@article{PengSandevKocarev2021, author = {Peng, Junhao and Sandev, Trifce and Kocarev, Ljupco}, title = {First encounters on Bethe lattices and Cayley trees}, series = {Communications in nonlinear science \& numerical simulation}, volume = {95}, journal = {Communications in nonlinear science \& numerical simulation}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1007-5704}, doi = {10.1016/j.cnsns.2020.105594}, pages = {15}, year = {2021}, abstract = {In this work we consider the first encounter problems between a fixed and/or mobile target A and a moving trap B on Bethe lattices and Cayley trees. The survival probabilities (SPs) of the target A on the both kinds of structures are considered analytically and compared. On Bethe lattices, the results show that the fixed target will still prolong its survival time, whereas, on Cayley trees, there are some initial positions where the target should move to prolong its survival time. The mean first encounter time (MFET) for mobile target A is evaluated numerically and compared with the mean first passage time (MFPT) for the fixed target A. Different initial settings are addressed and clear boundaries are obtained. These findings are helpful for optimizing the strategy to prolong the survival time of the target or to speed up the search process on Cayley trees, in relation to the target's movement and the initial position configuration of the two walkers. We also present a new method, which uses a small amount of memory, for simulating random walks on Cayley trees. (C) 2020 Elsevier B.V. All rights reserved.}, language = {en} } @article{KaaSternemannAppeletal.2022, author = {Kaa, Johannes M. and Sternemann, Christian and Appel, Karen and Cerantola, Valerio and Preston, Thomas R. and Albers, Christian and Elbers, Mirko and Libon, Lelia and Makita, Mikako and Pelka, Alexander and Petitgirard, Sylvain and Pl{\"u}ckthun, Christian and Roddatis, Vladimir and Sahle, Christoph J. and Spiekermann, Georg and Schmidt, Christian and Schreiber, Anja and Sakrowski, Robin and Tolan, Metin and Wilke, Max and Zastrau, Ulf and Konopkova, Zuzana}, title = {Structural and electron spin state changes in an x-ray heated iron carbonate system at the Earth's lower mantle pressures}, series = {Physical review research}, volume = {4}, journal = {Physical review research}, number = {3}, publisher = {American Physical Society}, address = {College Park}, issn = {2643-1564}, doi = {10.1103/PhysRevResearch.4.033042}, pages = {9}, year = {2022}, abstract = {The determination of the spin state of iron-bearing compounds at high pressure and temperature is crucial for our understanding of chemical and physical properties of the deep Earth. Studies on the relationship between the coordination of iron and its electronic spin structure in iron-bearing oxides, silicates, carbonates, iron alloys, and other minerals found in the Earth's mantle and core are scarce because of the technical challenges to simultaneously probe the sample at high pressures and temperatures. We used the unique properties of a pulsed and highly brilliant x-ray free electron laser (XFEL) beam at the High Energy Density (HED) instrument of the European XFEL to x-ray heat and probe samples contained in a diamond anvil cell. We heated and probed with the same x-ray pulse train and simultaneously measured x-ray emission and x-ray diffraction of an FeCO3 sample at a pressure of 51 GPa with up to melting temperatures. We collected spin state sensitive Fe K beta(1,3) fluorescence spectra and detected the sample's structural changes via diffraction, observing the inverse volume collapse across the spin transition. During x-ray heating, the carbonate transforms into orthorhombic Fe4C3O12 and iron oxides. Incipient melting was also observed. This approach to collect information about the electronic state and structural changes from samples contained in a diamond anvil cell at melting temperatures and above will considerably improve our understanding of the structure and dynamics of planetary and exoplanetary interiors.}, language = {en} } @article{KruseAltattanLauxetal.2022, author = {Kruse, Marlen and Altattan, Basma and Laux, Eva-Maria and Grasse, Nico and Heinig, Lars and M{\"o}ser, Christin and Smith, David M. and H{\"o}lzel, Ralph}, title = {Characterization of binding interactions of SARS-CoV-2 spike protein and DNA-peptide nanostructures}, series = {Scientific reports}, volume = {12}, journal = {Scientific reports}, number = {1}, publisher = {Macmillan Publishers Limited, part of Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-022-16914-9}, pages = {12}, year = {2022}, abstract = {Binding interactions of the spike proteins of the severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) to a peptide fragment derived from the human angiotensin converting enzyme 2 (hACE2) receptor are investigated. The peptide is employed as capture moiety in enzyme linked immunosorbent assays (ELISA) and quantitative binding interaction measurements that are based on fluorescence proximity sensing (switchSENSE). In both techniques, the peptide is presented on an oligovalent DNA nanostructure, in order to assess the impact of mono- versus trivalent binding modes. As the analyte, the spike protein and several of its subunits are tested as well as inactivated SARS-CoV-2 and pseudo viruses. While binding of the peptide to the full-length spike protein can be observed, the subunits RBD and S1 do not exhibit binding in the employed concentrations. Variations of the amino acid sequence of the recombinant full-length spike proteins furthermore influence binding behavior. The peptide was coupled to DNA nanostructures that form a geometric complement to the trimeric structure of the spike protein binding sites. An increase in binding strength for trimeric peptide presentation compared to single peptide presentation could be generally observed in ELISA and was quantified in switchSENSE measurements. Binding to inactivated wild type viruses could be shown as well as qualitatively different binding behavior of the Alpha and Beta variants compared to the wild type virus strain in pseudo virus models.}, language = {en} } @article{PanchalKojdaSahooetal.2022, author = {Panchal, Gyanendra and Kojda, Sandrino Danny and Sahoo, Sophia and Bagri, Anita and Kunwar, Hemant Singh and Bocklage, Lars and Panchwanee, Anjali and Sathe, Vasant G. and Fritsch, Katharina and Habicht, Klaus and Choudhary, Ram Janay and Phase, Deodutta M.}, title = {Strain and electric field control of magnetic and electrical transport properties in a magnetoelastically coupled Fe3O4/BaTiO3 (001) heterostructure}, series = {Physical review : B, Condensed matter and materials physics}, volume = {105}, journal = {Physical review : B, Condensed matter and materials physics}, number = {22}, publisher = {The American Institute of Physics}, address = {Woodbury, NY}, issn = {2469-9950}, doi = {10.1103/PhysRevB.105.224419}, pages = {8}, year = {2022}, abstract = {We present a study of the control of electric field induced strain on the magnetic and electrical transport properties in a magnetoelastically coupled artificial multiferroic Fe3O4/BaTiO3 heterostructure. In this Fe3O4/BaTiO3 heterostructure, the Fe3O4 thin film is epitaxially grown in the form of bilateral domains, analogous to a-c stripe domains of the underlying BaTiO3(001) substrate. By in situ electric field dependent magnetization measurements, we demonstrate the extrinsic control of the magnetic anisotropy and the characteristic Verwey metal-insulator transition of the epitaxial Fe3O4 thin film in a wide temperature range between 20-300 K, via strain mediated converse magnetoelectric coupling. In addition, we observe strain induced modulations in the magnetic and electrical transport properties of the Fe3O4 thin film across the thermally driven intrinsic ferroelectric and structural phase transitions of the BaTiO3 substrate. In situ electric field dependent Raman measurements reveal that the electric field does not significantly modify the antiphase boundary defects in the Fe3O4 thin film once it is thermodynamically stable after deposition and that the modification of the magnetic properties is mainly caused by strain induced lattice distortions and magnetic anisotropy. These results provide a framework to realize electrical control of the magnetization in a classical highly correlated transition metal oxide.}, language = {en} } @article{DrozdovAllisonShpritsetal.2022, author = {Drozdov, Alexander and Allison, Hayley J. and Shprits, Yuri Y. and Usanova, Maria E. and Saikin, Anthony and Wang, Dedong}, title = {Depletions of Multi-MeV Electrons and their association to Minima in Phase Space Density}, series = {Geophysical research letters}, volume = {49}, journal = {Geophysical research letters}, number = {8}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1029/2021GL097620}, pages = {11}, year = {2022}, abstract = {Fast-localized electron loss, resulting from interactions with electromagnetic ion cyclotron (EMIC) waves, can produce deepening minima in phase space density (PSD) radial profiles. Here, we perform a statistical analysis of local PSD minima to quantify how readily these are associated with radiation belt depletions. The statistics of PSD minima observed over a year are compared to the Versatile Electron Radiation Belts (VERB) simulations, both including and excluding EMIC waves. The observed minima distribution can only be achieved in the simulation including EMIC waves, indicating their importance in the dynamics of the radiation belts. By analyzing electron flux depletions in conjunction with the observed PSD minima, we show that, in the heart of the outer radiation belt (L* < 5), on average, 53\% of multi-MeV electron depletions are associated with PSD minima, demonstrating that fast localized loss by interactions with EMIC waves are a common and crucial process for ultra-relativistic electron populations.}, language = {en} } @article{GrebenkovMetzlerOshanin2022, author = {Grebenkov, Denis S. and Metzler, Ralf and Oshanin, Gleb}, title = {Search efficiency in the Adam-Delbruck reduction-of-dimensionality scenario versus direct diffusive search}, series = {New journal of physics : the open-access journal for physics}, volume = {24}, journal = {New journal of physics : the open-access journal for physics}, number = {8}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/ac8824}, pages = {32}, year = {2022}, abstract = {The time instant-the first-passage time (FPT)-when a diffusive particle (e.g., a ligand such as oxygen or a signalling protein) for the first time reaches an immobile target located on the surface of a bounded three-dimensional domain (e.g., a hemoglobin molecule or the cellular nucleus) is a decisive characteristic time-scale in diverse biophysical and biochemical processes, as well as in intermediate stages of various inter- and intra-cellular signal transduction pathways. Adam and Delbruck put forth the reduction-of-dimensionality concept, according to which a ligand first binds non-specifically to any point of the surface on which the target is placed and then diffuses along this surface until it locates the target. In this work, we analyse the efficiency of such a scenario and confront it with the efficiency of a direct search process, in which the target is approached directly from the bulk and not aided by surface diffusion. We consider two situations: (i) a single ligand is launched from a fixed or a random position and searches for the target, and (ii) the case of 'amplified' signals when N ligands start either from the same point or from random positions, and the search terminates when the fastest of them arrives to the target. For such settings, we go beyond the conventional analyses, which compare only the mean values of the corresponding FPTs. Instead, we calculate the full probability density function of FPTs for both scenarios and study its integral characteristic-the 'survival' probability of a target up to time t. On this basis, we examine how the efficiencies of both scenarios are controlled by a variety of parameters and single out realistic conditions in which the reduction-of-dimensionality scenario outperforms the direct search.}, language = {en} } @article{CherstvyWangMetzleretal.2021, author = {Cherstvy, Andrey G. and Wang, Wei and Metzler, Ralf and Sokolov, Igor M.}, title = {Inertia triggers nonergodicity of fractional Brownian motion}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {104}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {2}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.104.024115}, pages = {12}, year = {2021}, abstract = {How related are the ergodic properties of the over- and underdamped Langevin equations driven by fractional Gaussian noise? We here find that for massive particles performing fractional Brownian motion (FBM) inertial effects not only destroy the stylized fact of the equivalence of the ensemble-averaged mean-squared displacement (MSD) to the time-averaged MSD (TAMSD) of overdamped or massless FBM, but also dramatically alter the values of the ergodicity-breaking parameter (EB). Our theoretical results for the behavior of EB for underdamped or massive FBM for varying particle mass m, Hurst exponent H, and trace length T are in excellent agreement with the findings of stochastic computer simulations. The current results can be of interest for the experimental community employing various single-particle-tracking techniques and aiming at assessing the degree of nonergodicity for the recorded time series (studying, e.g., the behavior of EB versus lag time). To infer FBM as a realizable model of anomalous diffusion for a set single-particle-tracking data when massive particles are being tracked, the EBs from the data should be compared to EBs of massive (rather than massless) FBM.}, language = {en} } @article{KlettCherstvyShinetal.2021, author = {Klett, Kolja and Cherstvy, Andrey G. and Shin, Jaeoh and Sokolov, Igor M. and Metzler, Ralf}, title = {Non-Gaussian, transiently anomalous, and ergodic self-diffusion of flexible dumbbells in crowded two-dimensional environments}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {104}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {6}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.104.064603}, pages = {18}, year = {2021}, abstract = {We employ Langevin-dynamics simulations to unveil non-Brownian and non-Gaussian center-of-mass self-diffusion of massive flexible dumbbell-shaped particles in crowded two-dimensional solutions. We study the intradumbbell dynamics of the relative motion of the two constituent elastically coupled disks. Our main focus is on effects of the crowding fraction phi and of the particle structure on the diffusion characteristics. We evaluate the time-averaged mean-squared displacement (TAMSD), the displacement probability-density function (PDF), and the displacement autocorrelation function (ACF) of the dimers. For the TAMSD at highly crowded conditions of dumbbells, e.g., we observe a transition from the short-time ballistic behavior, via an intermediate subdiffusive regime, to long-time Brownian-like spreading dynamics. The crowded system of dimers exhibits two distinct diffusion regimes distinguished by the scaling exponent of the TAMSD, the dependence of the diffusivity on phi, and the features of the displacement-ACF. We attribute these regimes to a crowding-induced transition from viscous to viscoelastic diffusion upon growing phi. We also analyze the relative motion in the dimers, finding that larger phi suppress their vibrations and yield strongly non-Gaussian PDFs of rotational displacements. For the diffusion coefficients D(phi) of translational and rotational motion of the dumbbells an exponential decay with phi for weak and a power-law variation D(phi) proportional to (phi - phi(star))(2.4) for strong crowding is found. A comparison of simulation results with theoretical predictions for D(phi) is discussed and some relevant experimental systems are overviewed.}, language = {en} } @article{BolotovSmirnovBubnovaetal.2021, author = {Bolotov, Maxim I. and Smirnov, Lev A. and Bubnova, E. S. and Osipov, Grigory V. and Pikovskij, Arkadij}, title = {Spatiotemporal regimes in the Kuramoto-Battogtokh system of nonidentical oscillators}, series = {Journal of experimental and theoretical physics}, volume = {132}, journal = {Journal of experimental and theoretical physics}, number = {1}, publisher = {Springer}, address = {Heidelberg [u.a.]}, issn = {1063-7761}, doi = {10.1134/S1063776121010106}, pages = {127 -- 147}, year = {2021}, abstract = {We consider the spatiotemporal states of an ensemble of nonlocally coupled nonidentical phase oscillators, which correspond to different regimes of the long-term evolution of such a system. We have obtained homogeneous, twisted, and nonhomogeneous stationary solutions to the Ott-Antonsen equations corresponding to key variants of the realized collective rotational motion of elements of the medium in question with nonzero mesoscopic characteristics determining the degree of coherence of the dynamics of neighboring particles. We have described the procedures of the search for the class of nonhomogeneous solutions as stationary points of the auxiliary point map and of determining the stability based on analysis of the eigenvalue spectrum of the composite operator. Static and breather cluster regimes have been demonstrated and described, as well as the regimes with an irregular behavior of averaged complex fields including, in particular, the local order parameter.}, language = {en} } @article{VilkAghionNathanetal.2022, author = {Vilk, Ohad and Aghion, Erez and Nathan, Ran and Toledo, Sivan and Metzler, Ralf and Assaf, Michael}, title = {Classification of anomalous diffusion in animal movement data using power spectral analysis}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {55}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {33}, publisher = {IOP Publishing}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8121/ac7e8f}, pages = {16}, year = {2022}, abstract = {The field of movement ecology has seen a rapid increase in high-resolution data in recent years, leading to the development of numerous statistical and numerical methods to analyse relocation trajectories. Data are often collected at the level of the individual and for long periods that may encompass a range of behaviours. Here, we use the power spectral density (PSD) to characterise the random movement patterns of a black-winged kite (Elanus caeruleus) and a white stork (Ciconia ciconia). The tracks are first segmented and clustered into different behaviours (movement modes), and for each mode we measure the PSD and the ageing properties of the process. For the foraging kite we find 1/f noise, previously reported in ecological systems mainly in the context of population dynamics, but not for movement data. We further suggest plausible models for each of the behavioural modes by comparing both the measured PSD exponents and the distribution of the single-trajectory PSD to known theoretical results and simulations.}, language = {en} } @article{SposiniChechkinSokolovetal.2022, author = {Sposini, Vittoria and Chechkin, Aleksei and Sokolov, Igor M. and Roldan-Vargas, Sandalo}, title = {Detecting temporal correlations in hopping dynamics in Lennard-Jones liquids}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {55}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {32}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8121/ac7e0a}, pages = {15}, year = {2022}, abstract = {Lennard-Jones mixtures represent one of the popular systems for the study of glass-forming liquids. Spatio/temporal heterogeneity and rare (activated) events are at the heart of the slow dynamics typical of these systems. Such slow dynamics is characterised by the development of a plateau in the mean-squared displacement (MSD) at intermediate times, accompanied by a non-Gaussianity in the displacement distribution identified by exponential tails. As pointed out by some recent works, the non-Gaussianity persists at times beyond the MSD plateau, leading to a Brownian yet non-Gaussian regime and thus highlighting once again the relevance of rare events in such systems. Single-particle motion of glass-forming liquids is usually interpreted as an alternation of rattling within the local cage and cage-escape motion and therefore can be described as a sequence of waiting times and jumps. In this work, by using a simple yet robust algorithm, we extract jumps and waiting times from single-particle trajectories obtained via molecular dynamics simulations. We investigate the presence of correlations between waiting times and find negative correlations, which becomes more and more pronounced when lowering the temperature.}, language = {en} } @article{KraemerGelbrechtPavithranetal.2022, author = {Kr{\"a}mer, Hauke Kai and Gelbrecht, Maximilian and Pavithran, Induja and Sujith, Ravindran and Marwan, Norbert}, title = {Optimal state space reconstruction via Monte Carlo decision tree search}, series = {Nonlinear Dynamics}, volume = {108}, journal = {Nonlinear Dynamics}, number = {2}, publisher = {Springer}, address = {Dordrecht}, issn = {0924-090X}, doi = {10.1007/s11071-022-07280-2}, pages = {1525 -- 1545}, year = {2022}, abstract = {A novel idea for an optimal time delay state space reconstruction from uni- and multivariate time series is presented. The entire embedding process is considered as a game, in which each move corresponds to an embedding cycle and is subject to an evaluation through an objective function. This way the embedding procedure can be modeled as a tree, in which each leaf holds a specific value of the objective function. By using a Monte Carlo ansatz, the proposed algorithm populates the tree with many leafs by computing different possible embedding paths and the final embedding is chosen as that particular path, which ends at the leaf with the lowest achieved value of the objective function. The method aims to prevent getting stuck in a local minimum of the objective function and can be used in a modular way, enabling practitioners to choose a statistic for possible delays in each embedding cycle as well as a suitable objective function themselves. The proposed method guarantees the optimization of the chosen objective function over the parameter space of the delay embedding as long as the tree is sampled sufficiently. As a proof of concept, we demonstrate the superiority of the proposed method over the classical time delay embedding methods using a variety of application examples. We compare recurrence plot-based statistics inferred from reconstructions of a Lorenz-96 system and highlight an improved forecast accuracy for map-like model data as well as for palaeoclimate isotope time series. Finally, we utilize state space reconstruction for the detection of causality and its strength between observables of a gas turbine type thermoacoustic combustor.