@phdthesis{Werner2002, author = {Werner, Deljana}, title = {Versuche zur Gewinnung von katalytischen Antik{\"o}rpern zur Hydrolyse von Arylcarbamaten und Arylharnstoffen}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000463}, school = {Universit{\"a}t Potsdam}, year = {2002}, abstract = {Im Rahmen dieser Arbeit gelang es, katalytische Antik{\"o}rper zur Hydrolyse von Benzylphenylcarbamaten sowie zahlreiche monoklonale Antik{\"o}rper gegen Haptene herzustellen. Es wurden verschiedene Hapten-Protein-Konjugate unter Verwendung unterschiedlicher Kopplungsmethoden hergestellt und charakterisiert. Zur Generierung der hydrolytisch aktiven Antik{\"o}rper wurden Inzuchtm{\"a}use mit KLH-Konjugaten von 4 {\"U}bergangszustandsanaloga ({\"U}ZA) immunisiert. Mit Hilfe der Hybridomtechnik wurden verschiedene monoklonale Antik{\"o}rper gegen diese {\"U}ZA gewonnen. Dabei wurden sowohl verschiedene Immunisierungsschemata als auch verschiedene Inzuchtmausst{\"a}mme und Fusionstechniken verwendet. Insgesamt wurden 32 monoklonale Antik{\"o}rper gegen die verwendeten {\"U}ZA selektiert. Diese Antik{\"o}rper wurden in großen Mengen hergestellt und gereinigt. Zum Nachweis der Antik{\"o}rper-vermittelten Katalyse wurden verschiedene Methoden entwickelt und eingesetzt, darunter immunologische Nachweismethoden mit Anti-Substrat- und Anti-Produkt-Antik{\"o}rpern und eine photometrische Methode mit Dimethylaminozimtaldehyd. Der Nachweis der hydrolytischen Aktivit{\"a}t gelang mit Hilfe eines Enzymsensors, basierend auf immobilisierter Tyrosinase. Die Antik{\"o}rper N1-BC1-D11, N1-FA7-C4, N1-FA7-D12 und R3-LG2-F9 hydrolysierten die Benzylphenylcarbamate POCc18, POCc19 und Substanz 27. Der Nachweis der hydrolytischen Aktivit{\"a}t dieser Antik{\"o}rper gelang auch mit Hilfe der HPLC. Der katalytische Antik{\"o}rper N1-BC1-D11 wurde kinetisch und thermodynamisch untersucht. Es wurde eine Michaelis-Menten-Kinetik mit Km von 210 \&\#181;M, vmax von 3 mM/min und kcat von 222 min-1 beobachtet. Diese Werte korrelieren mit den Werten der wenigen bekannten Diphenylcarbamat-spaltenden Abzyme. Die Beschleunigungsrate des Antik{\"o}rpers N1-BC1-D11 betrug 10. Das {\"U}ZA Hei3 hemmte die hydrolytische Aktivit{\"a}t. Dies beweist, dass die Hydrolyse in der Antigenbindungsstelle stattfindet. Weiter wurde zwischen der Antik{\"o}rperkonzentration und der Umsatzgeschwindigkeit eine lineare Abh{\"a}ngigkeit festgestellt. Die thermodynamische Gleichtgewichtsdissoziationskonstante KD des Abzyms von 2,6 nM zeugt von einer sehr guten Affinit{\"a}t zum {\"U}ZA. Hydrolytisch aktiv waren nur Antik{\"o}rper, die gegen das {\"U}bergangszustandsanalogon Hei3 hergestellt worden waren. Es wird vermutet, dass die Hydrolyse der Benzylphenylcarbamate {\"u}ber einen Additions-Eliminierungsmechanismus unter Ausbildung eines tetraedrischen {\"U}bergangszustandes verl{\"a}uft, dessen analoge Verbindung Hei3 ist. Im Rahmen der Generierung von Nachweisantik{\"o}rpern zur Detektion der Substratabnahme bei der Hydrolyse wurden Anti-Diuron-Antik{\"o}rper hergestellt. Einer der Antik{\"o}rper (B91-CG5) ist spezifisch f{\"u}r das Herbizid Diuron und hat einen IC50-Wert von 0,19 \&\#181;g/l und eine untere Nachweisgrenze von 0,04 \&\#181;g/l. Ein anderer Antik{\"o}rper (B91-KF5) reagiert kreuz mit einer Palette {\"a}hnlicher Herbizide. Mit diesen Antik{\"o}rpern wurde ein empfindlicher Labortest, der ein Monitoring von Diuron auf Grundlage des durch die Trinkwasserverordnung festgeschriebenen Wertes f{\"u}r Pflanzenschutzmittel von 0,1 \&\#181;g/l erlaubt, aufgebaut. Der Effekt der Anti-Diuron-Antik{\"o}rper auf die Diuron-inhibierte Photosynthese wurde in vitro und in vivo untersucht. Es wurde nachgewiesen, dass sowohl in isolierten Thylakoiden, als auch in intakten Algen eine Vorinkubation der Anti-Diuron-Antik{\"o}rper mit Diuron zur Inaktivierung seiner Photosynthese-hemmenden Wirkung f{\"u}hrt. Wurde der Elektronentransport in den isolierten Thylakoiden oder in Algen durch Diuron unterbrochen, so f{\"u}hrte die Zugabe der Anti-Diuron-Antik{\"o}rper zur Reaktivierung der Elektronen{\"u}bertragung.}, language = {de} } @article{WackerPiephoSpijkerman2015, author = {Wacker, Alexander and Piepho, Maike and Spijkerman, Elly}, title = {Photosynthetic and fatty acid acclimation of four phytoplankton species in response to light intensity and phosphorus availability}, series = {European journal of phycology}, volume = {50}, journal = {European journal of phycology}, number = {3}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {0967-0262}, doi = {10.1080/09670262.2015.1050068}, pages = {288 -- 300}, year = {2015}, abstract = {Photosynthetic acclimation of phytoplankton to lower irradiation can be met by several strategies such as increasing the affinity for light or increasing antenna size and stacking of the thylakoids. The latter is reflected by a higher proportion of polyunsaturated fatty acids (PUFAs). Additionally, photosynthetic capacity (P-max), respiratory losses, and proton leakage can be reduced under low light. Here we consider the effect of light intensity and phosphorus availability simultaneously on the photosynthetic acclimation and fatty acid composition of four phytoplankters. We studied representatives of the Chlorophyceae, Cryptophyceae and Mediophyceae, all of which are important components of plankton communities in