@article{AshastinaKuzminaRudayaetal.2018, author = {Ashastina, Kseniia and Kuzmina, Svetlana and Rudaya, Natalia and Troeva, Elena I. and Schoch, Werner H. and Roemermann, Christine and Reinecke, Jennifer and Otte, Volker and Savvinov, Grigoriy and Wesche, Karsten and Kienast, Frank}, title = {Woodlands and steppes}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {196}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2018.07.032}, pages = {38 -- 61}, year = {2018}, abstract = {Based on fossil organism remains including plant macrofossils, charcoal, pollen, and invertebrates preserved in syngenetic deposits of the Batagay permafrost sequence in the Siberian Yana Highlands, we reconstructed the environmental history during marine isotope stages (MIS) 6 to 2. Two fossil assemblages, exceptionally rich in plant remains, allowed for a detailed description of the palaeo-vegetation during two climate extremes of the Late Pleistocene, the onset of the last glacial maximum (LGM) and the last interglacial. In addition, altogether 41 assemblages were used to outline the vegetation history since the penultimate cold stage of MIS 6. Accordingly, meadow steppes analogue to modern communities of the phytosociological order Festucetalia lenensis formed the primary vegetation during the Saalian and Weichselian cold stages. Cold-resistant tundra-steppe communities (Carici rupestris-Kobresietea bellardii) as they occur above the treeline today were, in contrast to more northern locations, mostly lacking. During the last interglacial, open coniferous woodland similar to modern larch taiga was the primary vegetation at the site. Abundant charcoal indicates wildfire events during the last interglacial. Zoogenic disturbances of the local vegetation were indicated by the presence of ruderal plants, especially by abundant Urtica dioica, suggesting that the area was an interglacial refugium for large herbivores. Meadow steppes, which formed the primary vegetation during cold stages and provided potentially suitable pastures for herbivores, were a significant constituent of the plant cover in the Yana Highlands also under the full warm stage conditions of the last interglacial. Consequently, meadow steppes occurred in the Yana Highlands during the entire investigated timespan from MIS 6 to MIS 2 documenting a remarkable environmental stability. Thus, the proportion of meadow steppe vegetation merely shifted in response to the respectively prevailing climatic conditions. Their persistence indicates low precipitation and a relatively warm growing season throughout and beyond the late Pleistocene. The studied fossil record also proves that modern steppe occurrences in the Yana Highlands did not establish as late as in the Holocene but instead are relicts of a formerly continuous steppe belt extending from Central Siberia to Northeast Yakutia during the Pleistocene. The persistence of plants and invertebrates characteristic of meadow steppe vegetation in interior Yakutia throughout the late Quaternary indicates climatic continuity and documents the suitability of this region as a refugium also for other organisms of the Pleistocene mammoth steppe including the iconic large herbivores. (C)2018 Elsevier Ltd. All rights reserved.}, language = {en} } @article{BrueggerGobetSigletal.2018, author = {Br{\"u}gger, Sandra Olivia and Gobet, Erika and Sigl, Michael and Osmont, Dimitri and Papina, Tatyana and Rudaya, Natalia and Schwikowski-Gigar, Margit and Tinner, Willy}, title = {Ice records provide new insights into climatic vulnerability of Central Asian forest and steppe communities}, series = {Global and planetary change}, volume = {169}, journal = {Global and planetary change}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0921-8181}, doi = {10.1016/j.gloplacha.2018.07.010}, pages = {188 -- 201}, year = {2018}, abstract = {Forest and steppe communities in the Altai region of Central Asia are threatened by changing climate and anthropogenic pressure. Specifically, increasing drought and grazing pressure may cause collapses of moisture-demanding plant communities, particularly forests. Knowledge about past vegetation and fire responses to climate and land use changes may help anticipating future ecosystem risks, given that it has the potential to disclose mechanisms and processes that govern ecosystem