}, language = {en} } @article{YuanZhangQiuetal.2022, author = {Yuan, Jun and Zhang, Chujun and Qiu, Beibei and Liu, Wei and So, Shu Kong and Mainville, Mathieu and Leclerc, Mario and Shoaee, Safa and Neher, Dieter and Zou, Yingping}, title = {Effects of energetic disorder in bulk heterojunction organic solar cells}, series = {Energy \& environmental science}, volume = {15}, journal = {Energy \& environmental science}, number = {7}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1754-5692}, doi = {10.1039/d2ee00271j}, pages = {2806 -- 2818}, year = {2022}, abstract = {Organic solar cells (OSCs) have progressed rapidly in recent years through the development of novel organic photoactive materials, especially non-fullerene acceptors (NFAs). Consequently, OSCs based on state-of-the-art NFAs have reached significant milestones, such as similar to 19\% power conversion efficiencies (PCEs) and small energy losses (less than 0.5 eV). Despite these significant advances, understanding of the interplay between molecular structure and optoelectronic properties lags significantly behind. For example, despite the theoretical framework for describing the energetic disorder being well developed for the case of inorganic semiconductors, the question of the applicability of classical semiconductor theories in analyzing organic semiconductors is still under debate. A general observation in the inorganic field is that inorganic photovoltaic materials possessing a polycrystalline microstructure exhibit suppressed disorder properties and better charge carrier transport compared to their amorphous analogs. Accordingly, this principle extends to the organic semiconductor field as many organic photovoltaic materials are synthesized to pursue polycrystalline-like features. Yet, there appears to be sporadic examples that exhibit an opposite trend. However, full studies decoupling energetic disorder from aggregation effects have largely been left out. Hence, the potential role of the energetic disorder in OSCs has received little attention. Interestingly, recently reported state-of-the-art NFA-based devices could achieve a small energetic disorder and high PCE at the same time; and interest in this investigation related to the disorder properties in OSCs was revived. In this contribution, progress in terms of the correlation between molecular design and energetic disorder is reviewed together with their effects on the optoelectronic mechanism and photovoltaic performance. Finally, the specific challenges and possible solutions in reducing the energetic disorder of OSCs from the viewpoint of materials and devices are proposed.}, language = {en} } @article{KrohEllerSchoetzetal.2022, author = {Kroh, Daniel and Eller, Fabian and Sch{\"o}tz, Konstantin and Wedler, Stefan and Perdig{\´o}n-Toro, Lorena and Freychet, Guillaume and Wei, Qingya and D{\"o}rr, Maximilian and Jones, David and Zou, Yingping and Herzig, Eva M. and Neher, Dieter and K{\"o}hler, Anna}, title = {Identifying the signatures of intermolecular interactions in blends of PM6 with Y6 and N4 using absorption spectroscopy}, series = {Advanced functional materials}, volume = {32}, journal = {Advanced functional materials}, number = {44}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1616-301X}, doi = {10.1002/adfm.202205711}, pages = {14}, year = {2022}, abstract = {In organic solar cells, the resulting device efficiency depends strongly on the local morphology and intermolecular interactions of the blend film. Optical spectroscopy was used to identify the spectral signatures of interacting chromophores in blend films of the donor polymer PM6 with two state-of-the-art nonfullerene acceptors, Y6 and N4, which differ merely in the branching point of the side chain. From temperature-dependent absorption and luminescence spectroscopy in solution, it is inferred that both acceptor materials form two types of aggregates that differ in their interaction energy. Y6 forms an aggregate with a predominant J-type character in solution, while for N4 molecules the interaction is predominantly in a H-like manner in solution and freshly spin-cast film, yet the molecules reorient with respect to each other with time or thermal annealing to adopt a more J-type interaction. The different aggregation behavior of the acceptor materials is also reflected in the blend films and accounts for the different solar cell efficiencies reported with the two blends.}, language = {en} } @phdthesis{Doerries2024, author = {D{\"o}rries, Timo Julian}, title = {Anomalous transport and non-Gaussian dynamics in mobile-immobile models}, doi = {10.25932/publishup-63495}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-634959}, school = {Universit{\"a}t Potsdam}, pages = {ii, 177}, year = {2024}, abstract = {The mobile-immobile model (MIM) has been established in geoscience in the context of contaminant transport in groundwater. Here the tracer particles effectively immobilise, e.g., due to diffusion into dead-end pores or sorption. The main idea of the MIM is to split the total particle density into a mobile and an immobile density. Individual tracers switch between the mobile and immobile state following a two-state telegraph process, i.e., the residence times in each state are distributed exponentially. In geoscience the focus lies on the breakthrough curve (BTC), which is the concentration at a fixed location over time. We apply the MIM to biological experiments with a special focus on anomalous scaling regimes of the mean squared displacement (MSD) and non-Gaussian displacement distributions. As an exemplary system, we have analysed the motion of tau proteins, that diffuse freely inside axons of neurons. Their free diffusion thereby corresponds to the mobile state of the MIM. Tau proteins stochastically bind to microtubules, which effectively immobilises the tau proteins until they unbind and continue diffusing. Long immobilisation durations compared to the mobile durations give rise to distinct non-Gaussian Laplace shaped distributions. It is accompanied by a plateau in the MSD for initially mobile tracer particles at relevant intermediate timescales. An equilibrium fraction of initially mobile tracers gives rise to non-Gaussian displacements at intermediate timescales, while the MSD remains linear at all times. In another setting bio molecules diffuse in a biosensor and transiently bind to specific receptors, where advection becomes relevant in the mobile state. The plateau in the MSD observed for the advection-free setting and long immobilisation durations persists also for the case with advection. We find a new clear regime of anomalous diffusion with non-Gaussian distributions and a cubic scaling of the MSD. This regime emerges for initially mobile and for initially immobile tracers. For an equilibrium fraction of initially mobile tracers we observe an intermittent ballistic scaling of the MSD. The long-time effective diffusion coefficient is enhanced by advection, which we physically explain with the variance of mobile durations. Finally, we generalize the MIM to incorporate arbitrary immobilisation time distributions and focus on a Mittag-Leffler immobilisation time distribution with power-law tail ~ t^(-1-mu) with 0 70 000 K and a surface gravity of 5.0 < logg < 7.0 are rather rare objects despite recent and ongoing surveys. It is believed that they are the outcome of either single star evolution (late helium-shell flash or late helium-core flash) or binary star evolution (double WD merger). Their study is interesting because the surface elemental abundances reflect the physics of thermonuclear flashes and merger events. Spectroscopically they are divided in three different classes, namely PG1159, O(He), or He-sdO. We present a spectroscopic analysis of five such stars that turned out to have atmospheric parameters in the range Teff = 70 000-80 000 K and logg = 5.2-6.3. The three investigated He-sdOs have a relatively high hydrogen mass fraction (10\%) that is unexplained by both single (He core flash) and binary evolution (He-WD merger) scenarios. The O(He) star JL 9 is probably a binary helium-WD merger, but its hydrogen content (6\%) is also at odds with merger models. We found that RL 104 is the 'coolest' (Teff = 80 000 K) member of the PG1159 class in a pre-WD stage. Its optical spectrum is remarkable because it exhibits C{\^a}€» IV lines involving Rydberg states with principal quantum numbers up to n = 22. Its rather low mass (0.48-0.02+0.03 M·) is difficult to reconcile with the common evolutionary scenario for PG1159 stars due to it being the outcome of a (very) late He-shell flash. The same mass-problem faces a merger model of a close He-sdO plus CO WD binary that predicts PG1159-like abundances. Perhaps RL 104 originates from a very late He-shell flash in a CO/He WD formed by a merger of two low-mass He-WDs.}, language = {en} } @article{SmirnovBolotovOsipovetal.2021, author = {Smirnov, Lev A. and Bolotov, Maxim I. and Osipov, Grigorij V. and Pikovskij, Arkadij}, title = {Disorder fosters chimera in an array of motile particles}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {104}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {3}, publisher = {American Physical Society}, address = {Melville, NY}, issn = {2470-0045}, doi = {10.1103/PhysRevE.104.034205}, pages = {8}, year = {2021}, abstract = {We consider an array of nonlocally coupled oscillators on a ring, which for equally spaced units possesses a Kuramoto-Battogtokh chimera regime and a synchronous state. We demonstrate that disorder in oscillators positions leads to a transition from the synchronous to the chimera state. For a static (quenched) disorder we find that the probability of synchrony survival depends on the number of particles, from nearly zero at small populations to one in the thermodynamic limit. Furthermore, we demonstrate how the synchrony gets destroyed for randomly (ballistically or diffusively) moving oscillators. We show that, depending on the number of oscillators, there are different scalings of the transition time with this number and the velocity of the units.}, language = {en} } @article{ShaydukHallmannRodriguezFernandezetal.2022, author = {Shayduk, Roman and Hallmann, J{\"o}rg and Rodriguez-Fernandez, Angel and Scholz, Markus and Lu, Wei and B{\"o}senberg, Ulrike and M{\"o}ller, Johannes and Zozulya, Alexey and Jiang, Man and Wegner, Ulrike and Secareanu, Radu-Costin and Palmer, Guido and Emons, Moritz and Lederer, Max and Volkov, Sergey and Lindfors-Vrejoiu, Ionela and Schick, Daniel and Herzog, Marc and Bargheer, Matias and Madsen, Anders}, title = {Femtosecond x-ray diffraction study of multi-THz coherent phonons in SrTiO3}, series = {Applied physics letters}, volume = {120}, journal = {Applied physics letters}, number = {20}, publisher = {AIP Publishing}, address = {Melville}, issn = {0003-6951}, doi = {10.1063/5.0083256}, pages = {5}, year = {2022}, abstract = {We report generation of ultra-broadband longitudinal acoustic coherent phonon wavepackets in SrTiO3 (STO) with frequency components extending throughout the first Brillouin zone. The wavepackets are efficiently generated in STO using femtosecond infrared laser excitation of an atomically flat 1.6 nm-thick epitaxial SrRuO3 film. We use femtosecond x-ray diffraction at the European X-Ray Free Electron Laser Facility to study the dispersion and damping of phonon wavepackets. The experimentally determined damping constants for multi-THz frequency phonons compare favorably to the extrapolation of a simple ultrasound damping model over several orders of magnitude.}, language = {en} } @article{SinghGorskaSandev2022, author = {Singh, Rishu Kumar and G{\´o}rska, Katarzyna and Sandev, Trifce}, title = {General approach to stochastic resetting}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {105}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {6}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.105.064133}, pages = {6}, year = {2022}, abstract = {We address the effect of stochastic resetting on diffusion and subdiffusion process. For diffusion we find that mean square displacement relaxes to a constant only when the distribution of reset times possess finite mean and variance. In this case, the leading order contribution to the probability density function (PDF) of a Gaussian propagator under resetting exhibits a cusp independent of the specific details of the reset time distribution. For subdiffusion we derive the PDF in Laplace space for arbitrary resetting protocol. Resetting at constant rate allows evaluation of the PDF in terms of H function. We analyze the steady state and derive the rate function governing the relaxation behavior. For a subdiffusive process the steady state could exist even if the distribution of reset times possesses only finite mean.}, language = {en} } @article{PadashSandevKantzetal.2022, author = {Padash, Amin and Sandev, Trifce and Kantz, Holger and Metzler, Ralf and Chechkin, Aleksei}, title = {Asymmetric Levy flights are more efficient in random search}, series = {Fractal and fractional}, volume = {6}, journal = {Fractal and fractional}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {2504-3110}, doi = {10.3390/fractalfract6050260}, pages = {23}, year = {2022}, abstract = {We study the first-arrival (first-hitting) dynamics and efficiency of a one-dimensional random search model performing asymmetric Levy flights by leveraging the Fokker-Planck equation with a delta-sink and an asymmetric space-fractional derivative operator with stable index alpha and asymmetry (skewness) parameter beta. We find exact analytical results for the probability density of first-arrival times and the search efficiency, and we analyse their behaviour within the limits of short and long times. We find that when the starting point of the searcher is to the right of the target, random search by Brownian motion is more efficient than Levy flights with beta <= 0 (with a rightward bias) for short initial distances, while for beta>0 (with a leftward bias) Levy flights with alpha -> 1 are more efficient. When increasing the initial distance of the searcher to the target, Levy flight search (except for alpha=1 with beta=0) is more efficient than the Brownian search. Moreover, the asymmetry in jumps leads to essentially higher efficiency of the Levy search compared to symmetric Levy flights at both short and long distances, and the effect is more pronounced for stable indices alpha close to unity.}, language = {en} } @article{GerlachPreitschopfKaraevetal.2022, author = {Gerlach, Marius and Preitschopf, Tobias and Karaev, Emil and Quitian-Lara, Heidy Mayerly and Mayer, Dennis and Bozek, John and Fischer, Ingo and Fink, Reinhold F.}, title = {Auger electron spectroscopy of fulminic acid, HCNO}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {24}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {25}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/d2cp02104h}, pages = {15217 -- 15229}, year = {2022}, abstract = {HCNO is a molecule of considerable astrochemical interest as a precursor to prebiotic molecules. It is synthesized by preparative pyrolysis and is unstable at room temperature. Here, we investigate its spectroscopy in the soft X-ray regime at the C 1s, N 1s and O 1s edges. All 1s ionization energies are reported and X-ray absorption spectra reveal the transitions from the 1s to the pi* state. Resonant and normal Auger electron spectra for the decay of the core hole states are recorded in a hemispherical analyzer. An assignment of the experimental spectra is provided with the aid of theoretical counterparts. The latter are using a valence configuration interaction representation of the intermediate and final state energies and wavefunctions, the one-center approximation for transition rates and band shapes according to the moment theory. The computed spectra are in very good agreement with the experimental data and most of the relevant bands are assigned. Additionally, we present a simple approach to estimate relative Auger transition rates on the basis of a minimal basis representation of the molecular orbitals. We demonstrate that this provides a qualitatively good and reliable estimate for several signals in the normal and resonant Auger electron spectra which have significantly different intensities in the decay of the three core holes.}, language = {en} } @article{FritschKurpiersRolandetal.2022, author = {Fritsch, Tobias and Kurpiers, Jona and Roland, Steffen and Tokmoldin, Nurlan and Shoaee, Safa and Ferron, Thomas and Collins, Brian A. and Janietz, Silvia and Vandewal, Koen and Neher, Dieter}, title = {On the interplay between CT and singlet exciton emission in organic solar cells with small driving force and its impact on voltage loss}, series = {Advanced energy materials}, volume = {12}, journal = {Advanced energy materials}, number = {31}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.202200641}, pages = {11}, year = {2022}, abstract = {The interplay between free charge carriers, charge transfer (CT) states and singlet excitons (S-1) determines the recombination pathway and the resulting open circuit voltage (V-OC) of organic solar cells. By combining a well-aggregated low bandgap polymer with different blend ratios of the fullerenes PCBM and ICBA, the energy of the CT state (E-CT) is varied by 130 meV while leaving the S-1 energy of the polymer (ES1\[{E_{{{\rm{S}}_1}}}\]) unaffected. It is found that the polymer exciton dominates the radiative properties of the blend when ECT\[{E_{{\rm{CT}}}}\] approaches ES1\[{E_{{{\rm{S}}_1}}}\], while the V-OC remains limited by the non-radiative decay of the CT state. It is concluded that an increasing strength of the exciton in the optical spectra of organic solar cells will generally decrease the non-radiative voltage loss because it lowers the radiative V-OC limit (V-OC,V-rad), but not because it is more emissive. The analysis further suggests that electronic coupling between the CT state and the S-1 will not improve the V-OC, but rather reduce the V-OC,V-rad. It is anticipated that only at very low CT state absorption combined with a fairly high CT radiative efficiency the solar cell benefit from the radiative properties of the singlet excitons.}, language = {en} } @article{UjevicRashtiGiegetal.2022, author = {Ujevic, Maximiliano and Rashti, Alireza and Gieg, Henrique Leonhard and Tichy, Wolfgang and Dietrich, Tim}, title = {High-accuracy high-mass-ratio simulations for binary neutron stars and their comparison to existing waveform models}, series = {Physical review : D, Particles, fields, gravitation, and cosmology}, volume = {106}, journal = {Physical review : D, Particles, fields, gravitation, and cosmology}, number = {2}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0010}, doi = {10.1103/PhysRevD.106.023029}, pages = {10}, year = {2022}, abstract = {The subsequent observing runs of the advanced gravitational-wave detector network will likely provide us with various gravitational-wave observations of binary neutron star systems. For an accurate interpretation of these detections, we need reliable gravitational-wave models. To test and to point out how existing models could be improved, we perform a set of high-resolution numerical relativity simulations for four different physical setups with mass ratios q = 1.25, 1.50, 1.75, 2.00, and total gravitational mass M = 2.7 M???. Each configuration is simulated with five different resolutions to allow a proper error assessment. Overall, we find approximately second-order converging results for the dominant (2,2) mode, but also the subdominant (2,1), (3,3), and (4,4) modes, while generally, the convergence order reduces slightly for an increasing mass ratio. Our simulations allow us to validate waveform models, where we find generally good agreement between state-of-the-art models and our data, and to prove that scaling relations for higher modes currently employed for binary black hole waveform modeling also apply for the tidal contribution. Finally, we also test if the current NRTidal model used to describe tidal effects is a valid description for high-mass-ratio systems. We hope that our simulation results can be used to further improve and test waveform models in preparation for the next observing runs.}, language = {en} } @article{BuechnerdaCruzGroveretal.2022, author = {B{\"u}chner, Robby and da Cruz, Vinicius Vaz and Grover, Nitika and Charisiadis, Asterios and Fondell, Mattis and Haverkamp, Robert and Senge, Mathias O. and F{\"o}hlisch, Alexander}, title = {Fundamental electronic changes upon intersystem crossing in large aromatic photosensitizers: free base 5,10,15,20-tetrakis(4-carboxylatophenyl)porphyrin}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {24}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {12}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/d1cp05420a}, pages = {7505 -- 7511}, year = {2022}, abstract = {Free base 5,10,15,20-tetrakis(4-carboxylatophenyl)porphyrin stands for the class of powerful porphyrin photosensitizers for singlet oxygen generation and light-harvesting. The atomic level selectivity of dynamic UV pump - N K-edge probe X-ray absorption spectroscopy in combination with time-dependent density functional theory (TD-DFT) gives direct access to the crucial excited molecular states within the unusual relaxation pathway. The efficient intersystem crossing, that is El-Sayed forbidden and not facilitated by a heavy atom is confirmed to be the result of the long singlet excited state lifetime (Q(x) 4.9 ns) and thermal effects. Overall, the interplay of stabilization by conservation of angular momenta and vibronic relaxation drive the de-excitation in these chromophores.