@article{YeKurthHospodarskyetal.2018, author = {Ye, S. -Y. and Kurth, William S. and Hospodarsky, George B. and Persoon, Ann M. and Gurnett, Don A. and Morooka, Michiko and Wahlund, Jan-Erik and Hsu, Hsiang-Wen and Seiss, Martin and Srama, Ralf}, title = {Cassini RPWS dust observation near the Janus/Epimetheus orbit}, series = {Journal of geophysical research : Space physics}, volume = {123}, journal = {Journal of geophysical research : Space physics}, number = {6}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9380}, doi = {10.1029/2017JA025112}, pages = {4952 -- 4960}, year = {2018}, abstract = {During the Ring Grazing orbits near the end of Cassini mission, the spacecraft crossed the equatorial plane near the orbit of Janus/Epimetheus (similar to 2.5 Rs). This region is populated with dust particles that can be detected by the Radio and Plasma Wave Science (RPWS) instrument via an electric field antenna signal. Analysis of the voltage waveforms recorded on the RPWS antennas provides estimations of the density and size distribution of the dust particles. Measured RPWS profiles, fitted with Lorentzian functions, are shown to be mostly consistent with the Cosmic Dust Analyzer, the dedicated dust instrument on board Cassini. The thickness of the dusty ring varies between 600 and 1,000 km. The peak location shifts north and south within 100 km of the ring plane, likely a function of the precession phase of Janus orbit.}, language = {en} } @article{HsuSchmidtKempfetal.2018, author = {Hsu, Hsiang-Wen and Schmidt, J{\"u}rgen and Kempf, Sascha and Postberg, Frank and Moragas-Klostermeyer, Georg and Seiss, Martin and Hoffmann, Holger and Burton, Marcia and Ye, ShengYi and Kurth, William S. and Horanyi, Mihaly and Khawaja, Nozair and Spahn, Frank and Schirdewahn, Daniel and Moore, Luke and Cuzzi, Jeff and Jones, Geraint H. and Srama, Ralf}, title = {In situ collection of dust grains falling from Saturn's rings into its atmosphere}, series = {Science}, volume = {362}, journal = {Science}, number = {6410}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.aat3185}, pages = {49 -- +}, year = {2018}, abstract = {Saturn's main rings are composed of >95\% water ice, and the nature of the remaining few percent has remained unclear. The Cassini spacecraft's traversals between Saturn and its innermost D ring allowed its cosmic dust analyzer (CDA) to collect material released from the main rings and to characterize the ring material infall into Saturn. We report the direct in situ detection of material from Saturn's dense rings by the CDA impact mass spectrometer. Most detected grains are a few tens of nanometers in size and dynamically associated with the previously inferred "ring rain." Silicate and water-ice grains were identified, in proportions that vary with latitude. Silicate grains constitute up to 30\% of infalling grains, a higher percentage than the bulk silicate content of the rings.}, language = {en} } @article{YeKurthHospodarskyetal.2018, author = {Ye, Shengyi and Kurth, William S. and Hospodarsky, George B. and Persoon, Ann M. and Sulaiman, Ali H. and Gurnett, Don A. and Morooka, Michiko and Wahlund, Jan-Erik and Hsu, Hsiang-Wen and Sternovsky, Zoltan and Wang, Xu and Horanyi, M. and Seiss, Martin and Srama, Ralf}, title = {Dust Observations by the Radio and Plasma Wave Science Instrument During}, series = {Geophysical research letters}, volume = {45}, journal = {Geophysical research letters}, number = {19}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1029/2018GL078059}, pages = {10101 -- 10109}, year = {2018}, abstract = {Plain Language Summary Cassini flew through the gap between Saturn and its rings for 22 times before plunging into the atmosphere of Saturn, ending its 20-year mission. The radio and plasma waves instrument on board Cassini helped quantify the dust hazard in this previously unexplored region. The measured density of large dust particles was much lower than expected, allowing high-value science observations during the subsequent Grand Finale orbits.}, language = {en} } @article{WoodfieldHorneGlauertetal.2018, author = {Woodfield, Emma E. and Horne, Richard B. and Glauert, S. A. and Menietti, J. D. and Shprits, Yuri Y. and Kurth, William S.