively managed agricultural landscapes in Germany (2014 near Gottingen, and 2015-2017 in the Uckermark). We observed a yield loss adjacent to every investigated bordering structure of 11\%-38\% in comparison with mid-field yields. However, depending on the bordering structure, this yield loss disappeared at different distances. While the proximity of kettle holes did not affect yields more than neighboring agricultural fields, woody landscape elements had strong effects on winter wheat yields. Notably, 95\% of mid-field yields could already be reached at a distance of 11.3 m from a kettle hole and at a distance of 17.8 m from hedgerows as well as forest borders. Our findings suggest that yield losses are especially relevant directly adjacent to woody landscape elements, but not adjacent to in-field water bodies. This highlights the potential to simultaneously counteract yield losses close to the field border and enhance biodiversity by combining different NLEs in agricultural landscapes such as creating strips of extensive grassland vegetation between woody landscape elements and agricultural fields. In conclusion, our results can be used to quantify ecocompensations to find optimal solutions for the delivery of productive and regulative ecosystem services in heterogeneous agricultural landscapes.}, language = {en} } @article{RaatzBacchiPirhoferWalzletal.2019, author = {Raatz, Larissa and Bacchi, Nina and Pirhofer Walzl, Karin and Glemnitz, Michael and M{\"u}ller, Marina E. H. and Jasmin Radha, Jasmin and Scherber, Christoph}, title = {How much do we really lose?}, series = {Ecology and Evolution}, volume = {9}, journal = {Ecology and Evolution}, number = {13}, publisher = {John Wiley \& Sons}, address = {S.I.}, issn = {2045-7758}, doi = {10.1002/ece3.5370}, pages = {7838 -- 7848}, year = {2019}, abstract = {Natural landscape elements (NLEs) in agricultural landscapes contribute to biodiversity and ecosystem services, but are also regarded as an obstacle for large-scale agricultural production. However, the effects of NLEs on crop yield have rarely been measured. Here, we investigated how different bordering structures, such as agricultural roads, field-to-field borders, forests, hedgerows, and kettle holes, influence agricultural yields. We hypothesized that (a) yield values at field borders differ from mid-field yields and that (b) the extent of this change in yields depends on the bordering structure. We measured winter wheat yields along transects with log-scaled distances from the border into the agricultural field within two intensively managed agricultural landscapes in Germany (2014 near G{\"o}ttingen, and 2015-2017 in the Uckermark). We observed a yield loss adjacent to every investigated bordering structure of 11\%-38\% in comparison with mid-field yields. However, depending on the bordering structure, this yield loss disappeared at different distances. While the proximity of kettle holes did not affect yields more than neighboring agricultural fields, woody landscape elements had strong effects on winter wheat yields. Notably, 95\% of mid-field yields could already be reached at a distance of 11.3 m from a kettle hole and at a distance of 17.8 m from hedgerows as well as forest borders. Our findings suggest that yield losses are especially relevant directly adjacent to woody landscape elements, but not adjacent to in-field water bodies. This highlights the potential to simultaneously counteract yield losses close to the field border and enhance biodiversity by combining different NLEs in agricultural landscapes such as creating strips of extensive grassland vegetation between woody landscape elements and agricultural fields. In conclusion, our results can be used to quantify ecocompensations to find optimal solutions for the delivery of productive and regulative ecosystem services in heterogeneous agricultural landscapes.}, language = {en} } @article{Raatz2019, author = {Raatz, Larissa}, title = {Wirtschaften in einer reich strukturierten Landschaft - geht das ?}, series = {Vielfalt in der Uckermark : Forschungsprojekte 2015 - 2018}, journal = {Vielfalt in der Uckermark : Forschungsprojekte 2015 - 2018}, publisher = {oerding print GmbH}, address = {Braunschweig}, pages = {32 -- 33}, year = {2019}, language = {de} } @article{PoradaTammRaggioetal.2019, author = {Porada, Philipp and Tamm, Alexandra and Raggio, Jose and Yafang, Cheng and Kleidon, Axel and P{\"o}schl, Ulrich and Weber, Bettina}, title = {Global NO and HONO emissions of biological soil crusts estimated by a process-based non-vascular vegetation model}, series = {Biogeosciences}, volume = {16}, journal = {Biogeosciences}, publisher = {Copernicus Publ.}, address = {G{\"o}ttingen}, issn = {1726-4170}, doi = {10.5194/bg-16-2003-2019}, pages = {2003 -- 2031}, year = {2019}, abstract = {The reactive trace gases nitric oxide (NO) and nitrous acid (HONO) are crucial for chemical processes in the atmosphere, including the formation of ozone and OH radicals, oxidation of pollutants, and atmospheric self-cleaning. Recently, empirical studies have shown that biological soil crusts are able to emit large amounts of NO and HONO, and they may therefore play an important role in the global budget of these trace gases. However, the upscaling of local estimates to the global scale is subject to large uncertainties, due to unknown spatial distribution of crust types and their dynamic metabolic activity. Here, we perform an alternative estimate of global NO and HONO emissions by biological soil crusts, using a process-based modelling approach to these organisms, combined with global data sets of climate and land cover. We thereby consider that NO and HONO are emitted in strongly different proportions, depending on the type of crust and their dynamic activity, and we provide a first estimate of the global distribution of four different crust types. Based on this, we estimate global total values of 1.04 Tg yr⁻¹ NO-N and 0.69 Tg yr⁻¹ HONO-N released by biological soil crusts. This corresponds to around 20\% of global emissions of these trace gases from natural ecosystems. Due to the low number of observations on NO and HONO emissions suitable to validate the model, our estimates are still relatively uncertain. However, they are consistent with the amount estimated by the empirical approach, which confirms that biological soil crusts are likely to have a strong impact on global atmospheric chemistry via emissions of NO and HONO.}, language = {en} } @phdthesis{Petrovic2019, author = {Petrovic, Nevena}, title = {Analysis of the role of Forgetter2 in thermotolerance responses in Arabidopsis thaliana}, school = {Universit{\"a}t Potsdam}, pages = {117}, year = {2019}, language = {en} } @phdthesis{PerlazaJimenez2019, author = {Perlaza-Jimenez, Laura}, title = {Discerning functional associations and relationships between molecules in Arabidopsis thaliana using genome-wide correlated mutations}, school = {Universit{\"a}t Potsdam}, pages = {118}, year = {2019}, language = {en} }