temperate lakes. In our analysis, excluding fatty acid composition, we found different acclimation strategies in the chlorophytes Scenedesmus quadricauda, Chlamydomonas globosa, cryptophyte Cryptomonas ovata and ochrophyte Cyclotella meneghiniana. We observed interactive effects of light and phosphorus conditions on photosynthetic capacity in S. quadricauda and Cry. ovata. Cry. ovata can be characterized as a low light-acclimated species, whereas S. quadricauda and Cyc. meneghiniana can cope best with a combination of high light intensities and low phosphorus supply. Principal component analyses (PCA), including fatty acid composition, showed further species-specific patterns in their regulation of P-max with PUFAs and light. In S. quadricauda and Cyc. meneghiniana, PUFAs negatively affected the relationship between P-max and light. In Chl. globosa, lower light coincided with higher PUFAs and lower P-max, but PCA also indicated that PUFAs had no direct influence on P-max. PUFAs and P-max were unaffected by light in Cry. ovata. We did not observe a general trend in the four species tested and concluded that, in particular, the interactive effects highlight the importance of taking into account more than one environmental factor when assessing photosynthetic acclimation to lower irradiation.}, language = {en} } @phdthesis{vonBismarck2023, author = {von Bismarck, Thekla}, title = {The influence of long-term light acclimation on photosynthesis in dynamic light}, school = {Universit{\"a}t Potsdam}, pages = {x, 163}, year = {2023}, abstract = {Photosynthesis converts light into metabolic energy which fuels plant growth. In nature, many factors influence light availability for photosynthesis on different time scales, from shading by leaves within seconds up to seasonal changes over months. Variability of light energy supply for photosynthesis can limit a plant´s biomass accumulation. Plants have evolved multiple strategies to cope with strongly fluctuation light (FL). These range from long-term optimization of leaf morphology and physiology and levels of pigments and proteins in a process called light acclimation, to rapid changes in protein activity within seconds. Therefore, uncovering how plants deal with FL on different time scales may provide key ideas for improving crop yield. Photosynthesis is not an isolated process but tightly integrates with metabolism through mutual regulatory interactions. We thus require mechanistic understanding of how long-term light acclimation shapes both, dynamic photosynthesis and its interactions with downstream metabolism. To approach this, we analyzed the influence of growth light on i) the function of known rapid photosynthesis regulators KEA3 and VCCN1 in dynamic photosynthesis (Chapter 2-3) and ii) the interconnection of photosynthesis with photorespiration (PR; Chapter 4). We approached topic (i) by quantifying the effect of different growth light regimes on photosynthesis and photoprotection by using kea3 and vccn1 mutants. Firstly, we found that, besides photosynthetic capacity, the activities of VCCN1 and KEA3 during a sudden high light phase also correlated with growth light intensity. This finding suggests regulation of both proteins by the capacity of downstream metabolism. Secondly, we showed that KEA3 accelerated photoprotective non-photochemical quenching (NPQ) kinetics in two ways: Directly via downregulating the lumen proton concentration and thereby de-activating pH-dependent NPQ, and indirectly via suppressing accumulation of the photoprotective pigment zeaxanthin. For topic (ii), we analyzed the role of PR, a process which recycles a toxic byproduct of the carbon fixation reactions, in metabolic flexibility in a dynamically changing light environment. For this we employed the mutants hpr1 and ggt1 with a partial block in PR. We characterized the function of PR during light acclimation by tracking molecular and physiological changes of the two mutants. Our data, in contrast to previous reports, disprove a generally stronger physiological relevance of PR under dynamic light conditions. Additionally, the two different mutants showed pronounced and distinct metabolic changes during acclimation to a condition inducing higher photosynthetic activity. This underlines that PR cannot be regarded purely as a cyclic detoxification pathway for 2PG. Instead, PR is highly interconnected with plant metabolism, with GGT1 and HPR1 representing distinct metabolic modulators. In summary, the presented work provides further insight into how energetic and metabolic flexibility is ensured by short-term regulators and PR during long-term light acclimation.