}, language = {en} } @article{DorschJefferyIrrgangetal.2021, author = {Dorsch, Matti and Jeffery, C. Simon and Irrgang, Andreas and Woolf, Vincent and Heber, Ulrich}, title = {EC 22536-5304}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {653}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/202141381}, pages = {22}, year = {2021}, abstract = {Helium-burning hot subdwarf stars of spectral types O and B (sdO/B) are thought to be produced through various types of binary interactions. The helium-rich hot subdwarf star EC 22536-5304 was recently found to be extremely enriched in lead. Here, we show that EC 22536-5304 is a binary star with a metal-poor subdwarf F-type (sdF) companion. We performed a detailed analysis of high-resolution SALT/HRS and VLT/UVES spectra, deriving metal abundances for the hot subdwarf, as well as atmospheric parameters for both components. Because we consider the contribution of the sdF star, the derived lead abundance for the sdOB, + 6.3 +/- 0.3 dex relative to solar, is even higher than previously thought. We derive T-eff = 6210 +/- 70 K, log g = 4.64 +/- 0.10, [FE/H] = - 1.95 +/- 0.04, and [alpha/Fe] = + 0.40 +/- 0.04 for the sdF component. Radial velocity variations, although poorly sampled at present, indicate that the binary system has a long orbital period of about 457 days. This suggests that the system was likely formed through stable Roche lobe overflow (RLOF). A kinematic analysis shows that EC 22536-5304 is on an eccentric orbit around the Galactic centre. This, as well as the low metallicity and strong alpha enhancement of the sdF-type companion, indicate that EC 22536-5304 is part of the Galactic halo or metal-weak thick disc. As the first long-period hot subdwarf binary at [FE/H] less than or similar to- 1, EC 22536-5304 may help to constrain the RLOF mechanism for mass transfer from low-mass, low-metallicity red giant branch (RGB) stars to main-sequence companions.}, language = {en} } @article{AnderssonSangelandBerggrenetal.2021, author = {Andersson, Edvin K. W. and S{\aa}ngeland, Christofer and Berggren, Elin and Johansson, Fredrik O. L. and K{\"u}hn, Danilo and Lindblad, Andreas and Mindemark, Jonas and Hahlin, Maria}, title = {Early-stage decomposition of solid polymer electrolytes in Li-metal batteries}, series = {Journal of materials chemistry : A, Materials for energy and sustainability}, volume = {9}, journal = {Journal of materials chemistry : A, Materials for energy and sustainability}, number = {39}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2050-7488}, doi = {10.1039/d1ta05015j}, pages = {22462 -- 22471}, year = {2021}, abstract = {Development of functional and stable solid polymer electrolytes (SPEs) for battery applications is an important step towards both safer batteries and for the realization of lithium-based or anode-less batteries. The interface between the lithium and the solid polymer electrolyte is one of the bottlenecks, where severe degradation is expected. Here, the stability of three different SPEs - poly(ethylene oxide) (PEO), poly(epsilon-caprolactone) (PCL) and poly(trimethylene carbonate) (PTMC) - together with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt, is investigated after they have been exposed to lithium metal under UHV conditions. Degradation compounds, e.g. Li-O-R, LiF and LixSyOz, are identified for all SPEs using soft X-ray photoelectron spectroscopy. A competing degradation between polymer and salt is identified in the outermost surface region (<7 nm), and is dependent on the polymer host. PTMC:LiTFSI shows the most severe decomposition of both polymer and salt followed by PCL:LiTFSI and PEO:LiTFSI. In addition, the movement of lithium species through the decomposed interface shows large variation depending on the polymer electrolyte system.}, language = {en} } @article{WangCherstvyKantzetal.2021, author = {Wang, Wei and Cherstvy, Andrey G. and Kantz, Holger and Metzler, Ralf and Sokolov, Igor M.}, title = {Time averaging and emerging nonergodicity upon resetting of fractional Brownian motion and heterogeneous diffusion processes}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {104}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {2}, publisher = {American Institute of Physics}, address = {Woodbury, NY}, issn = {2470-0045}, doi = {10.1103/PhysRevE.104.024105}, pages = {27}, year = {2021}, abstract = {How different are the results of constant-rate resetting of anomalous-diffusion processes in terms of their ensemble-averaged versus time-averaged mean-squared displacements (MSDs versus TAMSDs) and how does stochastic resetting impact nonergodicity? We examine, both analytically and by simulations, the implications of resetting on the MSD- and TAMSD-based spreading dynamics of particles executing fractional Brownian motion (FBM) with a long-time memory, heterogeneous diffusion processes (HDPs) with a power-law space-dependent diffusivity D(x) = D0|x|gamma and their "combined" process of HDP-FBM. We find, inter alia, that the resetting dynamics of originally ergodic FBM for superdiffusive Hurst exponents develops disparities in scaling and magnitudes of the MSDs and mean TAMSDs indicating weak ergodicity breaking. For subdiffusive HDPs we also quantify the nonequivalence of the MSD and TAMSD and observe a new trimodal form of the probability density function. For reset FBM, HDPs and HDP-FBM we compute analytically and verify by simulations the short-time MSD and TAMSD asymptotes and long-time plateaus reminiscent of those for processes under confinement. We show that certain characteristics of these reset processes are functionally similar despite a different stochastic nature of their nonreset variants. Importantly, we discover nonmonotonicity of the ergodicitybreaking parameter EB as a function of the resetting rate r. For all reset processes studied we unveil a pronounced resetting-induced nonergodicity with a maximum of EB at intermediate r and EB similar to(1/r )-decay at large r. Alongside the emerging MSD-versus-TAMSD disparity, this r-dependence of EB can be an experimentally testable prediction. We conclude by discussing some implications to experimental systems featuring resetting dynamics.}, language = {en} } @article{KurilovichMantsevichMardoukhietal.2022, author = {Kurilovich, Aleksandr A. and Mantsevich, Vladimir N. and Mardoukhi, Yousof and Stevenson, Keith J. and Chechkin, Aleksei and Palyulin, Vladimir V.}, title = {Non-Markovian diffusion of excitons in layered perovskites and transition metal dichalcogenides}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {24}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {22}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/d2cp00557c}, pages = {13941 -- 13950}, year = {2022}, abstract = {The diffusion of excitons in perovskites and transition metal dichalcogenides shows clear anomalous, subdiffusive behaviour in experiments. In this paper we develop a non-Markovian mobile-immobile model which provides an explanation of this behaviour through paired theoretical and simulation approaches. The simulation model is based on a random walk on a 2D lattice with randomly distributed deep traps such that the trapping time distribution involves slowly decaying power-law asymptotics. The theoretical model uses coupled diffusion and rate equations for free and trapped excitons, respectively, with an integral term responsible for trapping. The model provides a good fitting of the experimental data, thus, showing a way for quantifying the exciton diffusion dynamics.}, language = {en} } @article{GrischekCaprioglioZhangetal.2022, author = {Grischek, Max and Caprioglio, Pietro and Zhang, Jiahuan and Pena-Camargo, Francisco and Sveinbjornsson, Kari and Zu, Fengshuo and Menzel, Dorothee and Warby, Jonathan H. and Li, Jinzhao and Koch, Norbert and Unger, Eva and Korte, Lars and Neher, Dieter and Stolterfoht, Martin and Albrecht, Steve}, title = {Efficiency Potential and Voltage Loss of Inorganic CsPbI2Br Perovskite Solar Cells}, series = {Solar RRL}, volume = {6}, journal = {Solar RRL}, number = {11}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2367-198X}, doi = {10.1002/solr.202200690}, pages = {12}, year = {2022}, abstract = {Inorganic perovskite solar cells show excellent thermal stability, but the reported power conversion efficiencies are still lower than for organic-inorganic perovskites. This is mainly caused by lower open-circuit voltages (V(OC)s). Herein, the reasons for the low V-OC in inorganic CsPbI2Br perovskite solar cells are investigated. Intensity-dependent photoluminescence measurements for different layer stacks reveal that n-i-p and p-i-n CsPbI2Br solar cells exhibit a strong mismatch between quasi-Fermi level splitting (QFLS) and V-OC. Specifically, the CsPbI2Br p-i-n perovskite solar cell has a QFLS-e center dot V-OC mismatch of 179 meV, compared with 11 meV for a reference cell with an organic-inorganic perovskite of similar bandgap. On the other hand, this study shows that the CsPbI2Br films with a bandgap of 1.9 eV have a very low defect density, resulting in an efficiency potential of 20.3\% with a MeO-2PACz hole-transporting layer and 20.8\% on compact TiO2. Using ultraviolet photoelectron spectroscopy measurements, energy level misalignment is identified as a possible reason for the QFLS-e center dot V-OC mismatch and strategies for overcoming this V-OC limitation are discussed. This work highlights the need to control the interfacial energetics in inorganic perovskite solar cells, but also gives promise for high efficiencies once this issue is resolved.}, language = {en} } @misc{CaesarMcCarthyThornalleyetal.2022, author = {Caesar, Levke and McCarthy, Gerard D. and Thornalley, David J. R. and Cahill, Niamh and Rahmstorf, Stefan}, title = {Reply to: Atlantic circulation change still uncertain}, series = {Nature geoscience}, volume = {15}, journal = {Nature geoscience}, number = {3}, publisher = {Nature Publ. Group}, address = {London}, issn = {1752-0894}, doi = {10.1038/s41561-022-00897-3}, pages = {168 -- 170}, year = {2022}, language = {en} } @article{LepriPikovsky2022, author = {Lepri, Stefano and Pikovsky, Arkady}, title = {Phase-locking dynamics of heterogeneous oscillator arrays}, series = {Chaos, solitons \& fractals : applications in science and engineering ; an interdisciplinary journal of nonlinear science}, volume = {155}, journal = {Chaos, solitons \& fractals : applications in science and engineering ; an interdisciplinary journal of nonlinear science}, publisher = {Elsevier}, address = {Oxford}, issn = {0960-0779}, doi = {10.1016/j.chaos.2021.111721}, pages = {8}, year = {2022}, abstract = {We consider an array of nearest-neighbor coupled nonlinear autonomous oscillators with quenched ran-dom frequencies and purely conservative coupling. We show that global phase-locked states emerge in finite lattices and study numerically their destruction. Upon change of model parameters, such states are found to become unstable with the generation of localized periodic and chaotic oscillations. For weak nonlinear frequency dispersion, metastability occur akin to the case of almost-conservative systems. We also compare the results with the phase-approximation in which the amplitude dynamics is adiabatically eliminated.}, language = {en} } @article{MorrisBohdanWeidletal.2023, author = {Morris, Paul J. and Bohdan, Artem and Weidl, Martin S. and Tsirou, Michelle and Fulat, Karol and Pohl, Martin}, title = {Pre-acceleration in the electron foreshock. II. oblique whistler waves}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {944}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {Institute of Physics Publ.}, address = {London}, issn = {0004-637X}, doi = {10.3847/1538-4357/acaec8}, pages = {12}, year = {2023}, abstract = {Thermal electrons have gyroradii many orders of magnitude smaller than the finite width of a shock, thus need to be pre-accelerated before they can cross it and be accelerated by diffusive shock acceleration. One region where pre-acceleration may occur is the inner foreshock, which upstream electrons must pass through before any potential downstream crossing. In this paper, we perform a large-scale particle-in-cell simulation that generates a single shock with parameters motivated from supernova remnants. Within the foreshock, reflected electrons excite the oblique whistler instability and produce electromagnetic whistler waves, which comove with the upstream flow and as nonlinear structures eventually reach radii of up to 5 ion-gyroradii. We show that the inner electromagnetic configuration of the whistlers evolves into complex nonlinear structures bound by a strong magnetic field around four times the upstream value. Although these nonlinear structures do not in general interact with cospatial upstream electrons, they resonate with electrons that have been reflected at the shock. We show that they can scatter, or even trap, reflected electrons, confining around 0.8\% of the total upstream electron population to the region close to the shock where they can undergo substantial pre-acceleration. This acceleration process is similar to, yet approximately three times more efficient than, stochastic shock drift acceleration.}, language = {en} } @phdthesis{Aue2024, author = {Aue, Lars}, title = {Cyclone impacts on sea ice in the Atlantic Arctic Ocean}, doi = {10.25932/publishup-63445}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-634458}, school = {Universit{\"a}t Potsdam}, pages = {VIII, 131}, year = {2024}, abstract = {The Arctic is the hot spot of the ongoing, global climate change. Over the last decades, near-surface temperatures in the Arctic have been rising almost four times faster than on global average. This amplified warming of the Arctic and the associated rapid changes of its environment are largely influenced by interactions between individual components of the Arctic climate system. On daily to weekly time scales, storms can have major impacts on the Arctic sea-ice cover and are thus an important part of these interactions within the Arctic climate. The sea-ice impacts of storms are related to high wind speeds, which enhance the drift and deformation of sea ice, as well as to changes in the surface energy budget in association with air mass advection, which impact the seasonal sea-ice growth and melt. The occurrence of storms in the Arctic is typically associated with the passage of transient cyclones. Even though the above described mechanisms how storms/cyclones impact the Arctic sea ice are in principal known, there is a lack of statistical quantification of these effects. In accordance with that, the overarching objective of this thesis is to statistically quantify cyclone impacts on sea-ice concentration (SIC) in the Atlantic Arctic Ocean over the last four decades. In order to further advance the understanding of the related mechanisms, an additional objective is to separate dynamic and thermodynamic cyclone impacts on sea ice and assess their relative importance. Finally, this thesis aims to quantify recent changes in cyclone impacts on SIC. These research objectives are tackled utilizing various data sets, including atmospheric and oceanic reanalysis data as well as a coupled model simulation and a cyclone tracking algorithm. Results from this thesis demonstrate that cyclones are significantly impacting SIC in the Atlantic Arctic Ocean from autumn to spring, while there are mostly no significant impacts in summer. The strength and the sign (SIC decreasing or SIC increasing) of the cyclone impacts strongly depends on the considered daily time scale and the region of the Atlantic Arctic Ocean. Specifically, an initial decrease in SIC (day -3 to day 0 relative to the cyclone) is found in the Greenland, Barents and Kara Seas, while SIC increases following cyclones (day 0 to day 5 relative to the cyclone) are mostly limited to the Barents and Kara Seas. For the cold season, this results in a pronounced regional difference between overall (day -3 to day 5 relative to the cyclone) SIC-decreasing cyclone impacts in the Greenland Sea and overall SIC-increasing cyclone impacts in the Barents and Kara Seas. A cyclone case study based on a coupled model simulation indicates that both dynamic and thermodynamic mechanisms contribute to cyclone impacts on sea ice in winter. A typical pattern consisting of an initial dominance of dynamic sea-ice changes followed by enhanced thermodynamic ice growth after the cyclone passage was found. This enhanced ice growth after the cyclone passage most likely also explains the (statistical) overall SIC-increasing effects of cyclones in the Barents and Kara Seas in the cold season. Significant changes in cyclone impacts on SIC over the last four decades have emerged throughout the year. These recent changes are strongly varying from region to region and month to month. The strongest trends in cyclone impacts on SIC are found in autumn in the Barents and Kara Seas. Here, the magnitude of destructive cyclone impacts on SIC has approximately doubled over the last four decades. The SIC-increasing effects following the cyclone passage have particularly weakened in the Barents Sea in autumn. As a consequence, previously existing overall SIC-increasing cyclone impacts in this region in autumn have recently disappeared. Generally, results from this thesis show that changes in the state of the sea-ice cover (decrease in mean sea-ice concentration and thickness) and near-surface air temperature are most important for changed cyclone impacts on SIC, while changes in cyclone properties (i.e. intensity) do not play a significant role.}, language = {en} } @article{PenaCamargoThiesbrummelHempeletal.2022, author = {Pena-Camargo, Francisco and Thiesbrummel, Jarla and Hempel, Hannes and Musiienko, Artem and Le Corre, Vincent M. and Diekmann, Jonas and Warby, Jonathan and Unold, Thomas and Lang, Felix and Neher, Dieter and Stolterfoht, Martin}, title = {Revealing the doping density in perovskite solar cells and its impact on device performance}, series = {Applied physics reviews}, volume = {9}, journal = {Applied physics reviews}, number = {2}, publisher = {AIP Publishing}, address = {Melville}, issn = {1931-9401}, doi = {10.1063/5.0085286}, pages = {11}, year = {2022}, abstract = {Traditional inorganic semiconductors can be electronically doped with high precision. Conversely, there is still conjecture regarding the assessment of the electronic doping density in metal-halide perovskites, not to mention of a control thereof. This paper presents a multifaceted approach to determine the electronic doping density for a range of different lead-halide perovskite systems. Optical and electrical characterization techniques, comprising intensity-dependent and transient photoluminescence, AC Hall effect, transfer-length-methods, and charge extraction measurements were instrumental in quantifying an upper limit for the doping density. The obtained values are subsequently compared to the electrode charge per cell volume under short-circuit conditions ( CUbi/eV), which amounts to roughly 10(16) cm(-3). This figure of merit represents the critical limit below which doping-induced charges do not influence the device performance. The experimental results consistently demonstrate that the doping density is below this critical threshold 10(12) cm(-3), which means << CUbi / e V) for all common lead-based metal-halide perovskites. Nevertheless, although the density of doping-induced charges is too low to redistribute the built-in voltage in the perovskite active layer, mobile ions are present in sufficient quantities to create space-charge-regions in the active layer, reminiscent of doped pn-junctions. These results are well supported by drift-diffusion simulations, which confirm that the device performance is not affected by such low doping densities.}, language = {en} } @article{DudiDietrichRashtietal.2022, author = {Dudi, Reetika and Dietrich, Tim and Rashti, Alireza and Br{\"u}gmann, Bernd and Steinhoff, Jan and Tichy, Wolfgang}, title = {High-accuracy simulations of highly spinning binary neutron star systems}, series = {Physical review : D, Particles, fields, gravitation, and cosmology}, volume = {105}, journal = {Physical review : D, Particles, fields, gravitation, and cosmology}, number = {6}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0010}, doi = {10.1103/PhysRevD.105.064050}, pages = {13}, year = {2022}, abstract = {With an increasing number of expected gravitational-wave detections of binary neutron star mergers, it is essential that gravitational-wave models employed for the analysis of observational data are able to describe generic compact binary systems. This includes systems in which the individual neutron stars are millisecond pulsars for which spin effects become essential. In this work, we perform numerical-relativity simulations of binary neutron stars with aligned and antialigned spins within a range of dimensionless spins of chi similar to [-0.28, 0.58]. The simulations are performed with multiple resolutions, show a clear convergence order and, consequently, can be used to test existing waveform approximants. We find that for very high spins gravitational-wave models that have been employed for the interpretation of GW170817 and GW190425 arc not capable of describing our numerical-relativity dataset. We verify through a full parameter estimation study in which clear biases in the estimate of the tidal deformability and effective spin are present. We hope that in preparation of the next gravitational-wave observing run of the Advanced LIGO and Advanced Virgo detectors our new set of numerical-relativity data can be used to support future developments of new gravitational-wave models.}, language = {en} } @article{PohlMaciasColemanetal.2022, author = {Pohl, Martin and Macias, Oscar and Coleman, Phaedra and Gordon, Chris}, title = {Assessing the impact of hydrogen absorption on the characteristics of the Galactic center excess}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {929}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/ac6032}, pages = {13}, year = {2022}, abstract = {We present a new reconstruction of the distribution of atomic hydrogen in the inner Galaxy that is based on explicit radiation transport modeling of line and continuum emission and a gas-flow model in the barred Galaxy that provides distance resolution for lines of sight toward the Galactic center. The main benefits of the new gas model are (a) the ability to reproduce the negative line signals seen with the HI4PI survey and (b) the accounting for gas that primarily manifests itself through absorption. We apply the new model of Galactic atomic hydrogen to an analysis of the diffuse gamma-ray emission from the inner Galaxy, for which an excess at a few GeV was reported that may be related to dark matter. We find with high significance an improved fit to the diffuse gamma-ray emission observed with the Fermi-LAT, if our new H i model is used to estimate the cosmic-ray induced diffuse gamma-ray emission. The fit still requires a nuclear bulge at high significance. Once this is included there is no evidence of a dark-matter signal, be it cuspy or cored. But an additional so-called boxy bulge is still favored by the data. This finding is robust under the variation of various parameters, for example, the excitation temperature of atomic hydrogen, and a number of tests for systematic issues.