}, title = {Formation of electron radiation belts at Saturn by Z-mode wave acceleration}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-018-07549-4}, pages = {7}, year = {2018}, abstract = {At Saturn electrons are trapped in the planet's magnetic field and accelerated to relativistic energies to form the radiation belts, but how this dramatic increase in electron energy occurs is still unknown. Until now the mechanism of radial diffusion has been assumed but we show here that in-situ acceleration through wave particle interactions, which initial studies dismissed as ineffectual at Saturn, is in fact a vital part of the energetic particle dynamics there. We present evidence from numerical simulations based on Cassini spacecraft data that a particular plasma wave, known as Z-mode, accelerates electrons to MeV energies inside 4 RS (1 RS = 60,330 km) through a Doppler shifted cyclotron resonant interaction. Our results show that the Z-mode waves observed are not oblique as previously assumed and are much better accelerators than O-mode waves, resulting in an electron energy spectrum that closely approaches observed values without any transport effects included.}, language = {en} } @misc{WoodfieldHorneGlauertetal.2018, author = {Woodfield, Emma E. and Horne, Richard B. and Glauert, Sarah A. and Menietti, John D. and Shprits, Yuri Y. and Kurth, William S.}, title = {Formation of electron radiation belts at Saturn by Z-mode wave acceleration}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1032}, issn = {1866-8372}, doi = {10.25932/publishup-46834}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-468342}, pages = {9}, year = {2018}, abstract = {At Saturn electrons are trapped in the planet's magnetic field and accelerated to relativistic energies to form the radiation belts, but how this dramatic increase in electron energy occurs is still unknown. Until now the mechanism of radial diffusion has been assumed but we show here that in-situ acceleration through wave particle interactions, which initial studies dismissed as ineffectual at Saturn, is in fact a vital part of the energetic particle dynamics there. We present evidence from numerical simulations based on Cassini spacecraft data that a particular plasma wave, known as Z-mode, accelerates electrons to MeV energies inside 4 R-S (1 R-S = 60,330 km) through a Doppler shifted cyclotron resonant interaction. Our results show that the Z-mode waves observed are not oblique as previously assumed and are much better accelerators than O-mode waves, resulting in an electron energy spectrum that closely approaches observed values without any transport effects included.}, language = {en} } @article{ZhelavskayaSpasojevicShpritsetal.2016, author = {Zhelavskaya, Irina and Spasojevic, M. and Shprits, Yuri Y. and Kurth, William S.}, title = {Automated determination of electron density from electric field measurements on the Van Allen Probes spacecraft}, series = {Journal of geophysical research : Space physics}, volume = {121}, journal = {Journal of geophysical research : Space physics}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9380}, doi = {10.1002/2015JA022132}, pages = {4611 -- 4625}, year = {2016}, abstract = {We present the Neural-network-based Upper hybrid Resonance Determination (NURD) algorithm for automatic inference of the electron number density from plasma wave measurements made on board NASA's Van Allen Probes mission. A feedforward neural network is developed to determine the upper hybrid resonance frequency, fuhr, from electric field measurements, which is then used to calculate the electron number density. In previous missions, the plasma resonance bands were manually identified, and there have been few attempts to do robust, routine automated detections. We describe the design and implementation of the algorithm and perform an initial analysis of the resulting electron number density distribution obtained by applying NURD to 2.5 years of data collected with the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instrumentation suite of the Van Allen Probes mission. Densities obtained by NURD are compared to those obtained by another recently developed automated technique and also to an existing empirical plasmasphere and trough density model.