@article{BlasiusRudolfWeithoffetal.2019, author = {Blasius, Bernd and Rudolf, Lars and Weithoff, Guntram and Gaedke, Ursula and Fussmann, Gregor F.}, title = {Long-term cyclic persistence in an experimental predator-prey system}, series = {Nature : the international weekly journal of science}, volume = {577}, journal = {Nature : the international weekly journal of science}, number = {7789}, publisher = {Nature Publ. Group}, address = {London}, issn = {0028-0836}, doi = {10.1038/s41586-019-1857-0}, pages = {226 -- 230}, year = {2019}, abstract = {Predator-prey cycles rank among the most fundamental concepts in ecology, are predicted by the simplest ecological models and enable, theoretically, the indefinite persistence of predator and prey(1-4). However, it remains an open question for how long cyclic dynamics can be self-sustained in real communities. Field observations have been restricted to a few cycle periods(5-8) and experimental studies indicate that oscillations may be short-lived without external stabilizing factors(9-19). Here we performed microcosm experiments with a planktonic predator-prey system and repeatedly observed oscillatory time series of unprecedented length that persisted for up to around 50 cycles or approximately 300 predator generations. The dominant type of dynamics was characterized by regular, coherent oscillations with a nearly constant predator-prey phase difference. Despite constant experimental conditions, we also observed shorter episodes of irregular, non-coherent oscillations without any significant phase relationship. However, the predator-prey system showed a strong tendency to return to the dominant dynamical regime with a defined phase relationship. A mathematical model suggests that stochasticity is probably responsible for the reversible shift from coherent to non-coherent oscillations, a notion that was supported by experiments with external forcing by pulsed nutrient supply. Our findings empirically demonstrate the potential for infinite persistence of predator and prey populations in a cyclic dynamic regime that shows resilience in the presence of stochastic events.}, language = {en} } @article{TirokGaedke2006, author = {Tirok, Katrin and Gaedke, Ursula}, title = {Spring weather determines the relative importance of ciliates, rotifers and crustaceans for the initiation of the clear-water phase in a large, deep lake}, year = {2006}, abstract = {Clear-water phase (CWP) is an important event in seasonal plankton succession. We examined the influence of all herbivorous zooplankton on its initiation under different weather and climatic conditions using up to 19 years of observations from the large, deep Lake Constance (Europe) and estimates of relative clearance rates. A CWP occurred regularly, even if daphnid biomass was still very low. CWP was attributed to strong grazing either by a daphnid- dominated zooplankton community or by a diverse assemblage consisting of micro- and meso-zooplankton. Both types of zooplankton communities occurred with approximately the same frequency. The timing of the CWP was unrelated to the North Atlantic Oscillation (NAO) but correlated with the wind-dependent intensity of deep vertical mixing 3 months earlier, during early spring. Less mixing enabled early growth of phytoplankton, ciliates and rotifers despite low temperatures, which prevented daphnid development at this time. This resulted in enhanced grazing of ciliates and rotifers, which increased the importance of phytoplankton less edible for most ciliates, rotifers and daphnids. Ciliates clearly dominated the grazing pressure on phytoplankton throughout spring, maintaining high biomasses together with the phytoplankton for up to 2 months. A CWP was observed when herbivores grazing on larger phytoplankton developed in addition to ciliates}, language = {en} } @article{GaedkeKamjunke2006, author = {Gaedke, Ursula and Kamjunke, Norbert}, title = {Structural and functional properties of low- and high-diversity planktonic food webs}, issn = {0142-7873}, doi = {10.1093/plankt/fb1003}, year = {2006}, abstract = {To test the consequences of decreased diversity and exclusion of keystone species, we compared the planktonic food webs in two acidic (pH <= 3), species-poor mining lakes with those in two species-rich, neutral lakes. The ratio of heterotrophic to autotrophic biomass (HIA) was similar in acidic and neutral lakes with comparable productivity. However, food webs in both acidic lakes were largely restricted to two trophic levels in contrast to the four levels found in neutral lakes. This restriction in food chain length was attributed to the absence of efficient secondary consumers, rather than to productivity or lake size which resulted in unusually low predator-prey weight ratios, with small top predators hardly exceeding their pry in size. In contrast to the neutral lakes, plankton biomass size spectra of acidic lakes were discontinuous due to a lack of major functional groups. The unique size-dependence of feeding modes in pelagic food webs, with bacteria in the smallest size classes followed by autotrophs, herbivores and carnivores, was maintained for bacteria but the other feeding modes strongly overlapped in size. Thus, their characteristic succession along the size gradient was roughly preserved under extreme conditions but the flow of energy along the size gradient was truncated in the acidic lakes. For most but not all attributes studied, differences were larger between acidic and neutral lakes than between neutral lakes of different trophic state}, language = {en} }