@article{ZuehlkeMeilingRoderetal.2021, author = {Z{\"u}hlke, Martin and Meiling, Till Thomas and Roder, Phillip and Riebe, Daniel and Beitz, Toralf and Bald, Ilko and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Janßen, Traute and Erhard, Marcel and Repp, Alexander}, title = {Photodynamic inactivation of E. coli bacteria via carbon nanodots}, series = {ACS omega / American Chemical Society}, volume = {6}, journal = {ACS omega / American Chemical Society}, number = {37}, publisher = {ACS Publications}, address = {Washington, DC}, issn = {2470-1343}, doi = {10.1021/acsomega.1c01700}, pages = {23742 -- 23749}, year = {2021}, abstract = {The increasing development of antibiotic resistance in bacteria has been a major problem for years, both in human and veterinary medicine. Prophylactic measures, such as the use of vaccines, are of great importance in reducing the use of antibiotics in livestock. These vaccines are mainly produced based on formaldehyde inactivation. However, the latter damages the recognition elements of the bacterial proteins and thus could reduce the immune response in the animal. An alternative inactivation method developed in this work is based on gentle photodynamic inactivation using carbon nanodots (CNDs) at excitation wavelengths λex > 290 nm. The photodynamic inactivation was characterized on the nonvirulent laboratory strain Escherichia coli K12 using synthesized CNDs. For a gentle inactivation, the CNDs must be absorbed into the cytoplasm of the E. coli cell. Thus, the inactivation through photoinduced formation of reactive oxygen species only takes place inside the bacterium, which means that the outer membrane is neither damaged nor altered. The loading of the CNDs into E. coli was examined using fluorescence microscopy. Complete loading of the bacterial cells could be achieved in less than 10 min. These studies revealed a reversible uptake process allowing the recovery and reuse of the CNDs after irradiation and before the administration of the vaccine. The success of photodynamic inactivation was verified by viability assays on agar. In a homemade flow photoreactor, the fastest successful irradiation of the bacteria could be carried out in 34 s. Therefore, the photodynamic inactivation based on CNDs is very effective. The membrane integrity of the bacteria after irradiation was verified by slide agglutination and atomic force microscopy. The method developed for the laboratory strain E. coli K12 could then be successfully applied to the important avian pathogens Bordetella avium and Ornithobacterium rhinotracheale to aid the development of novel vaccines.}, language = {en} } @misc{ZuehlkeMeilingRoderetal.2021, author = {Z{\"u}hlke, Martin and Meiling, Till Thomas and Roder, Phillip and Riebe, Daniel and Beitz, Toralf and Bald, Ilko and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Janßen, Traute and Erhard, Marcel and Repp, Alexander}, title = {Photodynamic Inactivation of E. coli Bacteria via Carbon Nanodots}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, publisher = {Universit{\"a}t Potsdam}, address = {Potsdam}, issn = {1866-8372}, doi = {10.25932/publishup-53842}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-538425}, pages = {23742 -- 23749}, year = {2021}, abstract = {The increasing development of antibiotic resistance in bacteria has been a major problem for years, both in human and veterinary medicine. Prophylactic measures, such as the use of vaccines, are of great importance in reducing the use of antibiotics in livestock. These vaccines are mainly produced based on formaldehyde inactivation. However, the latter damages the recognition elements of the bacterial proteins and thus could reduce the immune response in the animal. An alternative inactivation method developed in this work is based on gentle photodynamic inactivation using carbon nanodots (CNDs) at excitation wavelengths λex > 290 nm. The photodynamic inactivation was characterized on the nonvirulent laboratory strain Escherichia coli K12 using synthesized CNDs. For a gentle inactivation, the CNDs must be absorbed into the cytoplasm of the E. coli cell. Thus, the inactivation through photoinduced formation of reactive oxygen species only takes place inside the bacterium, which means that the outer membrane is neither damaged nor altered. The loading of the CNDs into E. coli was examined using fluorescence microscopy. Complete loading of the bacterial cells could be achieved in less than 10 min. These studies revealed a reversible uptake process allowing the recovery and reuse of the CNDs after irradiation and before the administration of the vaccine. The success of photodynamic inactivation was verified by viability assays on agar. In a homemade flow photoreactor, the fastest successful irradiation of the bacteria could be carried out in 34 s. Therefore, the photodynamic inactivation based on CNDs is very effective. The membrane integrity of the bacteria after irradiation was verified by slide agglutination and atomic force microscopy. The method developed for the laboratory strain E. coli K12 could then be successfully applied to the important avian pathogens Bordetella avium and Ornithobacterium rhinotracheale to aid the development of novel vaccines.