@misc{NakamuraClaesGrebeetal.2018, author = {Nakamura, Moritaka and Claes, Andrea R. and Grebe, Tobias and Hermkes, Rebecca and Viotti, Corrado and Ikeda, Yoshihisa and Grebe, Markus}, title = {Auxin and ROP GTPase signaling of polar nuclear migration in root epidermal hair cells}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {992}, issn = {1866-8372}, doi = {10.25932/publishup-44127}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-441278}, pages = {378 -- 391}, year = {2018}, abstract = {Polar nuclear migration is crucial during the development of diverse eukaryotes. In plants, root hair growth requires polar nuclear migration into the outgrowing hair. However, knowledge about the dynamics and the regulatory mechanisms underlying nuclear movements in root epidermal cells remains limited. Here, we show that both auxin and Rho-of-Plant (ROP) signaling modulate polar nuclear position at the inner epidermal plasma membrane domain oriented to the cortical cells during cell elongation as well as subsequent polar nuclear movement to the outer domain into the emerging hair bulge in Arabidopsis (Arabidopsis thaliana). Auxin signaling via the nuclear AUXIN RESPONSE FACTOR7 (ARF7)/ARF19 and INDOLE ACETIC ACID7 pathway ensures correct nuclear placement toward the inner membrane domain. Moreover, precise inner nuclear placement relies on SPIKE1 Rho-GEF, SUPERCENTIPEDE1 Rho-GDI, and ACTIN7 (ACT7) function and to a lesser extent on VTI11 vacuolar SNARE activity. Strikingly, the directionality and/or velocity of outer polar nuclear migration into the hair outgrowth along actin strands also are ACT7 dependent, auxin sensitive, and regulated by ROP signaling. Thus, our findings provide a founding framework revealing auxin and ROP signaling of inner polar nuclear position with some contribution by vacuolar morphology and of actin-dependent outer polar nuclear migration in root epidermal hair cells.}, language = {en} } @misc{MerksSwinarskiMeyeretal.2018, author = {Merks, Anne Margarete and Swinarski, Marie and Meyer, Alexander Matthias and M{\"u}ller, Nicola Victoria and {\"O}zcan, Ismail and Donat, Stefan and Burger, Alexa and Gilbert, Stephen and Mosimann, Christian and Abdelilah-Seyfried, Salim and Pan{\´a}kov{\´a}, Daniela}, title = {Planar cell polarity signalling coordinates heart tube remodelling through tissue-scale polarisation of actomyosin activity}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {849}, issn = {1866-8372}, doi = {10.25932/publishup-42702}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427026}, pages = {17}, year = {2018}, abstract = {Development of a multiple-chambered heart from the linear heart tube is inherently linked to cardiac looping. Although many molecular factors regulating the process of cardiac chamber ballooning have been identified, the cellular mechanisms underlying the chamber formation remain unclear. Here, we demonstrate that cardiac chambers remodel by cell neighbour exchange of cardiomyocytes guided by the planar cell polarity (PCP) pathway triggered by two non-canonical Wnt ligands, Wnt5b and Wnt11. We find that PCP signalling coordinates the localisation of actomyosin activity, and thus the efficiency of cell neighbour exchange. On a tissue-scale, PCP signalling planar-polarises tissue tension by restricting the actomyosin contractility to the apical membranes of outflow tract cells. The tissue-scale polarisation of actomyosin contractility is required for cardiac looping that occurs concurrently with chamber ballooning. Taken together, our data reveal that instructive PCP signals couple cardiac chamber expansion with cardiac looping through the organ-scale polarisation of actomyosin-based tissue tension.}, language = {en} }