}, language = {en} } @article{ArridgeAchilleosAgarwaletal.2014, author = {Arridge, Christopher S. and Achilleos, N. and Agarwal, Jessica and Agnor, C. B. and Ambrosi, R. and Andre, N. and Badman, S. V. and Baines, K. and Banfield, D. and Barthelemy, M. and Bisi, M. M. and Blum, J. and Bocanegra-Bahamon, T. and Bonfond, B. and Bracken, C. and Brandt, P. and Briand, C. and Briois, C. and Brooks, S. and Castillo-Rogez, J. and Cavalie, T. and Christophe, B. and Coates, Andrew J. and Collinson, G. and Cooper, J. F. and Costa-Sitja, M. and Courtin, R. and Daglis, I. A. and De Pater, Imke and Desai, M. and Dirkx, D. and Dougherty, M. K. and Ebert, R. W. and Filacchione, Gianrico and Fletcher, Leigh N. and Fortney, J. and Gerth, I. and Grassi, D. and Grodent, D. and Gr{\"u}n, Eberhard and Gustin, J. and Hedman, M. and Helled, R. and Henri, P. and Hess, Sebastien and Hillier, J. K. and Hofstadter, M. H. and Holme, R. and Horanyi, M. and Hospodarsky, George B. and Hsu, S. and Irwin, P. and Jackman, C. M. and Karatekin, O. and Kempf, Sascha and Khalisi, E. and Konstantinidis, K. and Kruger, H. and Kurth, William S. and Labrianidis, C. and Lainey, V. and Lamy, L. L. and Laneuville, Matthieu and Lucchesi, D. and Luntzer, A. and MacArthur, J. and Maier, A. and Masters, A. and McKenna-Lawlor, S. and Melin, H. and Milillo, A. and Moragas-Klostermeyer, Georg and Morschhauser, Achim and Moses, J. I. and Mousis, O. and Nettelmann, N. and Neubauer, F. M. and Nordheim, T. and Noyelles, B. and Orton, G. S. and Owens, Mathew and Peron, R. and Plainaki, C. and Postberg, F. and Rambaux, N. and Retherford, K. and Reynaud, Serge and Roussos, E. and Russell, C. T. and Rymer, Am. and Sallantin, R. and Sanchez-Lavega, A. and Santolik, O. and Saur, J. and Sayanagi, Km. and Schenk, P. and Schubert, J. and Sergis, N. and Sittler, E. C. and Smith, A. and Spahn, Frank and Srama, Ralf and Stallard, T. and Sterken, V. and Sternovsky, Zoltan and Tiscareno, M. and Tobie, G. and Tosi, F. and Trieloff, M. and Turrini, D. and Turtle, E. P. and Vinatier, S. and Wilson, R. and Zarkat, P.}, title = {The science case for an orbital mission to Uranus: Exploring the origins and evolution of ice giant planets}, series = {Planetary and space science}, volume = {104}, journal = {Planetary and space science}, publisher = {Elsevier}, address = {Oxford}, issn = {0032-0633}, doi = {10.1016/j.pss.2014.08.009}, pages = {122 -- 140}, year = {2014}, abstract = {Giant planets helped to shape the conditions we see in the Solar System today and they account for more than 99\% of the mass of the Sun's planetary system. They can be subdivided into the Ice Giants (Uranus and Neptune) and the Gas Giants (Jupiter and Saturn), which differ from each other in a number of fundamental ways. Uranus, in particular is the most challenging to our understanding of planetary formation and evolution, with its large obliquity, low self-luminosity, highly asymmetrical internal field, and puzzling internal structure. Uranus also has a rich planetary system consisting of a system of inner natural satellites and complex ring system, five major natural icy satellites, a system of irregular moons with varied dynamical histories, and a highly asymmetrical magnetosphere. Voyager 2 is the only spacecraft to have explored Uranus, with a flyby in 1986, and no mission is currently planned to this enigmatic system. However, a mission to the uranian system would open a new window on the origin and evolution of the Solar System and would provide crucial information on a wide variety of physicochemical processes in our Solar System. These have clear implications for understanding exoplanetary systems. In this paper we describe the science case for an orbital mission to Uranus with an atmospheric entry probe to sample the composition and atmospheric physics in Uranus' atmosphere. The characteristics of such an orbiter and a strawman scientific payload are described and we discuss the technical challenges for such a mission. This paper is based on a white paper submitted to the European Space Agency's call for science themes for its large-class mission programme in 2013.}, language = {en} }