@article{SocquetValdesJaraetal.2017, author = {Socquet, Anne and Valdes, Jesus Pina and Jara, Jorge and Cotton, Fabrice Pierre and Walpersdorf, Andrea and Cotte, Nathalie and von Specht, Sebastian and Ortega-Culaciati, Francisco and Carrizo, Daniel and Norabuena, Edmundo}, title = {An 8month slow slip event triggers progressive nucleation of the 2014 Chile megathrust}, series = {Geophysical research letters}, volume = {44}, journal = {Geophysical research letters}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1002/2017GL073023}, pages = {4046 -- 4053}, year = {2017}, abstract = {The mechanisms leading to large earthquakes are poorly understood and documented. Here we characterize the long-term precursory phase of the 1 April 2014 M(w)8.1 North Chile megathrust. We show that a group of coastal GPS stations accelerated westward 8months before the main shock, corresponding to a M(w)6.5 slow slip event on the subduction interface, 80\% of which was aseismic. Concurrent interface foreshocks underwent a diminution of their radiation at high frequency, as shown by the temporal evolution of Fourier spectra and residuals with respect to ground motions predicted by recent subduction models. Such ground motions change suggests that in response to the slow sliding of the subduction interface, seismic ruptures are progressively becoming smoother and/or slower. The gradual propagation of seismic ruptures beyond seismic asperities into surrounding metastable areas could explain these observations and might be the precursory mechanism eventually leading to the main shock.}, language = {en} } @article{ZangStephanssonStenbergetal.2017, author = {Zang, Arno and Stephansson, Ove and Stenberg, Leif and Plenkers, Katrin and von Specht, Sebastian and Milkereit, Claus and Schill, Eva and Kwiatek, Grzegorz and Dresen, Georg and Zimmermann, G{\"u}nter and Dahm, Torsten and Weber, Michael}, title = {Hydraulic fracture monitoring in hard rock at 410 m depth with an advanced fluid-injection protocol and extensive sensor array}, series = {Geophysical journal international}, volume = {208}, journal = {Geophysical journal international}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, pages = {790 -- 813}, year = {2017}, abstract = {In this paper, an underground experiment at the Aspo Hard Rock Laboratory (HRL) is described. Main goal is optimizing geothermal heat exchange in crystalline rock mass at depth by multistage hydraulic fracturing with minimal impact on the environment, that is, seismic events. For this, three arrays with acoustic emission, microseismicity and electromagnetic sensors are installed mapping hydraulic fracture initiation and growth. Fractures are driven by three different water injection schemes (continuous, progressive and pulse pressurization). After a brief review of hydraulic fracture operations in crystalline rock mass at mine scale, the site geology and the stress conditions at Aspo HRL are described. Then, the continuous, single-flow rate and alternative, multiple-flow rate fracture breakdown tests in a horizontal borehole at depth level 410 m are described together with the monitoring networks and sensitivity. Monitoring results include the primary catalogue of acoustic emission hypocentres obtained from four hydraulic fractures with the in situ trigger and localizing network. The continuous versus alternative water injection schemes are discussed in terms of the fracture breakdown pressure, the fracture pattern from impression packer result and the monitoring at the arrays. An example of multistage hydraulic fracturing with several phases of opening and closing of fracture walls is evaluated using data from acoustic emissions, seismic broad-band recordings and electromagnetic signal response. Based on our limited amount of in situ tests (six) and evaluation of three tests in Avro granodiorite, in the multiple-flow rate test with progressively increasing target pressure, the acoustic emission activity starts at a later stage in the fracturing process compared to the conventional fracturing case with continuous water injection. In tendency, also the total number and magnitude of acoustic events are found to be smaller in the progressive treatment with frequent phases of depressurization.}, language = {en} }