}, language = {en} } @article{MishurovaStegemannLyamkinetal.2022, author = {Mishurova, Tatiana and Stegemann, Robert and Lyamkin, Viktor and Cabeza, Sandra and Evsevleev, Sergei and Pelkner, Matthias and Bruno, Giovanni}, title = {Subsurface and bulk residual stress analysis of S235JRC+C Steel TIG weld by diffraction and magnetic stray field measurements}, series = {Experimental mechanics : an international journal of the Society for Experimental Mechanics}, volume = {62}, journal = {Experimental mechanics : an international journal of the Society for Experimental Mechanics}, number = {6}, publisher = {Springer}, address = {New York}, issn = {0014-4851}, doi = {10.1007/s11340-022-00841-x}, pages = {1017 -- 1025}, year = {2022}, abstract = {Background Due to physical coupling between mechanical stress and magnetization in ferromagnetic materials, it is assumed in the literature that the distribution of the magnetic stray field corresponds to the internal (residual) stress of the specimen. The correlation is, however, not trivial, since the magnetic stray field is also influenced by the microstructure and the geometry of component. The understanding of the correlation between residual stress and magnetic stray field could help to evaluate the integrity of welded components. Objective This study aims at understanding the possible correlation of subsurface and bulk residual stress with magnetic stray field in a low carbon steel weld. Methods The residual stress was determined by synchrotron X-ray diffraction (SXRD, subsurface region) and by neutron diffraction (ND, bulk region). SXRD possesses a higher spatial resolution than ND. Magnetic stray fields were mapped by utilizing high-spatial-resolution giant magneto resistance (GMR) sensors. Results The subsurface residual stress overall correlates better with the magnetic stray field distribution than the bulk stress. This correlation is especially visible in the regions outside the heat affected zone, where the influence of the microstructural features is less pronounced but steep residual stress gradients are present. Conclusions It was demonstrated that the localized stray field sources without any obvious microstructural variations are associated with steep stress gradients. The good correlation between subsurface residual stress and magnetic signal indicates that the source of the magnetic stray fields is to be found in the range of the penetration depth of the SXRD measurements.}, language = {en} } @article{AshtonDietrich2022, author = {Ashton, Gregory and Dietrich, Tim}, title = {The use of hypermodels to understand binary neutron star collisions}, series = {Nature astronomy}, volume = {6}, journal = {Nature astronomy}, number = {8}, publisher = {Nature portfolio}, address = {Berlin}, issn = {2397-3366}, doi = {10.1038/s41550-022-01707-x}, pages = {961 -- 967}, year = {2022}, abstract = {Gravitational waves from the collision of binary neutron stars provide a unique opportunity to study the behaviour of supranuclear matter, the fundamental properties of gravity and the cosmic history of our Universe. However, given the complexity of Einstein's field equations, theoretical models that enable source-property inference suffer from systematic uncertainties due to simplifying assumptions. We develop a hypermodel approach to compare and measure the uncertainty of gravitational-wave approximants. Using state-of-the-art models, we apply this new technique to the binary neutron star observations GW170817 and GW190425 and to the sub-threshold candidate GW200311_103121. Our analysis reveals subtle systematic differences (with Bayesian odds of similar to 2) between waveform models. A frequency-dependence study suggests that this may be due to the treatment of the tidal sector. This new technique provides a proving ground for model development and a means to identify waveform systematics in future observing runs where detector improvements will increase the number and clarity of binary neutron star collisions we observe.}, language = {en} } @article{NakoudiStachlewskaRitter2021, author = {Nakoudi, Konstantina and Stachlewska, Iwona S. and Ritter, Christoph}, title = {An extended lidar-based cirrus cloud retrieval scheme}, series = {Optics express : the international electronic journal of optics / Optica}, volume = {29}, journal = {Optics express : the international electronic journal of optics / Optica}, number = {6}, publisher = {Optical Society of America}, address = {Washington}, issn = {1094-4087}, doi = {10.1364/OE.414770}, pages = {8553 -- 8580}, year = {2021}, abstract = {Accurate and precise characterization of cirrus cloud geometrical and optical properties is essential for better constraining their radiative footprint. A lidar-based retrieval scheme is proposed here, with its performance assessed on fine spatio-temporal observations over the Arctic site of Ny-Alesund, Svalbard. Two contributions related to cirrus geometrical (dynamic Wavelet Covariance Transform (WCT)) and optical properties (constrained Klett) are reported. The dynamic WCT rendered cirrus detection more robust, especially for thin cirrus layers that frequently remained undetected by the classical WCT method. Regarding optical characterization, we developed an iterative scheme for determining the cirrus lidar ratio (LRci) that is a crucial parameter for aerosol - cloud discrimination. Building upon the Klett-Fernald method, the LRci was constrained by an additional reference value. In established methods, such as the double-ended Klett, an aerosol-free reference value is applied. In the proposed constrained Klett, however, the reference value was approximated from cloud-free or low cloud optical depth (COD up to 0.2) profiles and proved to agree with independent Raman estimates. For optically thin cirrus, the constrained Klett inherent uncertainties reached 50\% (60-74\%) in terms of COD (LRci). However, for opaque cirrus COD (LRci) uncertainties were lower than 10\% (15\%). The detection method discrepancies (dynamic versus static WCT) had a higher impact on the optical properties of low COD layers (up to 90\%) compared to optically thicker ones (less than 10\%). The constrained Klett presented high agreement with two established retrievals. For an exemplary cirrus cloud, the constrained Klett estimated the COD355 (LRci355) at 0.28 +/- 0.17 (29 +/- 4 sr), the double-ended Klett at 0.27 +/- 0.15 (32 +/- 4 sr) and the Raman retrievals at 0.22 +/- 0.12 (26 +/- 11 sr). Our approach to determine the necessary reference value can also be applied in established methods and increase their accuracy. In contrast, the classical aerosol-free assumption led to 44 sr LRci overestimation in optically thin layers and 2-8 sr in thicker ones. The multiple scattering effect was corrected using Eloranta (1998) and accounted for 50-60\% extinction underestimation near the cloud base and 20-30\% within the cirrus layers.}, language = {en} } @article{RamosLariosToalaRodriguezGonzalezetal.2022, author = {Ramos-Larios, Gerardo and Toala, Jes{\´u}s Alberto and Rodriguez-Gonzalez, Janis B. and Guerrero, Martin A. and Gomez-Gonzalez, V{\´i}ctor Mauricio Alfonso}, title = {Rings and arcs around evolved stars - III. Physical conditions of the ring-like structures in the planetary nebula IC 4406 revealed by MUSE}, series = {Monthly notices of the Royal Astronomical Society}, volume = {513}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, pages = {2862 -- 2868}, year = {2022}, abstract = {We present the analysis of Very Large Telescope Multi Unit Spectroscopic Explorer (MUSE) observations of the planetary nebula (PN) IC 4406. MUSE images in key emission lines are used to unveil the presence of at least five ring-like structures north and south of the main nebula of IC4406. MUSE spectra are extracted from the rings to unambiguously assess for the first time in a PN their physical conditions, electron density (n(e)), and temperature (T-e). The rings are found to have similar T-e as the rim of the main nebula, but smaller n(e). Ratios between different ionic species suggest that the rings of IC4406 have a lower ionization state than the main cavity, in contrast to what was suggested for the rings in NGC 6543, the Cat's Eye Nebula.}, language = {en} } @article{vanMarleBohdanMorrisetal.2022, author = {van Marle, Allard Jan and Bohdan, Artem and Morris, Paul J. and Pohl, Martin and Marcowith, Alexandre}, title = {Diffusive shock acceleration at oblique high mach number shocks}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {929}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1538-4357}, doi = {10.3847/1538-4357/ac5962}, pages = {10}, year = {2022}, abstract = {The current paradigm of cosmic-ray (CR) origin states that the greater part of galactic CRs is produced by supernova remnants. The interaction of supernova ejecta with the interstellar medium after a supernova's explosions results in shocks responsible for CR acceleration via diffusive shock acceleration (DSA). We use particle-in-cell (PIC) simulations and a combined PIC-magnetohydrodynamic (PIC-MHD) technique to investigate whether DSA can occur in oblique high Mach number shocks. Using the PIC method, we follow the formation of the shock and determine the fraction of the particles that gets involved in DSA. With this result, we use PIC-MHD simulations to model the large-scale structure of the plasma and the magnetic field surrounding the shock and find out whether or not the reflected particles can generate upstream turbulence and trigger DSA. We find that the feasibility of this process in oblique shocks depends strongly on the Alfvenic Mach number, and the DSA process is more likely to be triggered at high Mach number shocks.}, language = {en} } @article{WiebelerVollbrechtNeubaetal.2021, author = {Wiebeler, Christian and Vollbrecht, Joachim and Neuba, Adam and Kitzerow, Heinz and Schumacher, Stefan}, title = {Unraveling the electrochemical and spectroscopic properties of neutral and negatively charged perylene tetraethylesters}, series = {Scientific reports}, volume = {11}, journal = {Scientific reports}, number = {1}, publisher = {Macmillan Publishers Limited, part of Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-021-95551-0}, pages = {11}, year = {2021}, abstract = {A detailed investigation of the energy levels of perylene-3,4,9,10-tetracarboxylic tetraethylester as a representative compound for the whole family of perylene esters was performed. It was revealed via electrochemical measurements that one oxidation and two reductions take place. The bandgaps determined via the electrochemical approach are in good agreement with the optical bandgap obtained from the absorption spectra via a Tauc plot. In addition, absorption spectra in dependence of the electrochemical potential were the basis for extensive quantum-chemical calculations of the neutral, monoanionic, and dianionic molecules. For this purpose, calculations based on density functional theory were compared with post-Hartree-Fock methods and the CAM-B3LYP functional proved to be the most reliable choice for the calculation of absorption spectra. Furthermore, spectral features found experimentally could be reproduced with vibronic calculations and allowed to understand their origins. In particular, the two lowest energy absorption bands of the anion are not caused by absorption of two distinct electronic states, which might have been expected from vertical excitation calculations, but both states exhibit a strong vibronic progression resulting in contributions to both bands.}, language = {en} } @article{SidoliSgueraEspositoetal.2022, author = {Sidoli, Lara and Sguera, Vito and Esposito, Paolo and Oskinova, Lida and Polletta, Maria del Carmen}, title = {XMM-Newton discovery of very high obscuration in the candidate Supergiant Fast X-ray Transient AX J1714.1-3912}, series = {Monthly notices of the Royal Astronomical Society}, volume = {512}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stac691}, pages = {2929 -- 2935}, year = {2022}, abstract = {We have analysed an archival XMM-Newton EPIC observation that serendipitously covered the sky position of a variable X-ray source AX J1714.1-3912, previously suggested to be a Supergiant Fast X-ray Transient (SFXT). During the XMM-Newton observation the source is variable on a timescale of hundred seconds and shows two luminosity states, with a flaring activity followed by unflared emission, with a variability amplitude of a factor of about 50. We have discovered an intense iron emission line with a centroid energy of 6.4 keV in the power law-like spectrum, modified by a large absorption (N-H similar to 10(24) cm(-2)), never observed before from this source. This X-ray spectrum is unusual for an SFXT, but resembles the so-called 'highly obscured sources', high mass X-ray binaries (HMXBs) hosting an evolved B[e] supergiant companion (sgB[e]). This might suggest that AX J1714.1-3912 is a new member of this rare type of HMXBs, which includes IGR J16318-4848 and CI Camelopardalis. Increasing this small population of sources would be remarkable, as they represent an interesting short transition evolutionary stage in the evolution of massive binaries. Nevertheless, AX J1714.1-3912 appears to share X-ray properties of both kinds of HMXBs (SFXT versus sgB[e] HMXB). Therefore, further investigations of the companion star are needed to disentangle the two hypothesis.}, language = {en} } @article{WolffKlimmHabichtetal.2021, author = {Wolff, Nora and Klimm, Detlef and Habicht, Klaus and Fritsch, Katharina}, title = {Crystal growth and thermodynamic investigation of Bi2M2+O4 (M = Pd, Cu)}, series = {CrystEngComm / The Royal Society of Chemistry}, volume = {23}, journal = {CrystEngComm / The Royal Society of Chemistry}, number = {17}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1466-8033}, doi = {10.1039/d1ce00220a}, pages = {3230 -- 3238}, year = {2021}, abstract = {Phase equilibria that are relevant for the growth of Bi2MO4 have been studied experimentally, and the ternary phase diagrams of Bi2O3-PdO2-Pd and Bi2O3-Cu2O-CuO and its isopleth section Bi2O3-CuO were redetermined. It is shown that every melting and crystallization process is always accompanied by a redox process at the phase boundary and that for both title compounds, the valence of the transition metal is lowered during melting. Vice versa, during crystal growth, O-2 must be transported through the melt to the phase boundary. Based on these new insights provided by our thermodynamic studies, Bi2CuO4 single crystals with a length of up to 7 cm and a diameter of 6 mm were grown by the OFZ technique to be used for investigations of magnetic, electronic and thermal transport properties. The grown crystals were characterized by powder X-ray diffraction, Laue, magnetization and specific heat measurements.}, language = {en} } @article{BernardiBerdjaDaniGuzmanetal.2021, author = {Bernardi, Rafael L. and Berdja, Amokrane and Dani Guzman, Christian and Torres-Torriti, Miguel and Roth, Martin M.}, title = {Restoration of images with a spatially varying PSF of the T80-S telescope optical model using neural networks}, series = {Monthly notices of the Royal Astronomical Society}, volume = {510}, journal = {Monthly notices of the Royal Astronomical Society}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stab3400}, pages = {4284 -- 4294}, year = {2021}, abstract = {Most image restoration methods in astronomy rely upon probabilistic tools that infer the best solution for a deconvolution problem. They achieve good performances when the point spread function (PSF) is spatially invariant in the image plane. However, this condition is not always satisfied in real optical systems. We propose a new method for the restoration of images affected by static and anisotropic aberrations using Deep Neural Networks that can be directly applied to sky images. The network is trained using simulated sky images corresponding to the T80-S Telescope optical model, a 80-cm survey imager at Cerro Tololo (Chile), which are synthesized using a Zernike polynomial representation of the optical system. Once trained, the network can be used directly on sky images, outputting a corrected version of the image that has a constant and known PSF across its field of view. The method is to be tested on the T80-S Telescope. We present the method and results on synthetic data.}, language = {en} } @article{RieseVogelsangSchroederetal.2022, author = {Riese, Josef and Vogelsang, Christoph and Schr{\"o}der, Jan and Borowski, Andreas and Kulgemeyer, Christoph and Reinhold, Peter and Schecker, Horst}, title = {The development of lesson planning skills in the subject of physics}, series = {Zeitschrift f{\"u}r Erziehungswissenschaft}, journal = {Zeitschrift f{\"u}r Erziehungswissenschaft}, number = {4}, publisher = {Springer VS/Springer Fachmedien Wiesbaden GmbH}, address = {Wiesbaden}, issn = {1434-663X}, doi = {10.1007/s11618-022-01112-0}, pages = {843 -- 867}, year = {2022}, abstract = {One main goal of university teacher education is the first acquisition of skills for theory-driven lesson planning. According to models of teachers' professional competence, it is assumed that the acquired professional knowledge represents an essential basis for the development of planning skills. Learning opportunities to apply this professional knowledge often occur in school internships, usually in advanced semesters of teacher education programs. It is also assumed that practical experience within lesson planning supports the formation of professional knowledge. However, the relationship between the extent of professional knowledge and the development of skills to plan a lesson lacks evidence. There is a particular challenge in measuring lesson planning skills both authentically and standardized. To evaluate the mentioned relationship, a longitudinal pre-post-study with prospective physics-teachers (N = 68 in the longitudinal section) was conducted at four German universities. Pre-service physics teachers' skills to plan a lesson were assessed with a standardized performance assessment at the beginning and at the end of a longterm-internship. This assessment consists of planning a physics lesson, conveying Newton's third Law, in a simulated and standardized way with limited time. In addition, content knowledge, pedagogical content knowledge and pedagogical knowledge has been assessed using standardized instruments. Furthermore, additional information about the internship and the amount of learning opportunities was collected at the end of the internship. During the internship, both lesson planning skills and all components of professional knowledge increased. Cross-Lagged-Panel-Analyses reveal that in particular pre-service teachers' pedagogical content knowledge as well as pedagogical knowledge at the beginning of the internship influences the development of lesson planning skills.}, language = {de} } @article{BozzoFerrignoOskinovaetal.2021, author = {Bozzo, Enrico and Ferrigno, Carlo and Oskinova, Lida and Ducci, Lorenzo}, title = {Accretion of a clumped wind from a red supergiant donor on to a magnetar is suggested by the analysis of the XMM-Newton and NuSTAR observations of the X-ray binary 3A 1954+319}, series = {Monthly notices of the Royal Astronomical Society}, volume = {510}, journal = {Monthly notices of the Royal Astronomical Society}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stab3688}, pages = {4645 -- 4653}, year = {2021}, abstract = {3A 1954+319 has been classified for a long time as a symbiotic X-ray binary, hosting a slowly rotating neutron star and an aged M red giant. Recently, this classification has been revised thanks to the discovery that the donor star is an M supergiant. This makes 3A 1954+319 a rare type of high-mass X-ray binary consisting of a neutron star and a red supergiant donor. In this paper, we analyse two archival and still unpublished XMM-Newton and NuSTAR observations of the source. We perform a detailed hardness ratio-resolved spectral analysis to search for spectral variability that could help investigating the structures of the inhomogeneous M supergiant wind from which the neutron star is accreting. We discuss our results in the context of wind-fed supergiant X-ray binaries and show that the newest findings on 3A 1954+319 reinforce the hypothesis that the neutron star in this system is endowed with a magnetar-like magnetic field strength (greater than or similar to 10(14) G).}, language = {en} } @article{RaoufiHoermannLigorioetal.2020, author = {Raoufi, Meysam and H{\"o}rmann, Ulrich and Ligorio, Giovanni and Hildebrandt, Jana and P{\"a}tzel, Michael and Schultz, Thorsten and Perdigon-Toro, Lorena and Koch, Norbert and List-Kratochvil, Emil and Hecht, Stefan and Neher, Dieter}, title = {Simultaneous effect of ultraviolet radiation and surface modification on the work function and hole injection properties of ZnO thin films}, series = {Physica Status Solidi. A , Applications and materials science}, volume = {217}, journal = {Physica Status Solidi. A , Applications and materials science}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6300}, doi = {10.1002/pssa.201900876}, pages = {1 -- 6}, year = {2020}, abstract = {The combined effect of ultraviolet (UV) light soaking and self-assembled monolayer deposition on the work function (WF) of thin ZnO layers and on the efficiency of hole injection into the prototypical conjugated polymer poly(3-hexylthiophen-2,5-diyl) (P3HT) is systematically investigated. It is shown that the WF and injection efficiency depend strongly on the history of UV light exposure. Proper treatment of the ZnO layer enables ohmic hole injection into P3HT, demonstrating ZnO as a potential anode material for organic optoelectronic devices. The results also suggest that valid conclusions on the energy-level alignment at the ZnO/organic interfaces may only be drawn if the illumination history is precisely known and controlled. This is inherently problematic when comparing electronic data from ultraviolet photoelectron spectroscopy (UPS) measurements carried out under different or ill-defined illumination conditions.