}, language = {en} } @article{RoderHille2018, author = {Roder, Phillip and Hille, Carsten}, title = {Local tissue manipulation via a force- and pressure-controlled AFM micropipette for analysis of cellular processes}, series = {Scientific reports}, volume = {8}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-018-24255-9}, pages = {9}, year = {2018}, abstract = {Local manipulation of complex tissues at the single-cell level is challenging and requires excellent sealing between the specimen and the micromanipulation device. Here, biological applications for a recently developed loading technique for a force-and pressure-controlled fluidic force microscope micropipette are described. This technique allows for the exact positioning and precise spatiotemporal control of liquid delivery. The feasibility of a local loading technique for tissue applications was investigated using two fluorescent dyes, with which local loading behaviour could be optically visualised. Thus, homogeneous intracellular distribution of CellTracker Red and accumulation of SYTO 9 Green within nuclei was realised in single cells of a tissue preparation. Subsequently, physiological micromanipulation experiments were performed. Salivary gland tissue was pre-incubated with the Ca2+-sensitive dye OGB-1. An intracellular Ca2+ rise was then initiated at the single-cell level by applying dopamine via micropipette. When pre-incubating tissue with the nitric oxide (NO)-sensitive dye DAF-FM, NO release and intercellular NO diffusion was observed after local application of the NO donor SNP. Finally, local micromanipulation of a well-defined area along irregularly shaped cell surfaces of complex biosystems was shown for the first time for the fluidic force microscope micropipette. Thus, this technique is a promising tool for the investigation of the spatiotemporal effects of locally applied substances in complex tissues.}, language = {en} } @article{RoderHille2015, author = {Roder, Phillip and Hille, Carsten}, title = {A Multifunctional Frontloading Approach for Repeated Recycling of a Pressure-Controlled AFM Micropipette}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {12}, publisher = {Public Library of Science}, address = {Lawrence, Kan.}, issn = {1932-6203}, doi = {10.1371/journal.pone.0144157}, year = {2015}, abstract = {Fluid force microscopy combines the positional accuracy and force sensitivity of an atomic force microscope (AFM) with nanofluidics via a microchanneled cantilever. However, adequate loading and cleaning procedures for such AFM micropipettes are required for various application situations. Here, a new frontloading procedure is described for an AFM micropipette functioning as a force- and pressure-controlled microscale liquid dispenser. This frontloading procedure seems especially attractive when using target substances featuring high costs or low available amounts. Here, the AFM micropipette could be filled from the tip side with liquid from a previously applied droplet with a volume of only a few μL using a short low-pressure pulse. The liquid-loaded AFM micropipettes could be then applied for experiments in air or liquid environments. AFM micropipette frontloading was evaluated with the well-known organic fluorescent dye rhodamine 6G and the AlexaFluor647-labeled antibody goat anti-rat IgG as an example of a larger biological compound. After micropipette usage, specific cleaning procedures were tested. Furthermore, a storage method is described, at which the AFM micropipettes could be stored for a few hours up to several days without drying out or clogging of the microchannel. In summary, the rapid, versatile and cost-efficient frontloading and cleaning procedure for the repeated usage of a single AFM micropipette is beneficial for various application situations from specific surface modifications through to local manipulation of living cells, and provides a simplified and faster handling for already known experiments with fluid force microscopy.