}, language = {en} } @phdthesis{Uflewski2021, author = {Uflewski, Michal}, title = {Characterizing the regulation of proton antiport across the thylakoid membrane}, school = {Universit{\"a}t Potsdam}, pages = {122}, year = {2021}, abstract = {Die Energie, die zum Antrieb photochemischer Reaktionen ben{\"o}tigt wird, stammt aus der Ladungstrennung an der Thylakoidmembran. Aufrgrund des Unterschieds in der Protonenkonzentration zwischen dem Stroma der Chloroplasten und dem Thylakoidlumen wird eine Protonenmotorische Kraft (pmf) erzeugt. Die pmf setzt sich aus dem Protonengradienten (ΔpH) und dem Membranpotential (ΔΨ) zusammen, die gemeinsam die ATP-Synthese antreiben. In der Natur schwankt die Energiemenge, die die Photosynthese antreibt, aufgrund h{\"a}ufiger {\"A}nderungen der Lichtintensit{\"a}t. Der Thylakoid-Ionentransport kann den Energiefluss durch einen Photosyntheseapparat an die Lichtverf{\"u}gbarkeit anpassen, indem er die pmf-Zusammensetzung ver{\"a}ndert. Die Dissipation von ΔΨ verringert die Ladungsrekombination am Photosystem II, so dass ein Anstieg der ΔpH-Komponente eine R{\"u}ckkopplung zur Herabregulierung der Photosynthese ausl{\"o}sen kann. Der durch den K+-Austausch-Antiporter 3 (KEA3) gesteuerte K+/H+-Antiport reduziert den ΔpH-Anteil von pmf und d{\"a}mpft dadurch das nicht-photochemische Quenching (NPQ). Infolgedessen erh{\"o}ht sich die Photosyntheseeffizienz beim {\"U}bergang zu geringerer Lichtintensit{\"a}t. Ziel dieser Arbeit war es, Antworten auf Fragen zur Regulierung der KEA3-Aktivit{\"a}t und ihrer Rolle in der Pflanzenentwicklung zu finden. Die vorgestellten Daten zeigen, dass KEA3 in Pflanzen, denen der Chloroplasten-ATP-Synthase-Assembly-Faktor CGL160 fehlt und die eine verminderte ATP-Synthase-Aktivit{\"a}t aufweisen, eine zentrale Rolle bei der Regulierung der Photosynthese und des Pflanzenwachstums unter station{\"a}ren Bedingungen spielt. Das Fehlen von KEA3 in der cgl160-Mutante f{\"u}hrt zu einer starken Beeintr{\"a}chtigung des Wachstums, da die Photosynthese aufgrund des erh{\"o}hten pH-abh{\"a}ngigen NPQs und des verringerten Elektronenflusses durch den Cytochrom b6f-Komplex eingeschr{\"a}nkt ist. Die {\"U}berexpression von KEA3 in der cgl160-Mutante erh{\"o}ht die Ladungsrekombination im Photosystem II und f{\"o}rdert die Photosynthese. In Zeiten geringer ATP-Synthase-Aktivit{\"a}t profitieren die Pflanzen also von der KEA3-Aktivit{\"a}t. KEA3 unterliegt einer Dimerisierung {\"u}ber seinen regulatorischen C-Terminus (RCT). Der RCT reagiert auf Ver{\"a}nderungen der Lichtintensit{\"a}t, da die Pflanzen, die KEA3 ohne diese Dom{\"a}ne exprimieren, einen reduzierten Lichtschutzmechanismus bei Lichtintensit{\"a}tsschwankungen aufweisen. Allerdings fixieren diese Pflanzen w{\"a}hrend der Photosynthese-Induktionsphase mehr Kohlenstoff als Gegenleistung f{\"u}r einen langfristigen Photoprotektor, was die regulierende Rolle von KEA3 in der Pflanzenentwicklung zeigt. Der KEA3-RCT ist dem Thylakoidstroma zugewandt, so dass seine Regulierung von lichtinduzierten Ver{\"a}nderungen in der Stroma-Umgebung abh{\"a}ngt. Die Regulierung der KEA3-Aktivit{\"a}t {\"u}berschneidet sich mit den pH-{\"A}nderungen im Stroma, die bei Lichtschwankungen auftreten. Es hat sich gezeigt, dass ATP und ADP eine Affinit{\"a}t zum heterolog exprimierten KEA3 RCT haben. Eine solche Wechselwirkung verursacht Konformations{\"a}nderungen in der RCT-Struktur. Die Faltung der RCT-Liganden-Interaktion h{\"a}ngt vom pH-Wert der Umgebung ab. Mit einer Kombination aus Bioinformatik und In-vitro-Ansatz wurde die ATP-Bindungsstelle am RCT lokalisiert. Das Einf{\"u}gen einer Punktmutation in der KEA3-RCT Bindungsstelle in planta f{\"u}hrte zu einer Deregulierung der Antiporteraktivit{\"a}t beim {\"U}bergang zu wenig Licht. Die in dieser Arbeit vorgestellten Daten erm{\"o}glichten es uns, die Rolle von KEA3 bei der Anpassung der Photosynthese umfassender zu bewerten und Modelle zur Regulierung der KEA3-Aktivit{\"a}t w{\"a}hrend des {\"U}bergangs zwischen verschiedenen Lichtintensit{\"a}ten vorzuschlagen.}, language = {en} } @phdthesis{Suchoszek2017, author = {Suchoszek, Monika}, title = {Characterization of inducible galactolipid biosynthesis mutants in tobacco}, school = {Universit{\"a}t Potsdam}, pages = {116}, year = {2017}, abstract = {Chloroplast membranes have a unique composition characterized by very high contents of the galactolipids, MGDG and DGDG. Many studies on constitutive, galactolipid-deficient mutants revealed conflicting results about potential functions of galactolipids in photosynthetic membranes. Likely, this was caused by pleiotropic effects such as starvation artefacts because of impaired photosynthesis from early developmental stages of the plants onward. Therefore, an ethanol inducible RNAi-approach has been taken to suppress two key enzymes of galactolipid biosynthesis in the chloroplast, MGD1 and DGD1. Plants were allowed to develop fully functional source leaves prior to induction, which then could support plant growth. Then, after the ethanol induction, both young and mature leaves were investigated over time. Our studies revealed similar changes in both MGDG- and DGDG-deficient lines, however young and mature leaves of transgenic lines showed a different response to galactolipid deficiency. While no changes of photosynthetic parameters and minor changes in lipid content were observed in mature leaves of transgenic lines, strong reductions in total chlorophyll content and in the accumulation of all photosynthetic complexes and significant changes in contents of various lipid groups occurred in young leaves. Microscopy studies revealed an appearance of lipid droplets in the cytosol of young leaves in all transgenic lines which correlates with significantly higher levels of TAGs. Since in young leaves the production of membrane lipids is lowered, the excess of fatty acids is used for storage lipids production, resulting in the accumulation of TAGs. Our data indicate that both investigated galactolipids serve as structural lipids since changes in photosynthetic parameters were mainly the result of reduced amounts of all photosynthetic constituents. In response to restricted galactolipid synthesis, thylakoid biogenesis is precisely readjusted to keep the proper stoichiometry and functionality of the photosynthetic apparatus. Ultimately, the data revealed that downregulation of one galactolipid triggers changes not only in chloroplasts but also in the nucleus as shown by downregulation of nuclear encoded subunits of the photosynthetic complexes.