}, language = {en} } @article{MoesenlechnerPaunzenPelisolietal.2021, author = {M{\"o}senlechner, Gerald and Paunzen, Ernst and Pelisoli, Ingrid D. and Seelig, Joseph and Stidl, Sarah and Maitzen, Hans Michael}, title = {A Kepler K2 view of subdwarf A-type stars}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {657}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/202037789}, pages = {11}, year = {2021}, abstract = {Context. The spectroscopic class of subdwarf A-type (sdA) stars has come into focus in recent years because of their possible link to extremely low-mass white dwarfs, a rare class of objects resulting from binary evolution. Although most sdA stars are consistent with metal-poor halo main-sequence stars, the formation and evolution of a fraction of these stars are still matters of debate. Aims. The identification of photometric variability can help to put further constraints on the evolutionary status of sdA stars, in particular through the analysis of pulsations. Moreover, the binary ratio, which can be deduced from eclipsing binaries and ellipsoidal variables, is important as input for stellar models. In order to search for variability due to either binarity or pulsations in objects of the spectroscopic sdA class, we have extracted all available high precision light curves from the Kepler K2 mission. Methods. We have performed a thorough time series analysis on all available light curves, employing three different methods. Frequencies with a signal-to-noise ratio higher than four have been used for further analysis. Results. From the 25 targets, 13 turned out to be variables of different kinds (i.e., classical pulsating stars, ellipsoidal and cataclysmic variables, eclipsing binaries, and rotationally induced variables). For the remaining 12 objects, a variability threshold was determined.}, language = {en} } @article{JohanssonLeitnerBidermaneetal.2022, author = {Johansson, Fredrik O. L. and Leitner, Torsten and Bidermane, Ieva and Born, Artur and F{\"o}hlisch, Alexander and Svensson, Svante and M{\aa}rtensson, Nils and Lindblad, Andreas}, title = {Auger- and photoelectron coincidences of molecular O2 adsorbed on Ag(111)}, series = {Journal of electron spectroscopy and related phenomena : the international journal on theoretical and experimental aspects of electron spectroscopy}, volume = {256}, journal = {Journal of electron spectroscopy and related phenomena : the international journal on theoretical and experimental aspects of electron spectroscopy}, publisher = {Elsevier}, address = {New York, NY [u.a.]}, issn = {0368-2048}, doi = {10.1016/j.elspec.2022.147174}, pages = {6}, year = {2022}, abstract = {The oxygen on Ag(111) system has been investigated with Auger electron-photoelectron coincidence spectroscopy (APECS). The coincidence spectra between O 1s core level photoelectrons and O KLL Auger electrons have been studied together with Ag(3)d/AgM4,5NN coincidences. We also describe the electron-electron coincidence spectrometer setup, CoESCA, consisting of two angle resolved time-of-flight spectrometers at a synchrotron light source. Contributions from molecular oxygen and chemisorbed oxygen are assigned using the coincidence data, conclusions are drawn primarily from the O 1s/O KLL data. The data acquisition and treatment procedure are also outlined. The chemisorbed oxygen species observed are relevant for the catalytic ethylene oxidation.}, language = {en} } @article{DoerriesChechkinSchumeretal.2022, author = {Doerries, Timo J. and Chechkin, Aleksei and Schumer, Rina and Metzler, Ralf}, title = {Rate equations, spatial moments, and concentration profiles for mobile-immobile models with power-law and mixed waiting time distributions}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {105}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {1}, publisher = {The American Institute of Physics}, address = {Woodbury, NY}, issn = {2470-0045}, doi = {10.1103/PhysRevE.105.014105}, pages = {24}, year = {2022}, abstract = {We present a framework for systems in which diffusion-advection transport of a tracer substance in a mobile zone is interrupted by trapping in an immobile zone. Our model unifies different model approaches based on distributed-order diffusion equations, exciton diffusion rate models, and random-walk models for multirate mobile-immobile mass transport. We study various forms for the trapping time dynamics and their effects on the tracer mass in the mobile zone. Moreover, we find the associated breakthrough curves, the tracer density at a fixed point in space as a function of time, and the mobile and immobile concentration profiles and the respective moments of the transport. Specifically, we derive explicit forms for the anomalous transport dynamics and an asymptotic power-law decay of the mobile mass for a Mittag-Leffler trapping time distribution. In our analysis we point out that even for exponential trapping time densities, transient anomalous transport is observed. Our results have direct applications in geophysical contexts, but also in biological, soft matter, and solid state systems.}, language = {en} } @article{SprengelMohrAltenburgetal.2021, author = {Sprengel, Maximilian and Mohr, Gunther and Altenburg, Simon J. and Evans, Alexander and Serrano-Munoz, Itziar and Kromm, Arne and Pirling, Thilo and Bruno, Giovanni and Kannengießer, Thomas}, title = {Triaxial residual stress in Laser Powder Bed Fused 316L}, series = {Advanced engineering materials}, volume = {24}, journal = {Advanced engineering materials}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1438-1656}, doi = {10.1002/adem.202101330}, pages = {13}, year = {2021}, abstract = {The control of residual stress (RS) remains a challenge in the manufacturing of metallic parts using the laser powder bed fusion process (LPBF). This layer-by-layer manufacturing approach gives rise to complex triaxial RS distributions, which require extensive characterization effort for a broader acceptance of LPBF in industry. This study focuses on the distribution of bulk triaxial RS and surface RS in LPBF austenitic steel 316L. The RS are determined by X-ray and neutron diffraction to characterize the RS distribution. Variations in the LPBF parameters interlayer time (ILT) and scanning velocity and their influence on the temperature distribution and resulting RS is investigated using thermographic data from in situ process monitoring. The RS in the LPBF 316L is tensile at the surface and compressive in the bulk. The RS is directly related to the thermal history of the part as shown by the in situ thermography data. Shorter ILT leads to higher temperatures of the part during the manufacturing, which decrease the RS and RS formation mechanisms. Interestingly, the surface RS does not agree with this observation. This study highlights the benefit of using multiple RS determination methods and in situ thermography monitoring to characterize the RS in LPBF processed parts.}, language = {en} } @article{KuhlaWillnerOttoetal.2021, author = {Kuhla, Kilian and Willner, Sven N. and Otto, Christian and Geiger, Tobias and Levermann, Anders}, title = {Ripple resonance amplifies economic welfare loss from weather extremes}, series = {Environmental research letters : ERL / Institute of Physics}, volume = {16}, journal = {Environmental research letters : ERL / Institute of Physics}, number = {11}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/ac2932}, pages = {8}, year = {2021}, abstract = {The most complex but potentially most severe impacts of climate change are caused by extreme weather events. In a globally connected economy, damages can cause remote perturbations and cascading consequences-a ripple effect along supply chains. Here we show an economic ripple resonance that amplifies losses when consecutive or overlapping weather extremes and their repercussions interact. This amounts to an average amplification of 21\% for climate-induced heat stress, river floods, and tropical cyclones. Modeling the temporal evolution of 1.8 million trade relations between >7000 regional economic sectors, we find that the regional responses to future extremes are strongly heterogeneous also in their resonance behavior. The induced effect on welfare varies between gains due to increased demand in some regions and losses due to demand or supply shortages in others. Within the current global supply network, the ripple resonance effect of extreme weather is strongest in high-income economies-an important effect to consider when evaluating past and future economic climate impacts.}, language = {en} } @article{SorgenfreiGiangrisostomiJayetal.2021, author = {Sorgenfrei, Nomi and Giangrisostomi, Erika and Jay, Raphael Martin and K{\"u}hn, Danilo and Neppl, Stefan and Ovsyannikov, Ruslan and Sezen, Hikmet and Svensson, Svante and F{\"o}hlisch, Alexander}, title = {Photodriven transient picosecond top-layer semiconductor to metal phase-transition in p-doped molybdenum disulfide}, series = {Advanced materials}, volume = {33}, journal = {Advanced materials}, number = {14}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0935-9648}, doi = {10.1002/adma.202006957}, pages = {8}, year = {2021}, abstract = {Visible light is shown to create a transient metallic S-Mo-S surface layer on bulk semiconducting p-doped indirect-bandgap 2H-MoS2. Optically created electron-hole pairs separate in the surface band bending region of the p-doped semiconducting crystal causing a transient accumulation of electrons in the surface region. This triggers a reversible 2H-semiconductor to 1T-metal phase-transition of the surface layer. Electron-phonon coupling of the indirect-bandgap p-doped 2H-MoS2 enables this efficient pathway even at a low density of excited electrons with a distinct optical excitation threshold and saturation behavior. This mechanism needs to be taken into consideration when describing the surface properties of illuminated p-doped 2H-MoS2. In particular, light-induced increased charge mobility and surface activation can cause and enhance the photocatalytic and photoassisted electrochemical hydrogen evolution reaction of water on 2H-MoS2. Generally, it opens up for a way to control not only the surface of p-doped 2H-MoS2 but also related dichalcogenides and layered systems. The findings are based on the sensitivity of time-resolved electron spectroscopy for chemical analysis with photon-energy-tuneable synchrotron radiation.}, language = {en} } @article{TaitReckwitzArvindetal.2021, author = {Tait, Claudia E. and Reckwitz, Anna and Arvind, Malavika and Neher, Dieter and Bittl, Robert and Behrends, Jan}, title = {Spin-spin interactions and spin delocalisation in a doped organic semiconductor probed by EPR spectroscopy}, series = {Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies}, volume = {23}, journal = {Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies}, number = {25}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/d1cp02133h}, pages = {13827 -- 13841}, year = {2021}, abstract = {The enhancement and control of the electrical conductivity of organic semiconductors is fundamental for their use in optoelectronic applications and can be achieved by molecular doping, which introduces additional charge carriers through electron transfer between a dopant molecule and the organic semiconductor. Here, we use Electron Paramagnetic Resonance (EPR) spectroscopy to characterise the unpaired spins associated with the charges generated by molecular doping of the prototypical organic semiconductor poly(3-hexylthiophene) (P3HT) with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F(4)TCNQ) and tris(pentafluorophenyl)borane (BCF). The EPR results reveal the P3HT radical cation as the only paramagnetic species in BCF-doped P3HT films and show evidence for increased mobility of the detected spins at high doping concentrations as well as formation of antiferromagnetically coupled spin pairs leading to decreased spin concentrations at low temperatures. The EPR signature for F(4)TCNQ-doped P3HT is found to be determined by spin exchange between P3HT radical cations and F(4)TCNQ radical anions. Results from continuous-wave and pulse EPR measurements suggest the presence of the unpaired spin on P3HT in a multitude of environments, ranging from free P3HT radical cations with similar properties to those observed in BCF-doped P3HT, to pairs of dipolar and exchange-coupled spins on P3HT and the dopant anion. Characterisation of the proton hyperfine interactions by ENDOR allowed quantification of the extent of spin delocalisation and revealed reduced delocalisation in the F(4)TCNQ-doped P3HT films.}, language = {en} } @article{SandevDomazetoskiKocarevetal.2022, author = {Sandev, Trifce and Domazetoski, Viktor and Kocarev, Ljupco and Metzler, Ralf and Chechkin, Aleksei}, title = {Heterogeneous diffusion with stochastic resetting}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {55}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {7}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8121/ac491c}, pages = {26}, year = {2022}, abstract = {We study a heterogeneous diffusion process (HDP) with position-dependent diffusion coefficient and Poissonian stochastic resetting. We find exact results for the mean squared displacement and the probability density function. The nonequilibrium steady state reached in the long time limit is studied. We also analyse the transition to the non-equilibrium steady state by finding the large deviation function. We found that similarly to the case of the normal diffusion process where the diffusion length grows like t (1/2) while the length scale xi(t) of the inner core region of the nonequilibrium steady state grows linearly with time t, in the HDP with diffusion length increasing like t ( p/2) the length scale xi(t) grows like t ( p ). The obtained results are verified by numerical solutions of the corresponding Langevin equation.}, language = {en} } @article{SharmaBekirLomadzeetal.2022, author = {Sharma, Anjali and Bekir, Marek and Lomadze, Nino and Jung, Se-Hyeong and Pich, Andrij and Santer, Svetlana}, title = {Generation of local diffusioosmotic flow by light responsive microgels}, series = {Langmuir}, volume = {38}, journal = {Langmuir}, number = {20}, publisher = {American Chemical Society}, address = {Washington}, issn = {0743-7463}, doi = {10.1021/acs.langmuir.2c00259}, pages = {6343 -- 6351}, year = {2022}, abstract = {Here we show that microgels trapped at a solid wall can issue liquid flow and transport over distances several times larger than the particle size. The microgel consists of cross-linked poly(N-isopropylacrylamide-co-acrylic acid) (PNIPAM-AA) polymer chains loaded with cationic azobenzene-containing surfactant, which can assume either a trans-or a cis-state depending on the wavelength of the applied irradiation. The microgel, being a selective absorber of trans-isomers, responds by changing its volume under irradiation with light of appropriate wavelength at which the cis-isomers of the surfactant molecules diffuse out of the particle interior. Together with the change in particle size, the expelled cis-isomers form an excess of the concentration and subsequent gradient in osmotic pressure generating a halo of local light-driven diffusioosmotic (l-LDDO) flow. The direction and the strength of the l-LDDO depends on the intensity and irradiation wavelength, as well as on the amount of surfactant absorbed by the microgel. The flow pattern around a microgel is directed radially outward and can be maintained quasi-indefinitely under exposure to blue light when the trans-/cis-ratio is 2/1, establishing a photostationary state. Irradiation with UV light, on the other hand, generates a radially transient flow pattern, which inverts from inward to outward over time at low intensities. By measuring the displacement of tracer particles around neutral microgels during a temperature-induced collapse, we can exclude that a change in particle shape itself causes the flow, i.e., just by expulsion or uptake of water. Ultimately, it is its ability to selectively absorb two isomers of photosensitive surfactant under different irradiation conditions that leads to an effective pumping caused by a self-induced diffusioosmotic flow.}, language = {en} } @article{EckertVazdaCruzOchmannetal.2021, author = {Eckert, Sebastian and Vaz da Cruz, Vin{\´i}cius and Ochmann, Miguel and Ahnen, Inga von and F{\"o}hlisch, Alexander and Huse, Nils}, title = {Breaking the symmetry of pyrimidine}, series = {The journal of physical chemistry letters}, volume = {12}, journal = {The journal of physical chemistry letters}, number = {35}, publisher = {American Chemical Society}, address = {Washington}, issn = {1948-7185}, doi = {10.1021/acs.jpclett.1c01865}, pages = {8637 -- 8643}, year = {2021}, abstract = {Symmetry and its breaking crucially define the chemical properties of molecules and their functionality. Resonant inelastic X-ray scattering is a local electronic structure probe reporting on molecular symmetry and its dynamical breaking within the femtosecond scattering duration. Here, we study pyrimidine, a system from the C-2v point group, in an aqueous solution environment, using scattering though its 2a(2) resonance. Despite the absence of clean parity selection rules for decay transitions from in-plane orbitals, scattering channels including decay from the 7b(2) and 11a(1) orbitals with nitrogen lone pair character are a direct probe for molecular symmetry. Computed spectra of explicitly solvated molecules sampled from a molecular dynamics simulation are combined with the results of a quantum dynamical description of the X-ray scattering process. We observe dominant signatures of core-excited Jahn-Teller induced symmetry breaking for resonant excitation. Solvent contributions are separable by shortening of the effective scattering duration through excitation energy detuning.}, language = {en} } @article{KloseWunderlingWinkelmannetal.2021, author = {Klose, Ann Kristin and Wunderling, Nico and Winkelmann, Ricarda and Donges, Jonathan}, title = {What do we mean, 'tipping cascade'?}, series = {Environmental research letters : ERL}, volume = {16}, journal = {Environmental research letters : ERL}, number = {12}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/ac3955}, pages = {11}, year = {2021}, abstract = {Based on suggested interactions of potential tipping elements in the Earth's climate and in ecological systems, tipping cascades as possible dynamics are increasingly discussed and studied. The activation of such tipping cascades would impose a considerable risk for human societies and biosphere integrity. However, there are ambiguities in the description of tipping cascades within the literature so far. Here we illustrate how different patterns of multiple tipping dynamics emerge from a very simple coupling of two previously studied idealized tipping elements. In particular, we distinguish between a two phase cascade, a domino cascade and a joint cascade. A mitigation of an unfolding two phase cascade may be possible and common early warning indicators are sensitive to upcoming critical transitions to a certain degree. In contrast, a domino cascade may hardly be stopped once initiated and critical slowing down-based indicators fail to indicate tipping of the following element. These different potentials for intervention and anticipation across the distinct patterns of multiple tipping dynamics should be seen as a call to be more precise in future analyses of cascading dynamics arising from tipping element interactions in the Earth system.}, language = {en} } @article{MaitiMakwanaZhangetal.2022, author = {Maiti, Snehanshu and Makwana, Kirit and Zhang, Heshou and Yan, Huirong}, title = {Cosmic-ray transport in magnetohydrodynamic turbulence}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics / part 1}, volume = {926}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics / part 1}, number = {1}, publisher = {Institute of Physics Publ.}, address = {London}, issn = {1538-4357}, doi = {10.3847/1538-4357/ac46c8}, pages = {8}, year = {2022}, abstract = {This paper studies cosmic-ray (CR) transport in magnetohydrodynamic (MHD) turbulence. CR transport is strongly dependent on the properties of the magnetic turbulence. We perform test particle simulations to study the interactions of CR with both total MHD turbulence and decomposed MHD modes. The spatial diffusion coefficients and the pitch angle scattering diffusion coefficients are calculated from the test particle trajectories in turbulence. Our results confirm that the fast modes dominate the CR propagation, whereas Alfven and slow modes are much less efficient and have shown similar pitch-angle scattering rates. We investigate the cross field transport on large and small scales. On large/global scales, normal diffusion is observed and the diffusion coefficient is suppressed by M-A(zeta) compared to the parallel diffusion coefficients, with zeta closer to 4 in Alfven modes than that in total turbulence, as theoretically expected. For the CR transport on scales smaller than the turbulence injection scale, both the local and global magnetic reference frames are adopted. Superdiffusion is observed on such small scales in all the cases. Particularly, CR transport in Alfven modes show clear Richardson diffusion in the local reference frame. The diffusion transitions smoothly from the Richardson's one with index 1.5 to normal diffusion as the particle mean free path decreases from lambda(parallel to) >> L to lambda(parallel to) << L, where L is the injection/coherence length of turbulence. Our results have broad applications to CRs in various astrophysical environments.}, language = {en} } @article{AransonPikovskij2022, author = {Aranson, Igor S. and Pikovskij, Arkadij}, title = {Confinement and collective escape of active particles}, series = {Physical review letters}, volume = {128}, journal = {Physical review letters}, number = {10}, publisher = {American Physical Society}, address = {College Park, Md.}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.128.108001}, pages = {6}, year = {2022}, abstract = {Active matter broadly covers the dynamics of self-propelled particles. While the onset of collective behavior in homogenous active systems is relatively well understood, the effect of inhomogeneities such as obstacles and traps lacks overall clarity. Here, we study how interacting, self-propelled particles become trapped and released from a trap. We have found that captured particles aggregate into an orbiting condensate with a crystalline structure. As more particles are added, the trapped condensates escape as a whole. Our results shed light on the effects of confinement and quenched disorder in active matter.