@article{YanZhouShuetal.2014, author = {Yan, Ming and Zhou, Wei and Shu, Hua and Yusupu, Rizwangul and Miao, Dongxia and Kruegel, Andre and Kliegl, Reinhold}, title = {Eye movements guided by morphological structure: Evidence from the Uighur language}, series = {Cognition : international journal of cognitive science}, volume = {132}, journal = {Cognition : international journal of cognitive science}, number = {2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0010-0277}, doi = {10.1016/j.cognition.2014.03.008}, pages = {181 -- 215}, year = {2014}, abstract = {It is generally accepted that low-level features (e.g., inter-word spaces) are responsible for saccade-target selection in eye-movement control during reading. In two experiments using Uighur script known for its rich suffixes, we demonstrate that, in addition to word length and launch site, the number of suffixes influences initial landing positions. We also demonstrate an influence of word frequency. These results are difficult to explain purely by low-level guidance of eye movements and indicate that due to properties specific to Uighur script low-level visual information and high-level information such as morphological structure of parafoveal words jointly influence saccade programming. (C) 2014 Elsevier B.V. All rights reserved.}, language = {en} } @article{RisseHohensteinKliegletal.2014, author = {Risse, Sarah and Hohenstein, Sven and Kliegl, Reinhold and Engbert, Ralf}, title = {A theoretical analysis of the perceptual span based on SWIFT simulations of the n+2 boundary paradigm}, series = {Visual cognition}, volume = {22}, journal = {Visual cognition}, number = {3-4}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {1350-6285}, doi = {10.1080/13506285.2014.881444}, pages = {283 -- 308}, year = {2014}, abstract = {Eye-movement experiments suggest that the perceptual span during reading is larger than the fixated word, asymmetric around the fixation position, and shrinks in size contingent on the foveal processing load. We used the SWIFT model of eye-movement control during reading to test these hypotheses and their implications under the assumption of graded parallel processing of all words inside the perceptual span. Specifically, we simulated reading in the boundary paradigm and analysed the effects of denying the model to have valid preview of a parafoveal word n + 2 two words to the right of fixation. Optimizing the model parameters for the valid preview condition only, we obtained span parameters with remarkably realistic estimates conforming to the empirical findings on the size of the perceptual span. More importantly, the SWIFT model generated parafoveal processing up to word n + 2 without fitting the model to such preview effects. Our results suggest that asymmetry and dynamic modulation are plausible properties of the perceptual span in a parallel word-processing model such as SWIFT. Moreover, they seem to guide the flexible distribution of processing resources during reading between foveal and parafoveal words.}, language = {en} } @article{PanYanLaubrocketal.2014, author = {Pan, Jinger and Yan, Ming and Laubrock, Jochen and Shu, Hua and Kliegl, Reinhold}, title = {Saccade-target selection of dyslexic children when reading Chinese}, series = {Vision research : an international journal for functional aspects of vision.}, volume = {97}, journal = {Vision research : an international journal for functional aspects of vision.}, publisher = {Elsevier}, address = {Oxford}, issn = {0042-6989}, doi = {10.1016/j.visres.2014.01.014}, pages = {24 -- 30}, year = {2014}, abstract = {This study investigates the eye movements of dyslexic children and their age-matched controls when reading Chinese. Dyslexic children exhibited more and longer fixations than age-matched control children, and an increase of word length resulted in a greater increase in the number of fixations and gaze durations for the dyslexic than for the control readers. The report focuses on the finding that there was a significant difference between the two groups in the fixation landing position as a function of word length in single-fixation cases, while there was no such difference in the initial fixation of multi-fixation cases. We also found that both groups had longer incoming saccade amplitudes while the launch sites were closer to the word in single fixation cases than in multi-fixation cases. Our results suggest that dyslexic children's inefficient lexical processing, in combination with the absence of orthographic word boundaries in Chinese, leads them to select saccade targets at the beginning of words conservatively. These findings provide further evidence for parafoveal word segmentation during reading of Chinese sentences.}, language = {en} }