}, language = {en} } @article{SandmannGarzMenzel2016, author = {Sandmann, Michael and Garz, Andreas and Menzel, Ralf}, title = {Physiological response of two different Chlamydomonas reinhardtii strains to light-dark rhythms}, series = {Botany}, volume = {94}, journal = {Botany}, publisher = {NRC Research Press}, address = {Ottawa}, issn = {1916-2790}, doi = {10.1139/cjb-2015-0144}, pages = {53 -- 64}, year = {2016}, abstract = {Cells of a cell-wall deficient line (cw15-type) of Chlamydomonas reinhardtii and of the corresponding wild type were grown during repetitive light-dark cycles. In a direct comparison, both lines showed approximately the same relative biomass increase during light phase but the cw-line produced significantly more, and smaller, daughter cells. Throughout the light period the average cellular starch content, the cellular chlorophyll content, the cellular rate of dark respiration, and the cellular rate of photosynthesis of the cw-line was lower. Despite this, several non-cell volume related parameters like the development of starch content per cell volume were clearly different over time between the strains. Additionally, the chlorophyll-based photosynthesis rates were 2-fold higher in the mutant than in the wild-type cells, and the ratio of chlorophyll a to chlorophyll b as well as the light-saturation index were also consistently higher in the mutant cells. Differences in the starch content were also confirmed by single cell analyses using a sensitive SHG-based microscopy approach. In summary, the cw15-type mutant deviates from its genetic background in the entire cell physiology. Both lines should be used in further studies in comparative systems biology with focus on the detailed relation between cell volume increase, photosynthesis, starch metabolism, and daughter cell productivity.}, language = {en} } @phdthesis{Rolo2023, author = {Rolo, David}, title = {Assembly of photosystem I in thylakoid membranes}, school = {Universit{\"a}t Potsdam}, pages = {177}, year = {2023}, abstract = {The light reactions of photosynthesis are carried out by a series of multiprotein complexes embedded in thylakoid membranes. Among them, photosystem I (PSI), acting as plastocyanin-ferderoxin oxidoreductase, catalyzes the final reaction. Together with light-harvesting antenna I, PSI forms a high-molecular-weight supercomplex of ~600 kDa, consisting of eighteen subunits and nearly two hundred co-factors. Assembly of the various components into a functional thylakoid membrane complex requires precise coordination, which is provided by the assembly machinery. Although this includes a small number of proteins (PSI assembly factors) that have been shown to play a role in the formation of PSI, the process as a whole, as well as the intricacy of its members, remains largely unexplored. In the present work, two approaches were used to find candidate PSI assembly factors. First, EnsembleNet was used to select proteins thought to be functionally related to known PSI assembly factors in Arabidopsis thaliana (approach I), and second, co-immunoprecipitation (Co-IP) of tagged PSI assembly factors in Nicotiana tabacum was performed (approach II). Here, the novel PSI assembly factors designated CO-EXPRESSED WITH PSI ASSEMBLY 1 (CEPA1) and Ycf4-INTERACTING PROTEIN 1 (Y4IP1) were identified. A. thaliana null mutants for CEPA1 and Y4IP1 showed a growth phenotype and pale leaves compared with the wild type. Biophysical experiments using pulse amplitude modulation (PAM) revealed insufficient electron transport on the PSII acceptor side. Biochemical analyses revealed that both CEPA1 and Y4IP1 are specifically involved in PSI accumulation in A. thaliana at the post-translational level but are not essential. Consistent with their roles as factors in the assembly of a thylakoid membrane protein complex, the two proteins localize to thylakoid membranes. Remarkably, cepa1 y4ip1 double mutants exhibited lethal phenotypes in early developmental stages under photoautotrophic growth. Finally, co-IP and native gel experiments supported a possible role for CEPA1 and Y4IP1 in mediating PSI assembly in conjunction with other PSI assembly factors (e.g., PPD1- and PSA3-CEPA1 and Ycf4-Y4IP1). The fact that CEPA1 and Y4IP1 are found exclusively in green algae and higher plants suggests eukaryote-specific functions. Although the specific mechanisms need further investigation, CEPA1 and Y4IP1 are two novel assembly factors that contribute to PSI formation.