}, language = {en} } @article{NakoudiRitterStachlewska2021, author = {Nakoudi, Konstantina and Ritter, Christoph and Stachlewska, Iwona Sylwia}, title = {Properties of cirrus clouds over the European Arctic (Ny-Alesund, Svalbard)}, series = {Remote sensing / Molecular Diversity Preservation International (MDPI)}, volume = {13}, journal = {Remote sensing / Molecular Diversity Preservation International (MDPI)}, number = {22}, publisher = {MDPI}, address = {Basel}, issn = {2072-4292}, doi = {10.3390/rs13224555}, pages = {19}, year = {2021}, abstract = {Cirrus is the only cloud type capable of inducing daytime cooling or heating at the top of the atmosphere (TOA) and the sign of its radiative effect highly depends on its optical depth. However, the investigation of its geometrical and optical properties over the Arctic is limited. In this work the long-term properties of cirrus clouds are explored for the first time over an Arctic site (Ny-Alesund, Svalbard) using lidar and radiosonde measurements from 2011 to 2020. The optical properties were quality assured, taking into account the effects of specular reflections and multiple-scattering. Cirrus clouds were generally associated with colder and calmer wind conditions compared to the 2011-2020 climatology. However, the dependence of cirrus properties on temperature and wind speed was not strong. Even though the seasonal cycle was not pronounced, the winter-time cirrus appeared under lower temperatures and stronger wind conditions. Moreover, in winter, geometrically- and optically-thicker cirrus were found and their ice particles tended to be more spherical. The majority of cirrus was associated with westerly flow and westerly cirrus tended to be geometrically-thicker. Overall, optically-thinner layers tended to comprise smaller and less spherical ice crystals, most likely due to reduced water vapor deposition on the particle surface. Compared to lower latitudes, the cirrus layers over Ny-Alesund were more absorbing in the visible spectral region and they consisted of more spherical ice particles.}, language = {en} } @article{ToenjesFiorePereiradaSilva2021, author = {T{\"o}njes, Ralf and Fiore, Carlos E. and Pereira da Silva, Tiago}, title = {Coherence resonance in influencer networks}, series = {Nature Communications}, volume = {12}, journal = {Nature Communications}, number = {1}, publisher = {Nature Publishing Group UK}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-020-20441-4}, pages = {8}, year = {2021}, abstract = {Complex networks are abundant in nature and many share an important structural property: they contain a few nodes that are abnormally highly connected (hubs). Some of these hubs are called influencers because they couple strongly to the network and play fundamental dynamical and structural roles. Strikingly, despite the abundance of networks with influencers, little is known about their response to stochastic forcing. Here, for oscillatory dynamics on influencer networks, we show that subjecting influencers to an optimal intensity of noise can result in enhanced network synchronization. This new network dynamical effect, which we call coherence resonance in influencer networks, emerges from a synergy between network structure and stochasticity and is highly nonlinear, vanishing when the noise is too weak or too strong. Our results reveal that the influencer backbone can sharply increase the dynamical response in complex systems of coupled oscillators. Influencer networks include a small set of highly-connected nodes and can reach synchrony only via strong node interaction. Tonjes et al. show that introducing an optimal amount of noise enhances synchronization of such networks, which may be relevant for neuroscience or opinion dynamics applications.}, language = {en} } @article{BeckerD'AloisioChristensonetal.2021, author = {Becker, George D. and D'Aloisio, Anson and Christenson, Holly M. and Zhu, Yongda and Worseck, G{\´a}bor and Bolton, James S.}, title = {The mean free path of ionizing photons at 5 < z < 6}, series = {Monthly notices of the Royal Astronomical Society}, volume = {508}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stab2696}, pages = {1853 -- 1869}, year = {2021}, abstract = {The mean free path of ionizing photons, lambda(mfp), is a key factor in the photoionization of the intergalactic medium (IGM). At z greater than or similar to 5, however, lambda(mfp) may be short enough that measurements towards QSOs are biased by the QSO proximity effect. We present new direct measurements of lambda(mfp) that address this bias and extend up to z similar to 6 for the first time. Our measurements at z similar to 5 are based on data from the Giant Gemini GMOS survey and new Keck LRIS observations of low-luminosity QSOs. At z similar to 6 we use QSO spectra from Keck ESI and VLT X-Shooter. We measure lambda(mfp) = 9.09(-1.28)(+1.62) proper Mpc and 0.75(-0.45)(+0.65) proper Mpc (68 percent confidence) at z = 5.1 and 6.0, respectively. The results at z = 5.1 are consistent with existing measurements, suggesting that bias from the proximity effect is minor at this redshift. At z = 6.0, however, we find that neglecting the proximity effect biases the result high by a factor of two or more. Our measurement at z = 6.0 falls well below extrapolations from lower redshifts, indicating rapid evolution in lambda(mfp) over 5 < z < 6. This evolution disfavours models in which reionization ended early enough that the IGM had time to fully relax hydrodynamically by z = 6, but is qualitatively consistent with models wherein reionization completed at z = 6 or even significantly later. Our mean free path results are most consistent with late reionization models wherein the IGM is still 20 percent neutral at z = 6, although our measurement at z = 6.0 is even lower than these models prefer.}, language = {en} } @article{ZuWarbyStolterfohtetal.2021, author = {Zu, Fengshuo and Warby, Jonathan and Stolterfoht, Martin and Li, Jinzhao and Shin, Dongguen and Unger, Eva and Koch, Norbert}, title = {Photoinduced energy-level realignment at interfaces between organic semiconductors and metal-halide perovskites}, series = {Physical review letters}, volume = {127}, journal = {Physical review letters}, number = {24}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.127.246401}, pages = {6}, year = {2021}, abstract = {In contrast to the common conception that the interfacial energy-level alignment is affixed once the interface is formed, we demonstrate that heterojunctions between organic semiconductors and metal-halide perovskites exhibit huge energy-level realignment during photoexcitation. Importantly, the photoinduced level shifts occur in the organic component, including the first molecular layer in direct contact with the perovskite. This is caused by charge-carrier accumulation within the organic semiconductor under illumination and the weak electronic coupling between the junction components.}, language = {en} } @phdthesis{Ronneberger2024, author = {Ronneberger, Sebastian}, title = {Nanolayer Fused Deposition Modeling (NanoFDM)}, school = {Universit{\"a}t Potsdam}, pages = {170}, year = {2024}, language = {en} } @article{ZeitzReeseBeckmannetal.2021, author = {Zeitz, Maria and Reese, Ronja and Beckmann, Johanna and Krebs-Kanzow, Uta and Winkelmann, Ricarda}, title = {Impact of the melt-albedo feedback on the future evolution of the Greenland Ice Sheet with PISM-dEBM-simple}, series = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, volume = {15}, journal = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, number = {12}, publisher = {Copernicus}, address = {Katlenburg-Lindau}, issn = {1994-0416}, doi = {10.5194/tc-15-5739-2021}, pages = {5739 -- 5764}, year = {2021}, abstract = {Surface melting of the Greenland Ice Sheet contributes a large amount to current and future sea level rise. Increased surface melt may lower the reflectivity of the ice sheet surface and thereby increase melt rates: the so-called melt-albedo feedback describes this self-sustaining increase in surface melting. In order to test the effect of the melt-albedo feedback in a prognostic ice sheet model, we implement dEBM-simple, a simplified version of the diurnal Energy Balance Model dEBM, in the Parallel Ice Sheet Model (PISM). The implementation includes a simple representation of the melt-albedo feedback and can thereby replace the positive-degree-day melt scheme. Using PISM-dEBM-simple, we find that this feedback increases ice loss through surface warming by 60 \% until 2300 for the high-emission scenario RCP8.5 when compared to a scenario in which the albedo remains constant at its present-day values. With an increase of 90 \% compared to a fixed-albedo scenario, the effect is more pronounced for lower surface warming under RCP2.6. Furthermore, assuming an immediate darkening of the ice surface over all summer months, we estimate an upper bound for this effect to be 70 \% in the RCP8.5 scenario and a more than 4-fold increase under RCP2.6. With dEBM-simple implemented in PISM, we find that the melt-albedo feedback is an essential contributor to mass loss in dynamic simulations of the Greenland Ice Sheet under future warming.}, language = {en} } @phdthesis{Kanehira2023, author = {Kanehira, Yuya}, title = {Versatile DNA origami based SERS substrates for spectroscopic applications}, pages = {115}, year = {2023}, language = {en} } @article{HaasShpritsAllisonetal.2022, author = {Haas, Bernhard and Shprits, Yuri Y. and Allison, Hayley and Wutzig, Michael and Wang, Dedong}, title = {Which parameter controls ring current electron dynamics}, series = {Frontiers in astronomy and space sciences}, volume = {9}, journal = {Frontiers in astronomy and space sciences}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-987X}, doi = {10.3389/fspas.2022.911002}, pages = {11}, year = {2022}, abstract = {Predicting the electron population of Earth's ring current during geomagnetic storms still remains a challenging task. In this work, we investigate the sensitivity of 10 keV ring current electrons to different driving processes, parameterised by the Kp index, during several moderate and intense storms. Results are validated against measurements from the Van Allen Probes satellites. Perturbing the Kp index allows us to identify the most dominant processes for moderate and intense storms respectively. We find that during moderate storms (Kp < 6) the drift velocities mostly control the behaviour of low energy electrons, while loss from wave-particle interactions is the most critical parameter for quantifying the evolution of intense storms (Kp > 6). Perturbations of the Kp index used to drive the boundary conditions at GEO and set the plasmapause location only show a minimal effect on simulation results over a limited L range. It is further shown that the flux at L \& SIM; 3 is more sensitive to changes in the Kp index compared to higher L shells, making it a good proxy for validating the source-loss balance of a ring current model.}, language = {en} } @article{HindesAssafSchwartz2022, author = {Hindes, Jason and Assaf, Michael and Schwartz, Ira B.}, title = {Outbreak size distribution in stochastic epidemic models}, series = {Physical review letters}, volume = {128}, journal = {Physical review letters}, number = {7}, publisher = {American Physical Society}, address = {College Park, Md.}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.128.078301}, pages = {6}, year = {2022}, abstract = {Motivated by recent epidemic outbreaks, including those of COVID-19, we solve the canonical problem of calculating the dynamics and likelihood of extensive outbreaks in a population within a large class of stochastic epidemic models with demographic noise, including the susceptible-infected-recovered (SIR) model and its general extensions. In the limit of large populations, we compute the probability distribution for all extensive outbreaks, including those that entail unusually large or small (extreme) proportions of the population infected. Our approach reveals that, unlike other well-known examples of rare events occurring in discrete-state stochastic systems, the statistics of extreme outbreaks emanate from a full continuum of Hamiltonian paths, each satisfying unique boundary conditions with a conserved probability flux.}, language = {en} } @article{BozzoRomanoFerrignoetal.2022, author = {Bozzo, Enrico and Romano, Patrizia and Ferrigno, Carlo and Oskinova, Lida}, title = {The symbiotic X-ray binaries Sct X-1, 4U 1700+24, and IGR J17329-2731}, series = {Monthly notices of the Royal Astronomical Society}, volume = {513}, journal = {Monthly notices of the Royal Astronomical Society}, number = {1}, publisher = {Oxford University Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stac907}, pages = {42 -- 54}, year = {2022}, abstract = {Symbiotic X-ray binaries are systems hosting a neutron star accreting form the wind of a late-type companion. These are rare objects and so far only a handful of them are known. One of the most puzzling aspects of the symbiotic X-ray binaries is the possibility that they contain strongly magnetized neutron stars. These are expected to be evolutionary much younger compared to their evolved companions and could thus be formed through the (yet poorly known) accretion induced collapse of a white dwarf. In this paper, we perform a broad-band X-ray and soft gamma-ray spectroscopy of two known symbiotic binaries, Sct X-1 and 4U 1700+24, looking for the presence of cyclotron scattering features that could confirm the presence of strongly magnetized NSs. We exploited available Chandra, Swift, and NuSTAR data. We find no evidence of cyclotron resonant scattering features (CRSFs) in the case of Sct X-1 but in the case of 4U 1700+24 we suggest the presence of a possible CRSF at similar to 16 keV and its first harmonic at similar to 31 keV, although we could not exclude alternative spectral models for the broad-band fit. If confirmed by future observations, 4U 1700+24 could be the second symbiotic X-ray binary with a highly magnetized accretor. We also report about our long-term monitoring of the last discovered symbiotic X-ray binary IGR J17329-2731 performed with Swift/XRT. The monitoring revealed that, as predicted, in 2017 this object became a persistent and variable source, showing X-ray flares lasting for a few days and intriguing obscuration events that are interpreted in the context of clumpy wind accretion.}, language = {en} } @article{PerdigonToroLeQuangPhuongZeiskeetal.2021, author = {Perdig{\´o}n-Toro, Lorena and Le Quang Phuong, and Zeiske, Stefan and Vandewal, Koen and Armin, Ardalan and Shoaee, Safa and Neher, Dieter}, title = {Excitons dominate the emission from PM6}, series = {ACS energy letters / American Chemical Society}, volume = {6}, journal = {ACS energy letters / American Chemical Society}, number = {2}, publisher = {American Chemical Society}, address = {Washington}, issn = {2380-8195}, doi = {10.1021/acsenergylett.0c02572}, pages = {557 -- 564}, year = {2021}, abstract = {Non-fullerene acceptors (NFAs) are far more emissive than their fullerene-based counterparts. Here, we study the spectral properties of photocurrent generation and recombination of the blend of the donor polymer PM6 with the NFA Y6. We find that the radiative recombination of free charges is almost entirely due to the re-occupation and decay of Y6 singlet excitons, but that this pathway contributes less than 1\% to the total recombination. As such, the open-circuit voltage of the PM6:Y6 blend is determined by the energetics and kinetics of the charge-transfer (CT) state. Moreover, we find that no information on the energetics of the CT state manifold can be gained from the low-energy tail of the photovoltaic external quantum efficiency spectrum, which is dominated by the excitation spectrum of the Y6 exciton. We, finally, estimate the charge-separated state to lie only 120 meV below the Y6 singlet exciton energy, meaning that this blend indeed represents a high-efficiency system with a low energetic offset.}, language = {en} } @article{ChaurasiaDietrichRosswog2021, author = {Chaurasia, Swami Vivekanandji and Dietrich, Tim and Rosswog, Stephan}, title = {Black hole-neutron star simulations with the BAM code}, series = {Physical review : D, Particles, fields, gravitation, and cosmology}, volume = {104}, journal = {Physical review : D, Particles, fields, gravitation, and cosmology}, number = {8}, publisher = {American Physical Society}, address = {Ridge, NY}, issn = {2470-0010}, doi = {10.1103/PhysRevD.104.084010}, pages = {15}, year = {2021}, abstract = {The first detections of black hole-neutron star mergers (GW200105 and GW200115) by the LIGO-Virgo-Kagra Collaboration mark a significant scientific breakthrough. The physical interpretation of pre- and postmerger signals requires careful cross-examination between observational and theoretical modelling results. Here we present the first set of black hole-neutron star simulations that were obtained with the numerical-relativity code BAM. Our initial data are constructed using the public LORENE spectral library, which employs an excision of the black hole interior. BAM, in contrast, uses the moving-puncture gauge for the evolution. Therefore, we need to "stuff" the black hole interior with smooth initial data to evolve the binary system in time. This procedure introduces constraint violations such that the constraint damping properties of the evolution system are essential to increase the accuracy of the simulation and in particular to reduce spurious center-of-mass drifts. Within BAM we evolve the Z4c equations and we compare our gravitational-wave results with those of the SXS collaboration and results obtained with the SACRA code. While we find generally good agreement with the reference solutions and phase differences less than or similar to 0.5 rad at the moment of merger, the absence of a clean convergence order in our simulations does not allow for a proper error quantification. We finally present a set of different initial conditions to explore how the merger of black hole neutron star systems depends on the involved masses, spins, and equations of state.}, language = {en} } @article{OskinovaSchaerer2022, author = {Oskinova, Lida and Schaerer, Daniel}, title = {Ionization of He II in star-forming galaxies by X-rays from cluster winds and superbubbles}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {661}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/202142520}, pages = {6}, year = {2022}, abstract = {The nature of the sources powering nebular He II emission in star-forming galaxies remains debated, and various types of objects have been considered, including Wolf-Rayet stars, X-ray binaries, and Population III stars. Modern X-ray observations show the ubiquitous presence of hot gas filling star-forming galaxies. We use a collisional ionization plasma code to compute the specific He II ionizing flux produced by hot gas and show that if its temperature is not too high (less than or similar to 2.5 MK), then the observed levels of soft diffuse X-ray radiation could explain He II ionization in galaxies. To gain a physical understanding of this result, we propose a model that combines the hydrodynamics of cluster winds and hot superbubbles with observed populations of young massive clusters in galaxies. We find that in low-metallicity galaxies, the temperature of hot gas is lower and the production rate of He II ionizing photons is higher compared to high-metallicity galaxies. The reason is that the slower stellar winds of massive stars in lower-metallicity galaxies input less mechanical energy in the ambient medium. Furthermore, we show that ensembles of star clusters up to similar to 10-20 Myr old in galaxies can produce enough soft X-rays to induce nebular He II emission. We discuss observations of the template low-metallicity galaxy I Zw 18 and suggest that the He II nebula in this galaxy is powered by a hot superbubble. Finally, appreciating the complex nature of stellar feedback, we suggest that soft X-rays from hot superbubbles are among the dominant sources of He II ionizing flux in low-metallicity star-forming galaxies.}, language = {en} } @article{BarraHovhannisyanImparato2022, author = {Barra, Felipe and Hovhannisyan, Karen and Imparato, Alberto}, title = {Quantum batteries at the verge of a phase transition}, series = {New journal of physics : the open-access journal for physics}, volume = {24}, journal = {New journal of physics : the open-access journal for physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/ac43ed}, pages = {17}, year = {2022}, abstract = {Starting from the observation that the reduced state of a system strongly coupled to a bath is, in general, an athermal state, we introduce and study a cyclic battery-charger quantum device that is in thermal equilibrium, or in a ground state, during the charge storing stage. The cycle has four stages: the equilibrium storage stage is interrupted by disconnecting the battery from the charger, then work is extracted from the battery, and then the battery is reconnected with the charger; finally, the system is brought back to equilibrium. At no point during the cycle are the battery-charger correlations artificially erased. We study the case where the battery and charger together comprise a spin-1/2 Ising chain, and show that the main characteristics-the extracted energy and the thermodynamic efficiency-can be enhanced by operating the cycle close to the quantum phase transition point. When the battery is just a single spin, we find that the output work and efficiency show a scaling behavior at criticality and derive the corresponding critical exponents. Due to always present correlations between the battery and the charger, operations that are equivalent from the perspective of the battery can entail different energetic costs for switching the battery-charger coupling. This happens only when the coupling term does not commute with the battery's bare Hamiltonian, and we use this purely quantum leverage to further optimize the performance of the device.