@article{SmirnovKronbergDalyetal.2020, author = {Smirnov, Artem G. and Kronberg, Elena A. and Daly, Patrick W. and Aseev, Nikita and Shprits, Yuri Y. and Kellerman, Adam C.}, title = {Adiabatic Invariants Calculations for Cluster Mission: A Long-Term Product for Radiation Belts Studies}, series = {Journal of Geophysical Research: Space Physics}, volume = {125}, journal = {Journal of Geophysical Research: Space Physics}, number = {2}, publisher = {John Wiley \& Sons, Inc.}, address = {New Jersey}, pages = {12}, year = {2020}, abstract = {The Cluster mission has produced a large data set of electron flux measurements in the Earth's magnetosphere since its launch in late 2000. Electron fluxes are measured using Research with Adaptive Particle Imaging Detector (RAPID)/Imaging Electron Spectrometer (IES) detector as a function of energy, pitch angle, spacecraft position, and time. However, no adiabatic invariants have been calculated for Cluster so far. In this paper we present a step-by-step guide to calculations of adiabatic invariants and conversion of the electron flux to phase space density (PSD) in these coordinates. The electron flux is measured in two RAPID/IES energy channels providing pitch angle distribution at energies 39.2-50.5 and 68.1-94.5 keV in nominal mode since 2004. A fitting method allows to expand the conversion of the differential fluxes to the range from 40 to 150 keV. Best data coverage for phase space density in adiabatic invariant coordinates can be obtained for values of second adiabatic invariant, K, similar to 10(2), and values of the first adiabatic invariant mu in the range approximate to 5-20 MeV/G. Furthermore, we describe the production of a new data product "LSTAR," equivalent to the third adiabatic invariant, available through the Cluster Science Archive for years 2001-2018 with 1-min resolution. The produced data set adds to the availability of observations in Earth's radiation belts region and can be used for long-term statistical purposes.}, language = {en} } @misc{SmirnovKronbergDalyetal.2020, author = {Smirnov, Artem G. and Kronberg, Elena A. and Daly, Patrick W. and Aseev, Nikita and Shprits, Yuri Y. and Kellerman, Adam C.}, title = {Adiabatic Invariants Calculations for Cluster Mission: A Long-Term Product for Radiation Belts Studies}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {2}, issn = {1866-8372}, doi = {10.25932/publishup-52391}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-523915}, pages = {14}, year = {2020}, abstract = {The Cluster mission has produced a large data set of electron flux measurements in the Earth's magnetosphere since its launch in late 2000. Electron fluxes are measured using Research with Adaptive Particle Imaging Detector (RAPID)/Imaging Electron Spectrometer (IES) detector as a function of energy, pitch angle, spacecraft position, and time. However, no adiabatic invariants have been calculated for Cluster so far. In this paper we present a step-by-step guide to calculations of adiabatic invariants and conversion of the electron flux to phase space density (PSD) in these coordinates. The electron flux is measured in two RAPID/IES energy channels providing pitch angle distribution at energies 39.2-50.5 and 68.1-94.5 keV in nominal mode since 2004. A fitting method allows to expand the conversion of the differential fluxes to the range from 40 to 150 keV. Best data coverage for phase space density in adiabatic invariant coordinates can be obtained for values of second adiabatic invariant, K, similar to 10(2), and values of the first adiabatic invariant mu in the range approximate to 5-20 MeV/G. Furthermore, we describe the production of a new data product "LSTAR," equivalent to the third adiabatic invariant, available through the Cluster Science Archive for years 2001-2018 with 1-min resolution. The produced data set adds to the availability of observations in Earth's radiation belts region and can be used for long-term statistical purposes.}, language = {en} } @article{SmirnovKronbergLatallerieetal.2019, author = {Smirnov, Artem G. and Kronberg, Elena A. and Latallerie, F. and Daly, Patrick W. and Aseev, Nikita and Shprits, Yuri Y. and Kellerman, Adam C. and Kasahara, Satoshi and Turner, Drew L. and Taylor, M. G. G. T.}, title = {Electron Intensity Measurements by the Cluster/RAPID/IES Instrument in Earth's Radiation Belts and Ring Current}, series = {Space Weather: The International Journal of Research and Applications}, volume = {17}, journal = {Space Weather: The International Journal of Research and Applications}, number = {4}, publisher = {American Geophysical Union}, address = {Washington}, issn = {1542-7390}, doi = {10.1029/2018SW001989}, pages = {553 -- 566}, year = {2019}, abstract = {Plain Language Summary Radiation belts of the Earth, which are the zones of charged energetic particles trapped by the geomagnetic field, comprise enormous and dynamic systems. While the inner radiation belt, composed mainly of high-energy protons, is relatively stable, the outer belt, filled with energetic electrons, is highly variable and depends substantially on solar activity. Hence, extended reliable observations and the improved models of the electron intensities in the outer belt depending on solar wind parameters are necessary for prediction of their dynamics. The Cluster mission has been measuring electron flux intensities in the radiation belts since its launch in 2000, thus providing a huge dataset that can be used for radiation belts analysis. Using 16 years of electron measurements by the Cluster mission corrected for background contamination, we derived a uniform linear-logarithmic dependence of electron fluxes in the outer belt on the solar wind dynamic pressure.}, language = {en} }