}, language = {en} } @phdthesis{Kappel2023, author = {Kappel, Sandrine}, title = {Photosynthesis in fluctuating light}, school = {Universit{\"a}t Potsdam}, pages = {172}, year = {2023}, abstract = {Light is the essential energy source for plants to drive photosynthesis. In nature, light availability is highly variable and often fluctuates on very short time scales. As a result, plants developed mechanisms to cope with these fluctuations. Understanding how to improve light use efficiency in natural fluctuating light (FL) conditions is a major target for agronomy. In the first project, we identified an Arabidopsis thaliana plant that showed reduced levels of rapidly inducible non-photochemical quenching (NPQ). This plant was devoid of any T-DNA insertion. Using a mapping-by-sequencing approach, we successfully located the causal genomic region near the end of chromosome 4. Through variant investigations in that region, we identified a deletion of about 20 kb encompassing 9 genes. By complementation analysis, we confirmed that one of the deleted genes, VTC2, is the causal gene responsible for the low NPQ. Loss of VTC2 decreased NPQ particularly in old leaves, with young leaves being only slightly affected. Additionally, ascorbate levels were almost abolished in old leaves, likely causing the NPQ decrease by reducing the activity of the xanthophyll cycle. Although ascorbate levels in younger leaves were reduced compared to wild-type plants, they remained at a comparably higher level. This difference may be due to the VTC2 paralog VTC5, which is expressed at a higher level in young leaves than in old ones. Plants require the PROTON GRADIENT REGULATION 5 (PGR5) protein for survival in FL. pgr5 mutants die because they fail to increase the luminal proton concentration in response to high light (HL) phases. A rapid elevation in ∆pH is needed to slow down electron transport through the Cytochrome b6 f complex (photosynthetic control). In FL, such lack of control in the pgr5 mutants results in photosystem I (PSI) overreduction, reactive oxygen species (ROS) production, and cell death. Decreases in photosystem II (PSII) activity introduced by crossing pgr5 with PSII deficient mutants rescued the lethality of pgr5 in FL. PGR5 was suggested to act as part of the ferredoxin-plastoquinone reductase (FQR), involved in cyclic electron transfer around PSI. However, the proposed molecular role of PGR5 remains highly debated. To learn more about PGR5 function, we performed a forward genetic screen in Arabidopsis thaliana to identify EMS-induced suppressor mutants surviving longer when grown in FL compared to pgr5 mutants (referred to as "suppressor of pgr5 lethality in fluctuating light", splf ). 11 different candidate genes were identified in a total of 22 splf plants. Mutants of seven of these genes in the pgr5 background showed low Fv/Fm values when grown in non-fluctuating low light (LL). Five of these 4genes were previously reported to have a role in PSII biogenesis or function. Two others, RPH1 and a DEAD/DEAH box helicase (AT3G02060), have not been linked to PSII function before. Three of splf candidate genes link to primary metabolism, fructose-2,6-bisphosphatase (F2KP ), udp-glucose pyrophosphorylase 1 (UGP1 ) and ferredoxin-dependent glutamate synthase (Fd-GOGAT ). They are characterized by the fact that they survive longer in FL than pgr5 mutants but do not procede beyond the early vegetative phase and then die.}, language = {en} } @article{JoseClementeMorenoOmranianSaezetal.2019, author = {Jose Clemente-Moreno, Maria and Omranian, Nooshin and Saez, Patricia and Maria Figueroa, Carlos and Del-Saz, Nestor and Elso, Mhartyn and Poblete, Leticia and Orf, Isabel and Cuadros-Inostroza, Alvaro and Cavieres, Lohengrin and Bravo, Leon and Fernie, Alisdair R. and Ribas-Carbo, Miquel and Flexas, Jaume and Nikoloski, Zoran and Brotman, Yariv and Gago, Jorge}, title = {Cytochrome respiration pathway and sulphur metabolism sustain stress tolerance to low temperature in the Antarctic species Colobanthus quitensis}, series = {New phytologist : international journal of plant science}, volume = {225}, journal = {New phytologist : international journal of plant science}, number = {2}, publisher = {Wiley}, address = {Hoboken}, issn = {0028-646X}, doi = {10.1111/nph.16167}, pages = {754 -- 768}, year = {2019}, abstract = {Understanding the strategies employed by plant species that live in extreme environments offers the possibility to discover stress tolerance mechanisms. We studied the physiological, antioxidant and metabolic responses to three temperature conditions (4, 15, and 23 degrees C) of Colobanthus quitensis (CQ), one of the only two native vascular species in Antarctica. We also employed Dianthus chinensis (DC), to assess the effects of the treatments in a non-Antarctic species from the same family. Using fused LASSO modelling, we associated physiological and biochemical antioxidant responses with primary metabolism. This approach allowed us to highlight the metabolic pathways driving the response specific to CQ. Low temperature imposed dramatic reductions in photosynthesis (up to 88\%) but not in respiration (sustaining rates of 3.0-4.2 mu mol CO2 m(-2) s(-1)) in CQ, and no change in the physiological stress parameters was found. Its notable antioxidant capacity and mitochondrial cytochrome respiratory activity (20 and two times higher than DC, respectively), which ensure ATP production even at low temperature, was significantly associated with sulphur-containing metabolites and polyamines. Our findings potentially open new biotechnological opportunities regarding the role of antioxidant compounds and respiratory mechanisms associated with sulphur metabolism in stress tolerance strategies to low temperature.