@article{JoulainHenkelGreffet2006, author = {Joulain, Karl and Henkel, Carsten and Greffet, Jean-Jacques}, title = {Influence of the dependence in temperature of the optical properties of materials on the Casimir force}, series = {Journal de physique IV}, volume = {135}, journal = {Journal de physique IV}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1155-4339}, doi = {10.1051/jp4:2006135021}, pages = {113 -- 114}, year = {2006}, abstract = {Nous {\´e}valuons la force de Casimir entre deux surfaces planes m{\´e}talliques constitu{\´e}es d'argent. Nous prenons, pour effectuer cette {\´e}valuation, des propri{\´e}t{\´e}s optiques de l'argent {\`a} diff{\´e}rentes temp{\´e}ratures [1]. Nous montrons que cette d{\´e}pendance en temp{\´e}rature modifie la force de Casimir (de 0.2\%) y compris {\`a} des distances inf{\´e}rieures {\`a} la longueur d'onde thermique.}, language = {fr} } @article{CarminatiGreffetHenkeletal.2006, author = {Carminati, R{\´e}mi and Greffet, Jean-Jacques and Henkel, Carsten and Vigoureux, Jean-Marie}, title = {Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle}, issn = {0030-4018}, doi = {10.1016/j.optcom.2005.12.009}, year = {2006}, abstract = {We study the spontaneous emission of a single emitter close to a metallic nanoparticle, with the aim to clarify the distance dependence of the radiative and non-radiative decay rates. We derive analytical formulas based on a dipole- dipole model, and show that the nonradiative decay rate follows a R-6 dependence at short distance, where R is the distance between the emitter and the center of the nanoparticle, as in Forster's energy transfer. The distance dependence of the radiative decay rate is more subtle. It is chiefly dominated by a R-3 dependence, a R-6 dependence being visible at plasmon resonance. The latter is a consequence of radiative damping in the effective dipole polarizability of the nanoparticle. The different distance behavior of the radiative and non-radiative decay rates implies that the apparent quantum yield always vanishes at short distance. Moreover, non-radiative decay is strongly enhanced when the emitter radiates at the plasmon-resonance frequency of the nanoparticle.}, language = {en} } @article{GreffetHenkel2006, author = {Greffet, Jean-Jacques and Henkel, Carsten}, title = {Rayonnement thermique coh{\´e}rent}, issn = {0290-0041}, year = {2006}, abstract = {Le rayonnement {\´e}lectromagn{\´e}tique produit par un corps {\`a} temp{\´e}rature T est g{\´e}n{\´e}ralement consid{\´e}r{\´e} comme l'exemple type du rayonnement incoh{\´e}rent que l'on oppose au rayonnement laser. L'un est quasi isotrope tandis que l'autre est tr{\`e}s directionnel, l'un a un large spectre tandis que l'autre est quasi-monochromatique. Aussi surprenant que cela puisse para{\^i}tre, le rayonnement thermique de bon nombre de corps est coh{\´e}rent lorsque l'on se place {\`a} une distance inf{\´e}rieure {\`a} la longueur d'onde de la surface {\´e}mettrice. Nous verrons que ces effets peuvent {\^e}tre pr{\´e}dits {\`a} l'aide d'une approche {\´e}lectromagn{\´e}tique du rayonnement thermique. Plusieurs exp{\´e}riences r{\´e}centes ont confirm{\´e} ces propri{\´e}t{\´e}s inattendues.}, language = {fr} }