@article{NiskanenJankalaHuttulaetal.2017, author = {Niskanen, Johannes and Jankala, Kari and Huttula, Marco and F{\"o}hlisch, Alexander}, title = {QED effects in 1s and 2s single and double ionization potentials of the noble gases}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {146}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.4979991}, pages = {1443 -- 1450}, year = {2017}, abstract = {We present calculations on the quantum electrodynamics (QED) effects in 1s and 2s single and double ionization potentials of noble gases from Ne to Rn as perturbations on relativistic four-component Dirac-Fock wavefunctions. The most dominant effect originates from the self-energy of the core-electron that yields corrections of similar order as the transverse interaction. For 1s ionization potentials, a match within few eV against the known experimental values is obtained, and our work reveals considerable QED effects in the photoelectron binding energies across the periodic table-most strikingly even for Ne. We perform power-law fits for the corrections as a function of Z and interpolate the QED correction of similar to-0.55 eV for S1s. Due to this, the K-edge electron spectra of the third row and below need QED for a match in the absolute energy when using state-of-the-art instrumentation. Published by AIP Publishing.}, language = {en} }