}, language = {en} } @article{PauzonMishurovaEvsevleevetal.2021, author = {Pauzon, Camille and Mishurova, Tatiana and Evsevleev, Sergei and Dubiez-Le Goff, Sophie and Murugesan, Saravanakumar and Bruno, Giovanni and Hryha, Eduard}, title = {Residual stresses and porosity in Ti-6Al-4V produced by laser powder bed fusion as a function of process atmosphere and component design}, series = {Additive manufacturing}, volume = {47}, journal = {Additive manufacturing}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2214-8604}, doi = {10.1016/j.addma.2021.102340}, pages = {10}, year = {2021}, abstract = {The influence of the process gas, laser scan speed, and sample thickness on the build-up of residual stresses and porosity in Ti-6Al-4V produced by laser powder bed fusion was studied. Pure argon and helium, as well as a mixture of those (30\% helium), were employed to establish process atmospheres with a low residual oxygen content of 100 ppm O-2. The results highlight that the subsurface residual stresses measured by X-ray diffraction were significantly lower in the thin samples (220 MPa) than in the cuboid samples (645 MPa). This difference was attributed to the shorter laser vector length, resulting in heat accumulation and thus in-situ stress relief. The addition of helium to the process gas did not introduce additional subsurface residual stresses in the simple geometries, even for the increased scanning speed. Finally, larger deflection was found in the cantilever built under helium (after removal from the baseplate), than in those produced under argon and an argon-helium mixture. This result demonstrates that complex designs involving large scanned areas could be subjected to higher residual stress when manufactured under helium due to the gas's high thermal conductivity, heat capacity, and thermal diffusivity.}, language = {en} } @article{PranavBenduhnNymanetal.2021, author = {Pranav, Manasi and Benduhn, Johannes and Nyman, Mathias and Hosseini, Seyed Mehrdad and Kublitski, Jonas and Shoaee, Safa and Neher, Dieter and Leo, Karl and Spoltore, Donato}, title = {Enhanced charge selectivity via anodic-C60 layer reduces nonradiative losses in organic solar cells}, series = {ACS applied materials \& interfaces}, volume = {13}, journal = {ACS applied materials \& interfaces}, number = {10}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/acsami.1c00049}, pages = {12603 -- 12609}, year = {2021}, abstract = {Interfacial layers in conjunction with suitable charge-transport layers can significantly improve the performance of optoelectronic devices by facilitating efficient charge carrier injection and extraction. This work uses a neat C-60 interlayer on the anode to experimentally reveal that surface recombination is a significant contributor to nonradiative recombination losses in organic solar cells. These losses are shown to proportionally increase with the extent of contact between donor molecules in the photoactive layer and a molybdenum oxide (MoO3) hole extraction layer, proven by calculating voltage losses in low- and high-donor-content bulk heterojunction device architectures. Using a novel in-device determination of the built-in voltage, the suppression of surface recombination, due to the insertion of a thin anodic-C-60 interlayer on MoO3, is attributed to an enhanced built-in potential. The increased built-in voltage reduces the presence of minority charge carriers at the electrodes-a new perspective on the principle of selective charge extraction layers. The benefit to device efficiency is limited by a critical interlayer thickness, which depends on the donor material in bilayer devices. Given the high popularity of MoO3 as an efficient hole extraction and injection layer and the increasingly popular discussion on interfacial phenomena in organic optoelectronic devices, these findings are relevant to and address different branches of organic electronics, providing insights for future device design.}, language = {en} } @article{HeWangHeetal.2022, author = {He, Yushuang and Wang, Feipeng and He, Li and Wang, Qiang and Li, Jian and Qian, Yihua and Gerhard, Reimund and Plath, Ronald}, title = {An insight Into the role of Nano-Alumina on DC Flashover-Resistance and surface charge variation of Epoxy Nanocomposites}, series = {IEEE transactions on dielectrics and electrical insulation}, volume = {29}, journal = {IEEE transactions on dielectrics and electrical insulation}, number = {3}, publisher = {Inst. of Electr. and Electronics Engineers}, address = {Piscataway}, issn = {1070-9878}, doi = {10.1109/TDEI.2022.3173510}, pages = {1022 -- 1029}, year = {2022}, abstract = {The addition of nano-Al2O3 has been shown to enhance the breakdown voltage of epoxy resin, but its flashover results appeared with disputation. This work concentrates on the surface charge variation and dc flashover performance of epoxy resin with nano-Al2O3 doping. The dispersion of nano-Al2O3 in epoxy is characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The dc flashover voltages of samples under either positive or negative polarity are measured with a finger-electrode system, and the surface charge variations before and after flashovers were identified from the surface potential mapping. The results evidence that nano-Al2O3 would lead to a 16.9\% voltage drop for the negative flashovers and a 6.8\% drop for positive cases. It is found that one-time flashover clears most of the accumulated surface charges, regardless of positive or negative. As a result, the ground electrode is neighbored by an equipotential zone enclosed with low-density heterocharges. The equipotential zone tends to be broadened after 20 flashovers. The nano-Al2O3 is noticed as beneficial to downsize the equipotential zone due to its capability on charge migration, which is reasonable to maintain flashover voltage at a high level after multiple flashovers. Hence, nano-Al2O3 plays a significant role in improving epoxy with high resistance to multiple flashovers.}, language = {en} } @article{OchmannVazdaCruzEckertetal.2022, author = {Ochmann, Miguel and Vaz da Cruz, Vinicius and Eckert, Sebastian and Huse, Nils and F{\"o}hlisch, Alexander}, title = {R-Group stabilization in methylated formamides observed by resonant inelastic X-ray scattering}, series = {Chemical communications: ChemComm}, volume = {58}, journal = {Chemical communications: ChemComm}, number = {63}, publisher = {The Royal Society of Chemistry}, address = {Cambridge}, issn = {1359-7345}, doi = {10.1039/d2cc00053a}, pages = {8834 -- 8837}, year = {2022}, abstract = {The inherent stability of methylated formamides is traced to a stabilization of the deep-lying sigma-framework by resonant inelastic X-ray scattering at the nitrogen K-edge. Charge transfer from the amide nitrogen to the methyl groups underlie this stabilization mechanism that leaves the aldehyde group essentially unaltered and explains the stability of secondary and tertiary amides.}, language = {en} } @article{CulpanGeierReindletal.2022, author = {Culpan, Richard and Geier, Stephan and Reindl, Nicole and Pelisoli, Ingrid and Gentile Fusillo, Nicola Pietro and Vorontseva, Alina}, title = {The population of hot subdwarf stars studied with Gaia}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {662}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/202243337}, pages = {19}, year = {2022}, abstract = {In light of substantial new discoveries of hot subdwarfs by ongoing spectroscopic surveys and the availability of the Gaia mission Early Data Release 3 (EDR3), we compiled new releases of two catalogues of hot subluminous stars: the data release 3 (DR3) catalogue of the known hot subdwarf stars contains 6616 unique sources and provides multi-band photometry, and astrometry from Gaia EDR3 as well as classifications based on spectroscopy and colours. This is an increase of 742 objects over the DR2 catalogue. This new catalogue provides atmospheric parameters for 3087 stars and radial velocities for 2791 stars from the literature. In addition, we have updated the Gaia Data Release 2 (DR2) catalogue of hot subluminous stars using the improved accuracy of the Gaia EDR3 data set together with updated quality and selection criteria to produce the Gaia EDR3 catalogue of 61 585 hot subluminous stars, representing an increase of 21 785 objects. The improvements in Gaia EDR3 astrometry and photometry compared to Gaia DR2 have enabled us to define more sophisticated selection functions. In particular, we improved hot subluminous star detection in the crowded regions of the Galactic plane as well as in the direction of the Magellanic Clouds by including sources with close apparent neighbours but with flux levels that dominate the neighbourhood.}, language = {en} } @article{RuedigerSchultzHollerbach2021, author = {R{\"u}diger, G{\"u}nther and Schultz, Manfred and Hollerbach, Rainer}, title = {Destabilization of super-rotating Taylor-Couette flows by current-free helical magnetic fields}, series = {Journal of plasma physics}, volume = {87}, journal = {Journal of plasma physics}, number = {2}, publisher = {Cambridge University Press}, address = {London}, issn = {1469-7807}, doi = {10.1017/S0022377821000295}, pages = {19}, year = {2021}, abstract = {In an earlier paper we showed that the combination of azimuthal magnetic fields and super-rotation in Taylor-Couette flows of conducting fluids can be unstable against non-axisymmetric perturbations if the magnetic Prandtl number of the fluid is Pm not equal 1. Here we demonstrate that the addition of a weak axial field component allows axisymmetric perturbation patterns for Pm of order unity depending on the boundary conditions. The axisymmetric modes only occur for magnetic Mach numbers (of the azimuthal field) of order unity, while higher values are necessary for the non-axisymmetric modes. The typical growth time of the instability and the characteristic time scale of the axial migration of the axisymmetric mode are long compared with the rotation period, but short compared with the magnetic diffusion time. The modes travel in the positive or negative z direction along the rotation axis depending on the sign of B phi Bz. We also demonstrate that the azimuthal components of flow and field perturbations travel in phase if vertical bar B phi vertical bar >> vertical bar B-z vertical bar, independent of the form of the rotation law. Within a short-wave approximation for thin gaps it is also shown (in an appendix) that for ideal fluids the considered helical magnetorotational instability only exists for rotation laws with negative shear.}, language = {en} } @article{FeldmannReeseWinkelmannetal.2022, author = {Feldmann, Johannes and Reese, Ronja and Winkelmann, Ricarda and Levermann, Anders}, title = {Shear-margin melting causes stronger transient ice discharge than ice-stream melting in idealized simulations}, series = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, volume = {16}, journal = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, number = {5}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1994-0416}, doi = {10.5194/tc-16-1927-2022}, pages = {1927 -- 1940}, year = {2022}, abstract = {Basal ice-shelf melting is the key driver of Antarctica's increasing sea-level contribution. In diminishing the buttressing force of the ice shelves that fringe the ice sheet, the melting increases the ice discharge into the ocean. Here we contrast the influence of basal melting in two different ice-shelf regions on the time-dependent response of an isothermal, inherently buttressed ice-sheet-shelf system. In the idealized numerical simulations, the basal-melt perturbations are applied close to the grounding line in the ice-shelf's (1) ice-stream region, where the ice shelf is fed by the fastest ice masses that stream through the upstream bed trough and (2) shear margins, where the ice flow is slower. The results show that melting below one or both of the shear margins can cause a decadal to centennial increase in ice discharge that is more than twice as large compared to a similar perturbation in the ice-stream region. We attribute this to the fact that melt-induced ice-shelf thinning in the central grounding-line region is attenuated very effectively by the fast flow of the central ice stream. In contrast, the much slower ice dynamics in the lateral shear margins of the ice shelf facilitate sustained ice-shelf thinning and thereby foster buttressing reduction. Regardless of the melt location, a higher melt concentration toward the grounding line generally goes along with a stronger response. Our results highlight the vulnerability of outlet glaciers to basal melting in stagnant, buttressing-relevant ice-shelf regions, a mechanism that may gain importance under future global warming.}, language = {en} } @article{MientusNowakWulffetal.2023, author = {Mientus, Lukas and Nowak, Anna and Wulff, Peter and Borowski, Andreas}, title = {Unterrichtsanalyse und Reflexion}, series = {Reflexion in der Lehrkr{\"a}ftebildung: Empirisch - Phasen{\"u}bergreifend - Interdisziplin{\"a}r (Potsdamer Beitr{\"a}ge zur Lehrerbildung und Bildungsforschung ; 4)}, journal = {Reflexion in der Lehrkr{\"a}ftebildung: Empirisch - Phasen{\"u}bergreifend - Interdisziplin{\"a}r (Potsdamer Beitr{\"a}ge zur Lehrerbildung und Bildungsforschung ; 4)}, number = {4}, editor = {Mientus, Lukas and Klempin, Christiane and Nowak, Anna}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-566-8}, issn = {2626-3556}, doi = {10.25932/publishup-63200}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-632005}, pages = {445 -- 452}, year = {2023}, abstract = {Schulpraktische Phasen stellen eine bedeutende praxisnahe Lerngelegenheit im Lehramtsstudium dar, da sie Raum f{\"u}r umfangreiche Reflexionen der eigenen Lernerfahrung bieten. Das im Studium erworbene theoretisch-formale Wissen steht hierbei dem praktischen Wissen und K{\"o}nnen gegen{\"u}ber. Mit der professionellen Entwicklung im Referendariat, besonders im Kompetenzbereich des Unterrichtens, kann geschlussfolgert werden, dass sich eine Reflexion {\"u}ber eher fachliche Aspekte unter den Studierenden im Referendariat auf eine Reflexion {\"u}ber eher {\"u}berfachliche und p{\"a}dagogische Aspekte weitet. Infolge der Analyse von N = 55 schriftlichen Fremdreflexionen von angehenden Physiklehrkr{\"a}ften aus Studium und Referendariat konnte diese Hypothese f{\"u}r den Bereich der Unterrichtsanalyse und -reflexion unterst{\"u}tzt werden. Weiter wurde aus der Videovignette ein Workshopangebot f{\"u}r Lehrkr{\"a}fte der zweiten und dritten Phase der Lehrkr{\"a}ftebildung entwickelt, erprobt und evaluiert.}, language = {de} } @article{PetreskaPejovSandevetal.2022, author = {Petreska, Irina and Pejov, Ljupco and Sandev, Trifce and Kocarev, Ljupčo and Metzler, Ralf}, title = {Tuning of the dielectric relaxation and complex susceptibility in a system of polar molecules: a generalised model based on rotational diffusion with resetting}, series = {Fractal and fractional}, volume = {6}, journal = {Fractal and fractional}, number = {2}, publisher = {MDPI AG, Fractal Fract Editorial Office}, address = {Basel}, issn = {2504-3110}, doi = {10.3390/fractalfract6020088}, pages = {23}, year = {2022}, abstract = {The application of the fractional calculus in the mathematical modelling of relaxation processes in complex heterogeneous media has attracted a considerable amount of interest lately. The reason for this is the successful implementation of fractional stochastic and kinetic equations in the studies of non-Debye relaxation. In this work, we consider the rotational diffusion equation with a generalised memory kernel in the context of dielectric relaxation processes in a medium composed of polar molecules. We give an overview of existing models on non-exponential relaxation and introduce an exponential resetting dynamic in the corresponding process. The autocorrelation function and complex susceptibility are analysed in detail. We show that stochastic resetting leads to a saturation of the autocorrelation function to a constant value, in contrast to the case without resetting, for which it decays to zero. The behaviour of the autocorrelation function, as well as the complex susceptibility in the presence of resetting, confirms that the dielectric relaxation dynamics can be tuned by an appropriate choice of the resetting rate. The presented results are general and flexible, and they will be of interest for the theoretical description of non-trivial relaxation dynamics in heterogeneous systems composed of polar molecules.}, language = {en} } @article{ZhaoSarhanEljarratetal.2022, author = {Zhao, Yuhang and Sarhan, Radwan Mohamed and Eljarrat, Alberto and Kochovski, Zdravko and Koch, Christoph and Schmidt, Bernd and Koopman, Wouter-Willem Adriaan and Lu, Yan}, title = {Surface-functionalized Au-Pd nanorods with enhanced photothermal conversion and catalytic performance}, series = {ACS applied materials \& interfaces}, volume = {14}, journal = {ACS applied materials \& interfaces}, number = {15}, publisher = {American Chemical Society}, address = {Washington, DC}, issn = {1944-8244}, doi = {10.1021/acsami.2c00221}, pages = {17259 -- 17272}, year = {2022}, abstract = {Bimetallic nanostructures comprising plasmonic and catalytic components have recently emerged as a promising approach to generate a new type of photo-enhanced nanoreactors. Most designs however concentrate on plasmon-induced charge separation, leaving photo-generated heat as a side product. This work presents a photoreactor based on Au-Pd nanorods with an optimized photothermal conversion, which aims to effectively utilize the photo-generated heat to increase the rate of Pd-catalyzed reactions. Dumbbell-shaped Au nanorods were fabricated via a seed-mediated growth method using binary surfactants. Pd clusters were selectively grown at the tips of the Au nanorods, using the zeta potential as a new synthetic parameter to indicate the surfactant remaining on the nanorod surface. The photothermal conversion of the Au-Pd nanorods was improved with a thin layer of polydopamine (PDA) or TiO2. As a result, a 60\% higher temperature increment of the dispersion compared to that for bare Au rods at the same light intensity and particle density could be achieved. The catalytic performance of the coated particles was then tested using the reduction of 4-nitrophenol as the model reaction. Under light, the PDA-coated Au-Pd nanorods exhibited an improved catalytic activity, increasing the reaction rate by a factor 3. An analysis of the activation energy confirmed the photoheating effect to be the dominant mechanism accelerating the reaction. Thus, the increased photothermal heating is responsible for the reaction acceleration. Interestingly, the same analysis shows a roughly 10\% higher reaction rate for particles under illumination compared to under dark heating, possibly implying a crucial role of localized heat gradients at the particle surface. Finally, the coating thickness was identified as an essential parameter determining the photothermal conversion efficiency and the reaction acceleration.}, language = {en} } @article{HillwigReindlRotteretal.2022, author = {Hillwig, Todd C. and Reindl, Nicole and Rotter, Hannah M. and Rengstorf, Adam W. and Heber, Ulrich and Irrgang, Andreas}, title = {Two evolved close binary stars: GALEX J015054.4+310745 and the central star of the planetary nebula Hen 2-84}, series = {Monthly notices of the Royal Astronomical Society}, volume = {511}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stac226}, pages = {2033 -- 2039}, year = {2022}, abstract = {As part of a survey to find close binary systems among central stars of planetary nebula, we present two newly discovered binary systems. GALEX J015054.4+310745 is identified as the central star of the possible planetary nebula Fr 2-22. We find it to be a single-lined spectroscopic binary with an orbital period of 0.2554435(10) d. We support the previous identification of GALEX J015054.4+310745 as an sdB star and provide physical parameters for the star from spectral modelling. We identify its undetected companion as a likely He white dwarf. Based on this information, we find it unlikely that Fr 2-22 is a true planetary nebula. In addition, the central star of the true planetary nebula Hen 2-84 is found to be a photometric variable, likely due to the irradiation of a cool companion. The system has an orbital period of 0.485645(30) d. We discuss limits on binary parameters based on the available light-curve data. Hen 2-84 is a strongly shaped bipolar planetary nebula, which we now add to the growing list of axially or point-symmetric planetary nebulae with a close binary central star.}, language = {en} } @article{ZeitzHaackerDongesetal.2022, author = {Zeitz, Maria and Haacker, Jan M. and Donges, Jonathan F. and Albrecht, Torsten and Winkelmann, Ricarda}, title = {Dynamic regimes of the Greenland Ice Sheet emerging from interacting melt-elevation and glacial isostatic adjustment feedbacks}, series = {Earth system dynamics}, volume = {13}, journal = {Earth system dynamics}, number = {3}, publisher = {Copernicus Publ.}, address = {G{\"o}ttingen}, issn = {2190-4979}, doi = {10.5194/esd-13-1077-2022}, pages = {1077 -- 1096}, year = {2022}, abstract = {The stability of the Greenland Ice Sheet under global warming is governed by a number of dynamic processes and interacting feedback mechanisms in the ice sheet, atmosphere and solid Earth. Here we study the long-term effects due to the interplay of the competing melt-elevation and glacial isostatic adjustment (GIA) feedbacks for different temperature step forcing experiments with a coupled ice-sheet and solid-Earth model. Our model results show that for warming levels above 2 degrees C, Greenland could become essentially ice-free within several millennia, mainly as a result of surface melting and acceleration of ice flow. These ice losses are mitigated, however, in some cases with strong GIA feedback even promoting an incomplete recovery of the Greenland ice volume. We further explore the full-factorial parameter space determining the relative strengths of the two feedbacks: our findings suggest distinct dynamic regimes of the Greenland Ice Sheets on the route to destabilization under global warming - from incomplete recovery, via quasi-periodic oscillations in ice volume to ice-sheet collapse. In the incomplete recovery regime, the initial ice loss due to warming is essentially reversed within 50 000 years, and the ice volume stabilizes at 61 \%-93 \% of the present-day volume. For certain combinations of temperature increase, atmospheric lapse rate and mantle viscosity, the interaction of the GIA feedback and the melt-elevation feedback leads to self-sustained, long-term oscillations in ice-sheet volume with oscillation periods between 74 000 and over 300 000 years and oscillation amplitudes between 15 \%-70 \% of present-day ice volume. This oscillatory regime reveals a possible mode of internal climatic variability in the Earth system on timescales on the order of 100 000 years that may be excited by or synchronized with orbital forcing or interact with glacial cycles and other slow modes of variability. Our findings are not meant as scenario-based near-term projections of ice losses but rather providing insight into of the feedback loops governing the "deep future" and, thus, long-term resilience of the Greenland Ice Sheet.