}, language = {en} } @misc{RoderHille2015, author = {Roder, Phillip and Hille, Carsten}, title = {A Multifunctional Frontloading Approach for Repeated Recycling of a Pressure-Controlled AFM Micropipette}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-86592}, year = {2015}, abstract = {Fluid force microscopy combines the positional accuracy and force sensitivity of an atomic force microscope (AFM) with nanofluidics via a microchanneled cantilever. However, adequate loading and cleaning procedures for such AFM micropipettes are required for various application situations. Here, a new frontloading procedure is described for an AFM micropipette functioning as a force- and pressure-controlled microscale liquid dispenser. This frontloading procedure seems especially attractive when using target substances featuring high costs or low available amounts. Here, the AFM micropipette could be filled from the tip side with liquid from a previously applied droplet with a volume of only a few μL using a short low-pressure pulse. The liquid-loaded AFM micropipettes could be then applied for experiments in air or liquid environments. AFM micropipette frontloading was evaluated with the well-known organic fluorescent dye rhodamine 6G and the AlexaFluor647-labeled antibody goat anti-rat IgG as an example of a larger biological compound. After micropipette usage, specific cleaning procedures were tested. Furthermore, a storage method is described, at which the AFM micropipettes could be stored for a few hours up to several days without drying out or clogging of the microchannel. In summary, the rapid, versatile and cost-efficient frontloading and cleaning procedure for the repeated usage of a single AFM micropipette is beneficial for various application situations from specific surface modifications through to local manipulation of living cells, and provides a simplified and faster handling for already known experiments with fluid force microscopy.}, language = {en} } @article{RoderHille2014, author = {Roder, Phillip and Hille, Carsten}, title = {ANG-2 for quantitative Na+ determination in living cells by time-resolved fluorescence microscopy}, series = {Photochemical \& photobiological sciences}, volume = {13}, journal = {Photochemical \& photobiological sciences}, number = {12}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1474-905X}, doi = {10.1039/c4pp00061g}, pages = {1699 -- 1710}, year = {2014}, abstract = {Sodium ions (Na+) play an important role in a plethora of cellular processes, which are complex and partly still unexplored. For the investigation of these processes and quantification of intracellular Na+ concentrations ([Na+](i)), two-photon coupled fluorescence lifetime imaging microscopy (2P-FLIM) was performed in the salivary glands of the cockroach Periplaneta americana. For this, the novel Na+-sensitive fluorescent dye Asante NaTRIUM Green-2 (ANG-2) was evaluated, both in vitro and in situ. In this context, absorption coefficients, fluorescence quantum yields and 2P action cross-sections were determined for the first time. ANG-2 was 2P-excitable over a broad spectral range and displayed fluorescence in the visible spectral range. Although the fluorescence decay behaviour of ANG-2 was triexponential in vitro, its analysis indicates a Na+-sensitivity appropriate for recordings in living cells. The Na+-sensitivity was reduced in situ, but the biexponential fluorescence decay behaviour could be successfully analysed in terms of quantitative [Na+](i) recordings. Thus, physiological 2P-FLIM measurements revealed a dopamine-induced [Na+](i) rise in cockroach salivary gland cells, which was dependent on a Na+-K+-2Cl-cotransporter (NKCC) activity. It was concluded that ANG-2 is a promising new sodium indicator applicable for diverse biological systems.}, language = {en} } @article{RoderHille2015, author = {Roder, Phillip and Hille, Carsten}, title = {A Multifunctional Frontloading Approach for Repeated Recycling of a Pressure-Controlled AFM Micropipette}, series = {PLoS one}, volume = {10}, journal = {PLoS one}, number = {12}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0144157}, pages = {10}, year = {2015}, abstract = {Fluid force microscopy combines the positional accuracy and force sensitivity of an atomic force microscope (AFM) with nanofluidics via a microchanneled cantilever. However, adequate loading and cleaning procedures for such AFM micropipettes are required for various application situations. Here, a new frontloading procedure is described for an AFM micropipette functioning as a force-and pressure-controlled microscale liquid dispenser. This frontloading procedure