@phdthesis{Steding2022, author = {Steding, Svenja}, title = {Geochemical and Hydraulic Modeling of Cavernous Structures in Potash Seams}, doi = {10.25932/publishup-54818}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-548182}, school = {Universit{\"a}t Potsdam}, pages = {IX, 104}, year = {2022}, abstract = {Salt deposits offer a variety of usage types. These include the mining of rock salt and potash salt as important raw materials, the storage of energy in man-made underground caverns, and the disposal of hazardous substances in former mines. The most serious risk with any of these usage types comes from the contact with groundwater or surface water. It causes an uncontrolled dissolution of salt rock, which in the worst case can result in the flooding or collapse of underground facilities. Especially along potash seams, cavernous structures can spread quickly, because potash salts show a much higher solubility than rock salt. However, as their chemical behavior is quite complex, previous models do not account for these highly soluble interlayers. Therefore, the objective of the present thesis is to describe the evolution of cavernous structures along potash seams in space and time in order to improve hazard mitigation during the utilization of salt deposits. The formation of cavernous structures represents an interplay of chemical and hydraulic processes. Hence, the first step is to systematically investigate the dissolution and precipitation reactions that occur when water and potash salt come into contact. For this purpose, a geochemical reaction model is used. The results show that the minerals are only partially dissolved, resulting in a porous sponge like structure. With the saturation of the solution increasing, various secondary minerals are formed, whose number and type depend on the original rock composition. Field data confirm a correlation between the degree of saturation and the distance from the center of the cavern, where solution is entering. Subsequently, the reaction model is coupled with a flow and transport code and supplemented by a novel approach called 'interchange'. The latter enables the exchange of solution and rock between areas of different porosity and mineralogy, and thus ultimately the growth of the cavernous structure. By means of several scenario analyses, cavern shape, growth rate and mineralogy are systematically investigated, taking also heterogeneous potash seams into account. The results show that basically four different cases can be distinguished, with mixed forms being a frequent occurrence in nature. The classification scheme is based on the dimensionless numbers P{\´e}clet and Damk{\"o}hler, and allows for a first assessment of the hazard potential. In future, the model can be applied to any field case, using measurement data for calibration. The presented research work provides a reactive transport model that is able to spatially and temporally characterize the propagation of cavernous structures along potash seams for the first time. Furthermore, it allows to determine thickness and composition of transition zones between cavern center and unaffected salt rock. The latter is particularly important in potash mining, so that natural cavernous structures can be located at an early stage and the risk of mine flooding can thus be reduced. The models may also contribute to an improved hazard prevention in the construction of storage caverns and the disposal of hazardous waste in salt deposits. Predictions regarding the characteristics and evolution of cavernous structures enable a better assessment of potential hazards, such as integrity or stability loss, as well as of suitable mitigation measures.}, language = {en} } @article{StedingKempkaKuehn2021, author = {Steding, Svenja and Kempka, Thomas and K{\"u}hn, Michael}, title = {How insoluble inclusions and intersecting layers affect the leaching process within potash seams}, series = {Applied Sciences : open access journal}, volume = {11}, journal = {Applied Sciences : open access journal}, number = {19}, publisher = {MDPI}, address = {Basel}, issn = {2076-3417}, doi = {10.3390/app11199314}, pages = {21}, year = {2021}, abstract = {Potash seams are a valuable resource containing several economically interesting, but also highly soluble minerals. In the presence of water, uncontrolled leaching can occur, endangering subsurface mining operations. In the present study, the influence of insoluble inclusions and intersecting layers on leaching zone evolution was examined by means of a reactive transport model. For that purpose, a scenario analysis was carried out, considering different rock distributions within a carnallite-bearing potash seam. The results show that reaction-dominated systems are not affected by heterogeneities at all, whereas transport-dominated systems exhibit a faster advance in homogeneous rock compositions. In return, the ratio of permeated rock in vertical direction is higher in heterogeneous systems. Literature data indicate that most natural potash systems are transport-dominated. Accordingly, insoluble inclusions and intersecting layers can usually be seen as beneficial with regard to reducing hazard potential as long as the mechanical stability of leaching zones is maintained. Thereby, the distribution of insoluble areas is of minor impact unless an inclined, intersecting layer occurs that accelerates leaching zone growth in one direction. Moreover, it is found that the saturation dependency of dissolution rates increases the growth rate in the long term, and therefore must be considered in risk assessments.}, language = {en} } @article{StedingSchneider2021, author = {Steding, Svenja and Schneider, Wilfried}, title = {Prognose des Schadstoffaustrags aus mehrphasigen DNAPL-Pools mittels semi-analytischem Berechnungsmodell}, series = {Grundwasser : Zeitschrift der Fachsektion Hydrogeologie in der Deutschen Gesellschaft f{\"u}r Geowissenschaften (FH-DGG)}, volume = {26}, journal = {Grundwasser : Zeitschrift der Fachsektion Hydrogeologie in der Deutschen Gesellschaft f{\"u}r Geowissenschaften (FH-DGG)}, number = {3}, publisher = {Springer}, address = {Berlin ; Heidelberg}, issn = {1430-483X}, doi = {10.1007/s00767-021-00490-2}, pages = {241 -- 253}, year = {2021}, abstract = {Multicomponent DNAPL pools are among the most common reasons for groundwater contamination and represent highly persistent source areas. Although several studies have already shown that their constituents influence each other's solubility, existing models neglect these interactions. For this reason, a semi-analytical model has been developed, considering the pool composition as temporally variable. Based on Raoult's law, the molar fraction, the effective solubility and finally the mass discharge due to advection, dispersion and diffusion of each component are determined. The results significantly differ from studies on single-phase pools. It is shown that mass discharges can both increase and decrease over time and that the longevity of DNAPL pools as well as the time until threshold values are fullfilled will be significantly underestimated if Raoult's law is neglected. Additionally, a sensitivity analysis reveals that poorly soluble minor components must not be neglected, whereas highly soluble ones can.}, language = {de} } @article{StedingKempkaZirkleretal.2021, author = {Steding, Svenja and Kempka, Thomas and Zirkler, Axel and K{\"u}hn, Michael}, title = {Spatial and temporal evolution of leaching zones within potash seams reproduced by reactive transport simulations}, series = {Water / Molecular Diversity Preservation International (MDPI)}, volume = {13}, journal = {Water / Molecular Diversity Preservation International (MDPI)}, number = {2}, publisher = {Molecular Diversity Preservation International}, address = {Basel}, issn = {2073-4441}, doi = {10.3390/w13020168}, pages = {21}, year = {2021}, abstract = {Leaching zones within potash seams generally represent a significant risk to subsurface mining operations and the construction of technical caverns in salt rocks, but their temporal and spatial formation has been investigated only rudimentarily to date. To the knowledge of the authors, current reactive transport simulation implementations are not capable to address hydraulic-chemical interactions within potash salt. For this reason, a reactive transport model has been developed and complemented by an innovative approach to calculate the interchange of minerals and solution at the water-rock interface. Using this model, a scenario analysis was carried out based on a carnallite-bearing potash seam. The results show that the evolution of leaching zones depends on the mineral composition and dissolution rate of the original salt rock, and that the formation can be classified by the dimensionless parameters of Peclet (Pe) and Damkohler (Da). For Pe > 2 and Da > 1, a funnel-shaped leaching zone is formed, otherwise the dissolution front is planar. Additionally, Da > 1 results in the formation of a sylvinitic zone and a flow barrier. Most scenarios represent hybrid forms of these cases. The simulated shapes and mineralogies are confirmed by literature data and can be used to assess the hazard potential.}, language = {en} }