}, language = {en} } @phdthesis{Guislain2019, author = {Guislain, Alexis}, title = {Eco-physiological consequences of fluctuating light on phytoplankton}, doi = {10.25932/publishup-46927}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-469272}, school = {Universit{\"a}t Potsdam}, pages = {161}, year = {2019}, abstract = {Phytoplankton growth depends not only on the mean intensity but also on the dynamics of the light supply. The nonlinear light-dependency of growth is characterized by a small number of basic parameters: the compensation light intensity PARcompμ, where production and losses are balanced, the growth efficiency at sub-saturating light αµ, and the maximum growth rate at saturating light µmax. In surface mixed layers, phytoplankton may rapidly move between high light intensities and almost darkness. Because of the different frequency distribution of light and/or acclimation processes, the light-dependency of growth may differ between constant and fluctuating light. Very few studies measured growth under fluctuating light at a sufficient number of mean light intensities to estimate the parameters of the growth-irradiance relationship. Hence, the influence of light dynamics on µmax, αµ and PARcompμ are still largely unknown. By extension, accurate modelling predictions of phytoplankton development under fluctuating light exposure remain difficult to make. This PhD thesis does not intend to directly extrapolate few experimental results to aquatic systems - but rather improving the mechanistic understanding of the variation of the light-dependency of growth under light fluctuations and effects on phytoplankton development. In Lake TaiHu and at the Three Gorges Reservoir (China), we incubated phytoplankton communities in bottles placed either at fixed depths or moved vertically through the water column to mimic vertical mixing. Phytoplankton at fixed depths received only the diurnal changes in light (defined as constant light regime), while phytoplankton received rapidly fluctuating light by superimposing the vertical light gradient on the natural sinusoidal diurnal sunlight. The vertically moved samples followed a circular movement with 20 min per revolution, replicating to some extent the full overturn of typical Langmuir cells. Growth, photosynthesis, oxygen production and respiration of communities (at Lake TaiHu) were measured. To complete these investigations, a physiological experiment was performed in the laboratory on a toxic strain of Microcystis aeruginosa (FACBH 1322) incubated under 20 min period fluctuating light. Here, we measured electron transport rates and net oxygen production at a much higher time resolution (single minute timescale). The present PhD thesis provides evidence for substantial effects of fluctuating light on the eco-physiology of phytoplankton. Both experiments performed under semi-natural conditions in Lake TaiHu and at the Three Gorges Reservoir gave similar results. The significant decline in community growth efficiencies αµ under fluctuating light was caused for a great share by different frequency distribution of light intensities that shortened the effective daylength for production. The remaining gap in community αµ was attributed to species-specific photoacclimation mechanisms and to light-dependent respiratory losses. In contrast, community maximal growth rates µmax were similar between incubations at constant and fluctuating light. At daily growth saturating light supply, differences in losses for biosynthesis between the two light regimes were observed. Phytoplankton experiencing constant light suffered photo-inhibition - leading to photosynthesis foregone and additional respiratory costs for photosystems repair. On the contrary, intermittent exposure to low and high light intensities prevented photo-inhibition of mixed algae but forced them to develop alternative light strategy. They better harvested and exploited surface irradiance by enhancing their photosynthesis. In the laboratory, we showed that Microcystis aeruginosa increased its oxygen consumption by dark respiration in the light few minutes only after exposure to increasing light intensities. More, we proved that within a simulated Langmuir cell, the net production at saturating light and the compensation light intensity for production at limiting light are positively related. These results are best explained by an accumulation of photosynthetic products at increasing irradiance and mobilization of these fresh resources by rapid enhancement of dark respiration for maintenance and biosynthesis at decreasing irradiance. At the daily timescale, we showed that the enhancement of photosynthesis at high irradiance for biosynthesis of species increased their maintenance respiratory costs at limiting light. Species-specific growth at saturating light µmax and compensation light intensity for growth PARcompμ of species incubated in Lake TaiHu were positively related. Because of this species-specific physiological tradeoff, species displayed different light affinities to limiting and saturating light - thereby exhibiting a gleaner-opportunist tradeoff. In Lake TaiHu, we showed that inter-specific differences in light acquisition traits (µmax and PARcompμ) allowed coexis¬tence of species on a gradient of constant light while avoiding competitive exclusion. More interestingly we demonstrated for the first time that vertical mixing (inducing fluctuating light supply for phytoplankton) may alter or even reverse the light utilization strategies of species within couple of days. The intra-specific variation in traits under fluctuating light increased the niche space for acclimated species, precluding competitive exclusion. Overall, this PhD thesis contributes to a better understanding of phytoplankton eco-physiology under fluctuating light supply. This work could enhance the quality of predictions of phytoplankton development under certain weather conditions or climate change scenarios.