seems especially attractive when using target substances featuring high costs or low available amounts. Here, the AFM micropipette could be filled from the tip side with liquid from a previously applied droplet with a volume of only a few mu L using a short low-pressure pulse. The liquid-loaded AFM micropipettes could be then applied for experiments in air or liquid environments. AFM micropipette frontloading was evaluated with the well-known organic fluorescent dye rhodamine 6G and the AlexaFluor647-labeled antibody goat anti-rat IgG as an example of a larger biological compound. After micropipette usage, specific cleaning procedures were tested. Furthermore, a storage method is described, at which the AFM micropipettes could be stored for a few hours up to several days without drying out or clogging of the microchannel. In summary, the rapid, versatile and cost-efficient frontloading and cleaning procedure for the repeated usage of a single AFM micropipette is beneficial for various application situations from specific surface modifications through to local manipulation of living cells, and provides a simplified and faster handling for already known experiments with fluid force microscopy.}, language = {en} } @article{RoderHille2014, author = {Roder, Phillip and Hille, Carsten}, title = {ANG-2 for quantitative Na+ determination in living cells by time-resolved fluorescence microscopy}, series = {Photochemical \& Photobiological Sciences}, volume = {12}, journal = {Photochemical \& Photobiological Sciences}, number = {13}, editor = {Hille, Carsten}, publisher = {The Royal Society of Chemistry}, address = {Cambridge}, issn = {1474-905X}, pages = {1699 -- 1710}, year = {2014}, abstract = {Sodium ions (Na+) play an important role in a plethora of cellular processes, which are complex and partly still unexplored. For the investigation of these processes and quantification of intracellular Na+ concentrations ([Na+]i), two-photon coupled fluorescence lifetime imaging microscopy (2P-FLIM) was performed in the salivary glands of the cockroach Periplaneta americana. For this, the novel Na+-sensitive fluorescent dye Asante NaTRIUM Green-2 (ANG-2) was evaluated, both in vitro and in situ. In this context, absorption coefficients, fluorescence quantum yields and 2P action cross-sections were determined for the first time. ANG-2 was 2P-excitable over a broad spectral range and displayed fluorescence in the visible spectral range. Although the fluorescence decay behaviour of ANG-2 was triexponential in vitro, its analysis indicates a Na+-sensitivity appropriate for recordings in living cells. The Na+-sensitivity was reduced in situ, but the biexponential fluorescence decay behaviour could be successfully analysed in terms of quantitative [Na+]i recordings. Thus, physiological 2P-FLIM measurements revealed a dopamine-induced [Na+]i rise in cockroach salivary gland cells, which was dependent on a Na+-K+-2Cl- cotransporter (NKCC) activity. It was concluded that ANG-2 is a promising new sodium indicator applicable for diverse biological systems.}, language = {en} } @misc{RoderHille2014, author = {Roder, Phillip and Hille, Carsten}, title = {ANG-2 for quantitative Na+ determination in living cells by time-resolved fluorescence microscopy}, publisher = {The Royal Society of Chemistry}, address = {Cambridge}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-76851}, pages = {1699 -- 1710}, year = {2014}, abstract = {Sodium ions (Na+) play an important role in a plethora of cellular processes, which are complex and partly still unexplored. For the investigation of these processes and quantification of intracellular Na+ concentrations ([Na+]i), two-photon coupled fluorescence lifetime imaging microscopy (2P-FLIM) was performed in the salivary glands of the cockroach Periplaneta americana. For this, the novel Na+-sensitive fluorescent dye Asante NaTRIUM Green-2 (ANG-2) was evaluated, both in vitro and in situ. In this context, absorption coefficients, fluorescence quantum yields and 2P action cross-sections were determined for the first time. ANG-2 was 2P-excitable over a broad spectral range and displayed fluorescence in the visible spectral range. Although the fluorescence decay behaviour of ANG-2 was triexponential in vitro, its analysis indicates a Na+-sensitivity appropriate for recordings in living cells. The Na+-sensitivity was reduced in situ, but the biexponential fluorescence decay behaviour could be successfully analysed in terms of quantitative [Na+]i recordings. Thus, physiological 2P-FLIM measurements revealed a dopamine-induced [Na+]i rise in cockroach salivary gland cells, which was dependent on a Na+-K+-2Cl- cotransporter (NKCC) activity. It was concluded that ANG-2 is a promising new sodium indicator applicable for diverse biological systems.