@article{AlqahtaniBabicsGorenflotetal.2018, author = {Alqahtani, Obaid and Babics, Maxime and Gorenflot, Julien and Savikhin, Victoria and Ferron, Thomas and Balawi, Ahmed H. and Paulke, Andreas and Kan, Zhipeng and Pope, Michael and Clulow, Andrew J. and Wolf, Jannic and Burn, Paul L. and Gentle, Ian R. and Neher, Dieter and Toney, Michael F. and Laquai, Frederic and Beaujuge, Pierre M. and Collins, Brian A.}, title = {Mixed Domains Enhance Charge Generation and Extraction in Bulk-Heterojunction Solar Cells with Small-Molecule Donors}, series = {Advanced energy materials}, volume = {8}, journal = {Advanced energy materials}, number = {19}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.201702941}, pages = {16}, year = {2018}, abstract = {The interplay between nanomorphology and efficiency of polymer-fullerene bulk-heterojunction (BHJ) solar cells has been the subject of intense research, but the generality of these concepts for small-molecule (SM) BHJs remains unclear. Here, the relation between performance; charge generation, recombination, and extraction dynamics; and nanomorphology achievable with two SM donors benzo[1,2-b:4,5-b]dithiophene-pyrido[3,4-b]-pyrazine BDT(PPTh2)(2), namely SM1 and SM2, differing by their side-chains, are examined as a function of solution additive composition. The results show that the additive 1,8-diiodooctane acts as a plasticizer in the blends, increases domain size, and promotes ordering/crystallinity. Surprisingly, the system with high domain purity (SM1) exhibits both poor exciton harvesting and severe charge trapping, alleviated only slightly with increased crystallinity. In contrast, the system consisting of mixed domains and lower crystallinity (SM2) shows both excellent exciton harvesting and low charge recombination losses. Importantly, the onset of large, pure crystallites in the latter (SM2) system reduces efficiency, pointing to possible differences in the ideal morphologies for SM-based BHJ solar cells compared with polymer-fullerene devices. In polymer-based systems, tie chains between pure polymer crystals establish a continuous charge transport network, whereas SM-based active layers may in some cases require mixed domains that enable both aggregation and charge percolation to the electrodes.}, language = {en} } @article{RanRolandLoveetal.2017, author = {Ran, Niva A. and Roland, Steffen and Love, John A. and Savikhin, Victoria and Takacs, Christopher J. and Fu, Yao-Tsung and Li, Hong and Coropceanu, Veaceslav and Liu, Xiaofeng and Bredas, Jean-Luc and Bazan, Guillermo C. and Toney, Michael F. and Neher, Dieter and Thuc-Quyen Nguyen,}, title = {Impact of interfacial molecular orientation on radiative recombination and charge generation efficiency}, series = {Nature Communications}, volume = {8}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-017-00107-4}, pages = {9}, year = {2017}, abstract = {A long standing question in organic electronics concerns the effects of molecular orientation at donor/acceptor heterojunctions. Given a well-controlled donor/acceptor bilayer system, we uncover the genuine effects of molecular orientation on charge generation and recombination. These effects are studied through the point of view of photovoltaics-however, the results have important implications on the operation of all optoelectronic devices with donor/ acceptor interfaces, such as light emitting diodes and photodetectors. Our findings can be summarized by two points. First, devices with donor molecules face-on to the acceptor interface have a higher charge transfer state energy and less non-radiative recombination, resulting in larger open-circuit voltages and higher radiative efficiencies. Second, devices with donor molecules edge-on to the acceptor interface are more efficient at charge generation, attributed to smaller electronic coupling between the charge transfer states and the ground state, and lower activation energy for charge generation.}, language = {en} } @article{RivnaySteyrleuthnerJimisonetal.2011, author = {Rivnay, Jonathan and Steyrleuthner, Robert and Jimison, Leslie H. and Casadei, Alberto and Chen, Zhihua and Toney, Michael F. and Facchetti, Antonio and Neher, Dieter and Salleo, Alberto}, title = {Drastic control of texture in a high performance n-Type polymeric semiconductor and implications for charge transport}, series = {Macromolecules : a publication of the American Chemical Society}, volume = {44}, journal = {Macromolecules : a publication of the American Chemical Society}, number = {13}, publisher = {American Chemical Society}, address = {Washington}, issn = {0024-9297}, doi = {10.1021/ma200864s}, pages = {5246 -- 5255}, year = {2011}, abstract = {Control of crystallographic texture from mostly face-on to edge-on is observed for the film morphology of the n-type semicrystalline polymer [N,N-9-bis(2-octyldodecyl)naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diy1]alt-5,59-(2,29-bithiophene)}, P(NDI2OD-T2), when annealing the film to the polymer melting point followed by slow cooling to ambient temperature. A variety of X-ray diffraction analyses, including pole figure construction and Fourier transform peak shape deconvolution, are employed to quantify the texture change, relative degree of crystallinity and lattice order. We find that annealing the polymer film to the melt leads to a shift from 77.5\% face-on to 94.6\% edge-on lamellar texture as well as to a 2-fold increase in crystallinity and a 40\% decrease in intracrystallite cumulative disorder. The texture change results in a significant drop in the electron-only diode current density through the film thickness upon melt annealing while little change is observed in the in-plane transport of bottom gated thin film transistors. This suggests that the texture change is prevalent in the film interior and that either the (bottom) surface structure is different from the interior structure or the intracrystalline order and texture play a secondary role in transistor transport for this material.}, language = {en} }