}, language = {en} } @misc{CleggWackerSpijkerman2021, author = {Clegg, Mark R. and Wacker, Alexander and Spijkerman, Elly}, title = {Phenotypic Diversity and Plasticity of Photoresponse Across an Environmentally Contrasting Family of Phytoflagellates}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1219}, issn = {1866-8372}, doi = {10.25932/publishup-53617}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-536174}, year = {2021}, abstract = {Organisms often employ ecophysiological strategies to exploit environmental conditions and ensure bio-energetic success. However, the many complexities involved in the differential expression and flexibility of these strategies are rarely fully understood. Therefore, for the first time, using a three-part cross-disciplinary laboratory experimental analysis, we investigated the diversity and plasticity of photoresponsive traits employed by one family of environmentally contrasting, ecologically important phytoflagellates. The results demonstrated an extensive inter-species phenotypic diversity of behavioural, physiological, and compositional photoresponse across the Chlamydomonadaceae, and a multifaceted intra-species phenotypic plasticity, involving a broad range of beneficial photoacclimation strategies, often attributable to environmental predisposition and phylogenetic differentiation. Deceptively diverse and sophisticated strong (population and individual cell) behavioural photoresponses were observed, with divergence from a general preference for low light (and flexibility) dictated by intra-familial differences in typical habitat (salinity and trophy) and phylogeny. Notably, contrasting lower, narrow, and flexible compared with higher, broad, and stable preferences were observed in freshwater vs. brackish and marine species. Complex diversity and plasticity in physiological and compositional photoresponses were also discovered. Metabolic characteristics (such as growth rates, respiratory costs and photosynthetic capacity, efficiency, compensation and saturation points) varied elaborately with species, typical habitat (often varying more in eutrophic species, such as Chlamydomonas reinhardtii), and culture irradiance (adjusting to optimise energy acquisition and suggesting some propensity for low light). Considerable variations in intracellular pigment and biochemical composition were also recorded. Photosynthetic and accessory pigments (such as chlorophyll a, xanthophyll-cycle components, chlorophyll a:b and chlorophyll a:carotenoid ratios, fatty acid content and saturation ratios) varied with phylogeny and typical habitat (to attune photosystem ratios in different trophic conditions and to optimise shade adaptation, photoprotection, and thylakoid architecture, particularly in freshwater environments), and changed with irradiance (as reaction and harvesting centres adjusted to modulate absorption and quantum yield). The complex, concomitant nature of the results also advocated an integrative approach in future investigations. Overall, these nuanced, diverse, and flexible photoresponsive traits will greatly contribute to the functional ecology of these organisms, addressing environmental heterogeneity and potentially shaping individual fitness, spatial and temporal distribution, prevalence, and ecosystem dynamics.}, language = {en} } @article{CleggWackerSpijkerman2021, author = {Clegg, Mark R. and Wacker, Alexander and Spijkerman, Elly}, title = {Phenotypic Diversity and Plasticity of Photoresponse Across an Environmentally Contrasting Family of Phytoflagellates}, series = {Frontiers in plant science : FPLS}, journal = {Frontiers in plant science : FPLS}, number = {12}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2021.707541}, year = {2021}, abstract = {Organisms often employ ecophysiological strategies to exploit environmental conditions and ensure bio-energetic success. However, the many complexities involved in the differential expression and flexibility of these strategies are rarely fully understood. Therefore, for the first time, using a three-part cross-disciplinary laboratory experimental analysis, we investigated the diversity and plasticity of photoresponsive traits employed by one family of environmentally contrasting, ecologically important phytoflagellates. The results demonstrated an extensive inter-species phenotypic diversity of behavioural, physiological, and compositional photoresponse across the Chlamydomonadaceae, and a multifaceted intra-species phenotypic plasticity, involving a broad range of beneficial photoacclimation strategies, often attributable to environmental predisposition and phylogenetic differentiation. Deceptively