}, language = {en} } @article{ThapaParkKimetal.2022, author = {Thapa, Samudrajit and Park, Seongyu and Kim, Yeongjin and Jeon, Jae-Hyung and Metzler, Ralf and Lomholt, Michael A.}, title = {Bayesian inference of scaled versus fractional Brownian motion}, series = {Journal of physics : A, mathematical and theoretical}, volume = {55}, journal = {Journal of physics : A, mathematical and theoretical}, number = {19}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8121/ac60e7}, pages = {21}, year = {2022}, abstract = {We present a Bayesian inference scheme for scaled Brownian motion, and investigate its performance on synthetic data for parameter estimation and model selection in a combined inference with fractional Brownian motion. We include the possibility of measurement noise in both models. We find that for trajectories of a few hundred time points the procedure is able to resolve well the true model and parameters. Using the prior of the synthetic data generation process also for the inference, the approach is optimal based on decision theory. We include a comparison with inference using a prior different from the data generating one.}, language = {en} } @misc{VarykhalovFreyseAguileraetal.2020, author = {Varykhalov, Andrei and Freyse, Friedrich and Aguilera, Irene and Battiato, Marco and Krivenkov, Maxim and Marchenko, Dmitry and Bihlmayer, Gustav and Blugel, Stefan and Rader, Oliver and Sanchez-Barriga, Jaime}, title = {Effective mass enhancement and ultrafast electron dynamics of Au(111) surface state coupled to a quantum well}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-54989}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-549892}, pages = {11}, year = {2020}, abstract = {We show that, although the equilibrium band dispersion of the Shockley-type surface state of two-dimensional Au(111) quantum films grown on W(110) does not deviate from the expected free-electron-like behavior, its nonequilibrium energy-momentum dispersion probed by time- and angle-resolved photoemission exhibits a remarkable kink above the Fermi level due to a significant enhancement of the effective mass. The kink is pronounced for certain thicknesses of the Au quantum well and vanishes in the very thin limit. We identify the kink as induced by the coupling between the Au(111) surface state and emergent quantum-well states which probe directly the buried gold-tungsten interface. The signatures of the coupling are further revealed by our time-resolved measurements which show that surface state and quantum-well states thermalize together behaving as dynamically locked electron populations. In particular, relaxation of hot carriers following laser excitation is similar for both surface state and quantum-well states and much slower than expected for a bulk metallic system. The influence of quantum confinement on the interplay between elementary scattering processes of the electrons at the surface and ultrafast carrier transport in the direction perpendicular to the surface is shown to be the reason for the slow electron dynamics.}, language = {en} } @article{VarykhalovFreyseAguileraetal.2020, author = {Varykhalov, Andrei and Freyse, Friedrich and Aguilera, Irene and Battiato, Marco and Krivenkov, Maxim and Marchenko, Dmitry and Bihlmayer, Gustav and Blugel, Stefan and Rader, Oliver and Sanchez-Barriga, Jaime}, title = {Effective mass enhancement and ultrafast electron dynamics of Au(111) surface state coupled to a quantum well}, series = {Physical Review Research}, volume = {2}, journal = {Physical Review Research}, number = {1}, publisher = {American Physical Society}, address = {Ridge, NY}, issn = {0031-9007}, doi = {10.1103/PhysRevResearch.2.013343}, pages = {1 -- 9}, year = {2020}, abstract = {We show that, although the equilibrium band dispersion of the Shockley-type surface state of two-dimensional Au(111) quantum films grown on W(110) does not deviate from the expected free-electron-like behavior, its nonequilibrium energy-momentum dispersion probed by time- and angle-resolved photoemission exhibits a remarkable kink above the Fermi level due to a significant enhancement of the effective mass. The kink is pronounced for certain thicknesses of the Au quantum well and vanishes in the very thin limit. We identify the kink as induced by the coupling between the Au(111) surface state and emergent quantum-well states which probe directly the buried gold-tungsten interface. The signatures of the coupling are further revealed by our time-resolved measurements which show that surface state and quantum-well states thermalize together behaving as dynamically locked electron populations. In particular, relaxation of hot carriers following laser excitation is similar for both surface state and quantum-well states and much slower than expected for a bulk metallic system. The influence of quantum confinement on the interplay between elementary scattering processes of the electrons at the surface and ultrafast carrier transport in the direction perpendicular to the surface is shown to be the reason for the slow electron dynamics.}, language = {en} } @misc{SchulzLieutenantXiaoetal.2020, author = {Schulz, Christian and Lieutenant, Klaus and Xiao, Jie and Hofmann, Tommy and Wong, Deniz and Habicht, Klaus}, title = {Characterization of the soft X-ray spectrometer PEAXIS at BESSY II}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, issn = {1866-8372}, doi = {10.25932/publishup-54992}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-549928}, pages = {14}, year = {2020}, abstract = {The performance of the recently commissioned spectrometer PEAXIS for resonant inelastic soft X-ray scattering (RIXS) and X-ray photoelectron spectroscopy and its hosting beamline U41-PEAXIS at the BESSY II synchrotron are characterized. The beamline provides linearly polarized light from 180 eV to 1600 eV allowing for RIXS measurements in the range 200-1200 eV. The monochromator optics can be operated in different configurations to provide either high flux with up to 10(12) photons s(-1) within the focal spot at the sample or high energy resolution with a full width at half maximum of <40 meV at an incident photon energy of similar to 400 eV. The measured total energy resolution of the RIXS spectrometer is in very good agreement with theoretically predicted values obtained by ray-tracing simulations. PEAXIS features a 5 m-long RIXS spectrometer arm that can be continuously rotated about the sample position by 106 degrees within the horizontal photon scattering plane, thus enabling the study of momentum-transfer-dependent excitations. Selected scientific examples are presented to demonstrate the instrument capabilities, including measurements of excitations in single-crystalline NiO and in liquid acetone employing a fluid cell sample manipulator. Planned upgrades of the beamline and the RIXS spectrometer to further increase the energy resolution to similar to 100 meV at 1000 eV incident photon energy are discussed.}, language = {en} } @article{GengelPikovskij2022, author = {Gengel, Erik and Pikovskij, Arkadij}, title = {Phase reconstruction from oscillatory data with iterated Hilbert transform embeddings}, series = {Physica : D, Nonlinear phenomena}, volume = {429}, journal = {Physica : D, Nonlinear phenomena}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0167-2789}, doi = {10.1016/j.physd.2021.133070}, pages = {9}, year = {2022}, abstract = {In the data analysis of oscillatory systems, methods based on phase reconstruction are widely used to characterize phase-locking properties and inferring the phase dynamics. The main component in these studies is an extraction of the phase from a time series of an oscillating scalar observable. We discuss a practical procedure of phase reconstruction by virtue of a recently proposed method termed iterated Hilbert transform embeddings. We exemplify the potential benefits and limitations of the approach by applying it to a generic observable of a forced Stuart-Landau oscillator. Although in many cases, unavoidable amplitude modulation of the observed signal does not allow for perfect phase reconstruction, in cases of strong stability of oscillations and a high frequency of the forcing, iterated Hilbert transform embeddings significantly improve the quality of the reconstructed phase. We also demonstrate that for significant amplitude modulation, iterated embeddings do not provide any improvement.}, language = {en} } @phdthesis{Alawashra2024, author = {Alawashra, Mahmoud}, title = {Plasma instabilities of TeV pair beams induced by blazars}, doi = {10.25932/publishup-63013}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-630131}, school = {Universit{\"a}t Potsdam}, pages = {xxi, 130}, year = {2024}, abstract = {Relativistic pair beams produced in the cosmic voids by TeV gamma rays from blazars are expected to produce a detectable GeV-scale cascade emission missing in the observations. The suppression of this secondary cascade implies either the deflection of the pair beam by intergalactic magnetic fields (IGMFs) or an energy loss of the beam due to the electrostatic beam-plasma instability. IGMF of femto-Gauss strength is sufficient to significantly deflect the pair beams reducing the flux of secondary cascade below the observational limits. A similar flux reduction may result in the absence of the IGMF from the beam energy loss by the instability before the inverse Compton cooling. This dissertation consists of two studies about the instability role in the evolution of blazar-induced beams. Firstly, we investigated the effect of sub-fG level IGMF on the beam energy loss by the instability. Considering IGMF with correlation lengths smaller than a few kpc, we found that such fields increase the transverse momentum of the pair beam particles, dramatically reducing the linear growth rate of the electrostatic instability and hence the energy-loss rate of the pair beam. Our results show that the IGMF eliminates beam plasma instability as an effective energy-loss agent at a field strength three orders of magnitude below that needed to suppress the secondary cascade emission by magnetic deflection. For intermediate-strength IGMF, we do not know a viable process to explain the observed absence of GeV-scale cascade emission and hence can be excluded. Secondly, we probed how the beam-plasma instability feeds back on the beam, using a realistic two-dimensional beam distribution. We found that the instability broadens the beam opening angles significantly without any significant energy loss, thus confirming a recent feedback study on a simplified one-dimensional beam distribution. However, narrowing diffusion feedback of the beam particles with Lorentz factors less than 1e6 might become relevant even though initially it is negligible. Finally, when considering the continuous creation of TeV pairs, we found that the beam distribution and the wave spectrum reach a new quasi-steady state, in which the scattering of beam particles persists and the beam opening angle may increase by a factor of hundreds. This new intrinsic scattering of the cascade can result in time delays of around ten years, thus potentially mimicking the IGMF deflection. Understanding the implications on the GeV cascade emission requires accounting for inverse Compton cooling and simulating the beam-plasma system at different points in the IGM.}, language = {en} } @phdthesis{Stechemesser2023, author = {Stechemesser, Annika}, title = {Human behaviour in a warming world}, school = {Universit{\"a}t Potsdam}, pages = {339}, year = {2023}, language = {en} } @article{AgarwalGuntuBanerjeeetal.2022, author = {Agarwal, Ankit and Guntu, Ravikumar and Banerjee, Abhirup and Gadhawe, Mayuri Ashokrao and Marwan, Norbert}, title = {A complex network approach to study the extreme precipitation patterns in a river basin}, series = {Chaos : an interdisciplinary journal of nonlinear science}, volume = {32}, journal = {Chaos : an interdisciplinary journal of nonlinear science}, number = {1}, publisher = {American Institute of Physics}, address = {Woodbury, NY}, issn = {1054-1500}, doi = {10.1063/5.0072520}, pages = {12}, year = {2022}, abstract = {The quantification of spatial propagation of extreme precipitation events is vital in water resources planning and disaster mitigation. However, quantifying these extreme events has always been challenging as many traditional methods are insufficient to capture the nonlinear interrelationships between extreme event time series. Therefore, it is crucial to develop suitable methods for analyzing the dynamics of extreme events over a river basin with a diverse climate and complicated topography. Over the last decade, complex network analysis emerged as a powerful tool to study the intricate spatiotemporal relationship between many variables in a compact way. In this study, we employ two nonlinear concepts of event synchronization and edit distance to investigate the extreme precipitation pattern in the Ganga river basin. We use the network degree to understand the spatial synchronization pattern of extreme rainfall and identify essential sites in the river basin with respect to potential prediction skills. The study also attempts to quantify the influence of precipitation seasonality and topography on extreme events. The findings of the study reveal that (1) the network degree is decreased in the southwest to northwest direction, (2) the timing of 50th percentile precipitation within a year influences the spatial distribution of degree, (3) the timing is inversely related to elevation, and (4) the lower elevation greatly influences connectivity of the sites. The study highlights that edit distance could be a promising alternative to analyze event-like data by incorporating event time and amplitude and constructing complex networks of climate extremes.}, language = {en} } @article{MayerPicconiRobinsonetal.2022, author = {Mayer, Dennis and Picconi, David and Robinson, Matthew S. and G{\"u}hr, Markus}, title = {Experimental and theoretical gas-phase absorption spectra of thionated uracils}, series = {Chemical physics : a journal devoted to experimental and theoretical research involving problems of both a chemical and physical nature}, volume = {558}, journal = {Chemical physics : a journal devoted to experimental and theoretical research involving problems of both a chemical and physical nature}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0301-0104}, doi = {10.1016/j.chemphys.2022.111500}, pages = {9}, year = {2022}, abstract = {We present a comparative study of the gas-phase UV spectra of uracil and its thionated counterparts (2-thiouracil, 4-thiouracil and 2,4-dithiouracil), closely supported by time-dependent density functional theory calculations to assign the transitions observed. We systematically discuss pure gas-phase spectra for the (thio)uracils in the range of 200-400 nm (similar to 3.2-6.4 eV), and examine the spectra of all four species with a single theoretical approach. We note that specific vibrational modelling is needed to accurately determine the spectra across the examined wavelength range, and systematically model the transitions that appear at wavelengths shorter than 250 nm. Additionally, we find in the cases of 2-thiouracil and 2,4-dithiouracil, that the gas-phase spectra deviate significantly from some previously published solution-phase spectra, especially those collected in basic environments.}, language = {en} } @article{SerranoMunozFernandezSerranoSaliwanNeumannetal.2022, author = {Serrano-Munoz, Itziar and Fern{\´a}ndez Serrano, Ricardo and Saliwan-Neumann, Romeo and Gonzalez-Doncel, Gaspar and Bruno, Giovanni}, title = {Dislocation substructures in pure aluminium after creep deformation as studied by electron backscatter diffraction}, series = {Journal of applied crystallography / International Union of Crystallography}, volume = {55}, journal = {Journal of applied crystallography / International Union of Crystallography}, publisher = {Munksgaard}, address = {Copenhagen}, issn = {1600-5767}, doi = {10.1107/S1600576722005209}, pages = {860 -- 869}, year = {2022}, abstract = {In the present work, electron backscatter diffraction was used to determine the microscopic dislocation structures generated during creep (with tests interrupted at the steady state) in pure 99.8\% aluminium. This material was investigated at two different stress levels, corresponding to the power-law and power-law breakdown regimes. The results show that the formation of subgrain cellular structures occurs independently of the crystallographic orientation. However, the density of these cellular structures strongly depends on the grain crystallographic orientation with respect to the tensile axis direction, with (111) grains exhibiting the highest densities at both stress levels. It is proposed that this behaviour is due to the influence of intergranular stresses, which is different in (111) and (001) grains.}, language = {en} } @misc{PhuongHosseiniSandbergetal.2020, author = {Phuong, Le Quang and Hosseini, Seyed Mehrdad and Sandberg, Oskar J. and Zou, Yingping and Woo, Han Young and Neher, Dieter and Shoaee, Safa}, title = {Quantifying quasi-fermi level splitting and open-circuit voltage losses in highly efficient nonfullerene organic solar cells}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-57001}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-570018}, pages = {8}, year = {2020}, abstract = {The power conversion efficiency (PCE) of state-of-the-art organic solar cells is still limited by significant open-circuit voltage (V-OC) losses, partly due to the excitonic nature of organic materials and partly due to ill-designed architectures. Thus, quantifying different contributions of the V-OC losses is of importance to enable further improvements in the performance of organic solar cells. Herein, the spectroscopic and semiconductor device physics approaches are combined to identify and quantify losses from surface recombination and bulk recombination. Several state-of-the-art systems that demonstrate different V-OC losses in their performance are presented. By evaluating the quasi-Fermi level splitting (QFLS) and the V-OC as a function of the excitation fluence in nonfullerene-based PM6:Y6, PM6:Y11, and fullerene-based PPDT2FBT:PCBM devices with different architectures, the voltage losses due to different recombination processes occurring in the active layers, the transport layers, and at the interfaces are assessed. It is found that surface recombination at interfaces in the studied solar cells is negligible, and thus, suppressing the non-radiative recombination in the active layers is the key factor to enhance the PCE of these devices. This study provides a universal tool to explain and further improve the performance of recently demonstrated high-open-circuit-voltage organic solar cells.}, language = {en} } @phdthesis{Stange2024, author = {Stange, Maike}, title = {A study on Coronin-A and Aip1 function in motility of Dictyostelium discoideum and on Aip1 interchangeability between Dictyostelium discoideum and Arabidopsis thaliana}, doi = {10.25932/publishup-62856}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-628569}, school = {Universit{\"a}t Potsdam}, pages = {xiv, 168}, year = {2024}, abstract = {Actin is one of the most highly conserved proteins in eukaryotes and distinct actin-related proteins with filament-forming properties are even found in prokaryotes. Due to these commonalities, actin-modulating proteins of many species share similar structural properties and proposed functions. The polymerization and depolymerization of actin are critical processes for a cell as they can contribute to shape changes to adapt to its environment and to move and distribute nutrients and cellular components within the cell. However, to what extent functions of actin-binding proteins are conserved between distantly related species, has only been addressed in a few cases. In this work, functions of Coronin-A (CorA) and Actin-interacting protein 1 (Aip1), two proteins involved in actin dynamics, were characterized. In addition, the interchangeability and function of Aip1 were investigated in two phylogenetically distant model organisms. The flowering plant Arabidopsis thaliana (encoding two homologs, AIP1-1 and AIP1-2) and in the amoeba Dictyostelium discoideum (encoding one homolog, DdAip1) were chosen because the functions of their actin cytoskeletons may differ in many aspects. Functional analyses between species were conducted for AIP1 homologs as flowering plants do not harbor a CorA gene. In the first part of the study, the effect of four different mutation methods on the function of Coronin-A protein and the resulting phenotype in D. discoideum was revealed in two genetic knockouts, one RNAi knockdown and a sudden loss-of-function mutant created by chemical-induced dislocation (CID). The advantages and disadvantages of the different mutation methods on the motility, appearance and development of the amoebae were investigated, and the results showed that not all observed properties were affected with the same intensity. Remarkably, a new combination of Selection-Linked Integration and CID could be established. In the second and third parts of the thesis, the exchange of Aip1 between plant and amoeba was carried out. For A. thaliana, the two homologs (AIP1-1 and AIP1-2) were analyzed for functionality as well as in D. discoideum. In the Aip1-deficient amoeba, rescue with AIP1-1 was more effective than with AIP1-2. The main results in the plant showed that in the aip1-2 mutant background, reintroduced AIP1-2 displayed the most efficient rescue and A. thaliana AIP1-1 rescued better than DdAip1. The choice of the tagging site was important for the function of Aip1 as steric hindrance is a problem. The DdAip1 was less effective when tagged at the C-terminus, while the plant AIP1s showed mixed results depending on the tag position. In conclusion, the foreign proteins partially rescued phenotypes of mutant plants and mutant amoebae, despite the organisms only being very distantly related in evolutionary terms.}, language = {en} }