@article{GoldschmidtPikovskijPoliti2019, author = {Goldschmidt, Richard Janis and Pikovskij, Arkadij and Politi, Antonio}, title = {Blinking chimeras in globally coupled rotators}, series = {Chaos : an interdisciplinary journal of nonlinear science}, volume = {29}, journal = {Chaos : an interdisciplinary journal of nonlinear science}, number = {7}, publisher = {American Institute of Physics}, address = {Melville}, issn = {1054-1500}, doi = {10.1063/1.5105367}, pages = {7}, year = {2019}, abstract = {In globally coupled ensembles of identical oscillators so-called chimera states can be observed. The chimera state is a symmetry-broken regime, where a subset of oscillators forms a cluster, a synchronized population, while the rest of the system remains a collection of nonsynchronized, scattered units. We describe here a blinking chimera regime in an ensemble of seven globally coupled rotators (Kuramoto oscillators with inertia). It is characterized by a death-birth process, where a long-term stable cluster of four oscillators suddenly dissolves and is very quickly reborn with a new reshuffled configuration. We identify three different kinds of rare blinking events and give a quantitative characterization by applying stability analysis to the long-lived chaotic state and to the short-lived regular regimes that arise when the cluster dissolves.}, language = {en} }