diverse and sophisticated strong (population and individual cell) behavioural photoresponses were observed, with divergence from a general preference for low light (and flexibility) dictated by intra-familial differences in typical habitat (salinity and trophy) and phylogeny. Notably, contrasting lower, narrow, and flexible compared with higher, broad, and stable preferences were observed in freshwater vs. brackish and marine species. Complex diversity and plasticity in physiological and compositional photoresponses were also discovered. Metabolic characteristics (such as growth rates, respiratory costs and photosynthetic capacity, efficiency, compensation and saturation points) varied elaborately with species, typical habitat (often varying more in eutrophic species, such as Chlamydomonas reinhardtii), and culture irradiance (adjusting to optimise energy acquisition and suggesting some propensity for low light). Considerable variations in intracellular pigment and biochemical composition were also recorded. Photosynthetic and accessory pigments (such as chlorophyll a, xanthophyll-cycle components, chlorophyll a:b and chlorophyll a:carotenoid ratios, fatty acid content and saturation ratios) varied with phylogeny and typical habitat (to attune photosystem ratios in different trophic conditions and to optimise shade adaptation, photoprotection, and thylakoid architecture, particularly in freshwater environments), and changed with irradiance (as reaction and harvesting centres adjusted to modulate absorption and quantum yield). The complex, concomitant nature of the results also advocated an integrative approach in future investigations. Overall, these nuanced, diverse, and flexible photoresponsive traits will greatly contribute to the functional ecology of these organisms, addressing environmental heterogeneity and potentially shaping individual fitness, spatial and temporal distribution, prevalence, and ecosystem dynamics.}, language = {en} } @phdthesis{Arnold2014, author = {Arnold, Anne}, title = {Modeling photosynthesis and related metabolic processes : from detailed examination to consideration of the metabolic context}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-72277}, school = {Universit{\"a}t Potsdam}, year = {2014}, abstract = {Mathematical modeling of biological systems is a powerful tool to systematically investigate the functions of biological processes and their relationship with the environment. To obtain accurate and biologically interpretable predictions, a modeling framework has to be devised whose assumptions best approximate the examined scenario and which copes with the trade-off of complexity of the underlying mathematical description: with attention to detail or high coverage. Correspondingly, the system can be examined in detail on a smaller scale or in a simplified manner on a larger scale. In this thesis, the role of photosynthesis and its related biochemical processes in the context of plant metabolism was dissected by employing modeling approaches ranging from kinetic to stoichiometric models. The Calvin-Benson cycle, as primary pathway of carbon fixation in C3 plants, is the initial step for producing starch and sucrose, necessary for plant growth. Based on an integrative analysis for model ranking applied on the largest compendium of (kinetic) models for the Calvin-Benson cycle, those suitable for development of metabolic engineering strategies were identified. Driven by the question why starch rather than sucrose is the predominant transitory carbon storage in higher plants, the metabolic costs for their synthesis were examined. The incorporation of the maintenance costs for the involved enzymes provided a model-based support for the preference of starch as transitory carbon storage, by only exploiting the stoichiometry of synthesis pathways. Many photosynthetic organisms have to cope with processes which compete with carbon fixation, such as photorespiration whose impact on plant metabolism is still controversial. A systematic model-oriented review provided a detailed assessment for the role of this pathway in inhibiting the rate of carbon fixation, bridging carbon and nitrogen metabolism, shaping the C1 metabolism, and influencing redox signal transduction. The demand of understanding photosynthesis in its metabolic context calls for the examination of the related processes of the primary carbon metabolism. To this end, the Arabidopsis core model was assembled via a bottom-up approach. This large-scale model can be used to simulate photoautotrophic biomass production, as an indicator for plant growth, under so-called optimal, carbon-limiting and nitrogen-limiting growth conditions. Finally, the introduced model was employed to investigate the effects of the environment, in particular, nitrogen, carbon and energy sources, on the metabolic behavior. This resulted in a purely stoichiometry-based explanation for the experimental evidence for preferred simultaneous acquisition of nitrogen in both forms, as nitrate and ammonium, for optimal growth in various plant species. The findings presented in this thesis provide new insights into plant system's behavior, further support existing opinions for which mounting experimental evidences arise, and posit novel hypotheses for further directed large-scale experiments.}, language = {en} }