}, language = {en} } @phdthesis{Roder2018, author = {Roder, Phillip}, title = {Kombination von Fluoreszenzmikroskopie und Rasterkraftmikroskopie zur Aufkl{\"a}rung physiologischer Prozesse in lebenden Zellen}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-419806}, school = {Universit{\"a}t Potsdam}, pages = {xvi, 113}, year = {2018}, abstract = {Innerhalb dieser Doktorarbeit wurde eine neuartige Mikromanipulationstechnik f{\"u}r die lokale Fl{\"u}ssigkeitsabgabe am komplexen Dr{\"u}sengewebe der Schabe P. americana charakterisiert und f{\"u}r die damit verbundene gezielte Manipulation von einzelnen Zellen in einem Zellkomplex (Gewebe) angewandt. Bei dieser Mikromanipulationstechnik handelt es sich um die seit 2009 bekannte nanofluidische Rasterkraftmikroskopie (FluidFM = fluidic force microscopy). Dabei werden sehr kleine mikrokan{\"a}lige Rasterkraftspitzen bzw. Mikro-/Nanopipetten mit einer {\"O}ffnung zwischen 300 nm und 2 µm verwendet, mit denen es m{\"o}glich ist, sehr kleine Volumina im Pikoliter- bis Femtoliter-Bereich (10-12 L - 10-15 L) gezielt und ortsgenau abzugeben. Das Ziel dieser Arbeit war die Analyse zellul{\"a}rer Prozesse, wie z. B. Zell-Zell-Kommunikation oder Signalweiterleitung, zwischen benachbarten Zellen unter Zuhilfenahme der Fluoreszenzmikroskopie. Mit dieser Methode k{\"o}nnen die Zellen und ihre Bestandteile mittels vorheriger Farbstoffbeladung unter einem Mikroskop mit hohem Kontrast optisch dargestellt werden. Mit Hilfe der Fluoreszenzmikroskopie sollten schlussendlich die zellul{\"a}ren Reaktionen innerhalb des Gewebes nach der lokalen Manipulation visualisiert werden. Zun{\"a}chst wurde die Anwendung des Systems an Luft und w{\"a}ssriger Umgebung beschrieben. In diesem Zusammenhang wurde eine Reinigungs- und Beladungsmethode entwickelt, mit der es m{\"o}glich war, die kostspieligen Mikro-/Nanopipetten zu reinigen und anschließend mehrmals wiederzuverwenden. Hierzu wurde eine alternative Methode getestet, mit der das Diffusionsverhalten von Farbstoffmolek{\"u}len in unterschiedlichen Medien untersucht werden kann. Des Weiteren wurden die Systemparameter optimiert, welche n{\"o}tig sind, um zwischen der Probenoberfl{\"a}che und der Pipette einen guten Pipetten{\"o}ffnungs-abschluss zu erhalten. Dieser Abschluss ist essentiell, damit die abgegebene Fl{\"u}ssigkeit ausschließlich in der Abgaberegion mit der Probe wechselwirkt und die darauffolgenden Reaktionen nur innerhalb des Gewebes erfolgen, da ansonsten die Zell-Zell-Signalweiterleitung zwischen den Zellen nicht eindeutig nachvollzogen werden kann. Diese interzellul{\"a}re Kommunikation wurde anhand zweier sekund{\"a}rer Botenstoffe (Ca2+ und NO) untersucht. Hierbei war es m{\"o}glich einzelne lokale Reaktionen zu detektieren, welche sich {\"u}ber weitere Zellen ausbreiteten. Schlussendlich wurde die Fertigung einer speziellen Injektionspipette beschrieben, welche an zwei biologischen Systemen getestet wurde.}, language = {de} } @article{FudickarRoderListeketal.2021, author = {Fudickar, Werner and Roder, Phillip and Listek, Martin and Hanack, Katja and Linker, Torsten}, title = {Pyridinium alkynylanthracenes as sensitizers for photodynamic therapy}, series = {Photochemistry and photobiology}, volume = {98}, journal = {Photochemistry and photobiology}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {0031-8655}, doi = {10.1111/php.13554}, pages = {193 -- 201}, year = {2021}, abstract = {Photodynamic therapy (PDT) is a mild but effective method to treat certain types of cancer upon irradiation with visible light. Here, three isomeric methylpyridinium alkynylanthracenes 1op were evaluated as sensitizers for PDT. Upon irradiation with blue or green light, all three compounds show the ability to initiate strand breaks of plasmid DNA. The mayor species responsible for cleavage is singlet oxygen (O-1(2)) as confirmed by scavenging reagents. Only isomers 1m and 1p can be incorporated into HeLa cells, whereas isomer 1o cannot permeate through the membrane. While isomer 1m targets the cell nucleus, isomer 1p assembles in the cellular cytoplasm and impacts the cellular integrity. This is in accordance with a moderate toxicity of 1p in the dark, whereas 1m exhibits no dark toxicity. Both isomers are suitable as PDT reagents, with a CC50 of 3 mu m and 75 nm, for 1p and 1m, respectively. Thus, derivative 1m, which can be easily synthesized, becomes an interesting candidate for cancer therapy.}, language = {en} }