vulnerability. We present a unique paleoecological record from the high-alpine Tsambagarav glacier in the Mongolian Altai that provides novel large-scale information on vegetation, fire and pollution with an exceptional temporal resolution and precision. Our palynological record identifies several late-Holocene boreal forest expansions, contractions and subsequent recoveries. Maximum forest expansions occurred at 3000-2800 BC, 2400-2100 BC, and 1900-1800 BC. After 1800 BC mixed boreal forest communities irrecoverably declined. Fires reached a maximum at 1600 BC, 200 years after the final forest collapse. Our multiproxy data suggest that burning peaked in response to dead biomass accumulation resulting from forest diebacks. Vegetation and fire regimes partly decoupled from climate after 1700 AD, when atmospheric industrial pollution began, and land use intensified. We conclude that moisture availability was more important than temperature for past vegetation dynamics, in particular for forest loss and steppe expansion. The past Mongolian Altai evidence implies that in the future forests of the Russian Altai may collapse in response to reduced moisture availability.}, language = {en} } @article{TianCaoDallmeyeretal.2018, author = {Tian, Fang and Cao, Xianyong and Dallmeyer, Anne and Lohmann, Gerrit and Zhang, Xu and Ni, Jian and Andreev, Andrei and Anderson, Patricia M. and Lozhkin, Anatoly V. and Bezrukova, Elena and Rudaya, Natalia and Xu, Qinghai and Herzschuh, Ulrike}, title = {Biome changes and their inferred climatic drivers in northern and eastern continental Asia at selected times since 40 cal ka BP}, series = {Vegetation History and Archaeobotany}, volume = {27}, journal = {Vegetation History and Archaeobotany}, number = {2}, publisher = {Springer}, address = {New York}, issn = {0939-6314}, doi = {10.1007/s00334-017-0653-8}, pages = {365 -- 379}, year = {2018}, abstract = {Recent global warming is pronounced in high-latitude regions (e.g. northern Asia), and will cause the vegetation to change. Future vegetation trends (e.g. the "arctic greening") will feed back into atmospheric circulation and the global climate system. Understanding the nature and causes of past vegetation changes is important for predicting the composition and distribution of future vegetation communities. Fossil pollen records from 468 sites in northern and eastern Asia were biomised at selected times between 40 cal ka bp and today. Biomes were also simulated using a climate-driven biome model and results from the two approaches compared in order to help understand the mechanisms behind the observed vegetation changes. The consistent biome results inferred by both approaches reveal that long-term and broad-scale vegetation patterns reflect global- to hemispheric-scale climate changes. Forest biomes increase around the beginning of the late deglaciation, become more widespread during the early and middle Holocene, and decrease in the late Holocene in fringe areas of the Asian Summer Monsoon. At the southern and southwestern margins of the taiga, forest increases in the early Holocene and shows notable species succession, which may have been caused by winter warming at ca. 7 cal ka bp. At the northeastern taiga margin (central Yakutia and northeastern Siberia), shrub expansion during the last deglaciation appears to prevent the permafrost from thawing and hinders the northward expansion of evergreen needle-leaved species until ca. 7 cal ka bp. The vegetation-climate disequilibrium during the early Holocene in the taiga-tundra transition zone suggests that projected climate warming will not cause a northward expansion of evergreen needle-leaved species.}, language = {en} } @article{HuangPengRudayaetal.2018, author = {Huang, Xiaozhong and Peng, Wei and Rudaya, Natalia and Grimm, Eric C. and Chen, Xuemei and Cao, Xianyong and Zhang, Jun and Pan, Xiaoduo and Liu, Sisi and Chen, Chunzhu and Chen, Fahu}, title = {Holocene vegetation and climate dynamics in the Altai Mountains and Surrounding Areas}, series = {Geophysical research letters}, volume = {45}, journal = {Geophysical research letters}, number = {13}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1029/2018GL078028}, pages = {6628 -- 6636}, year = {2018}, abstract = {A comprehensive understanding of the regional vegetation responses to long-term climate change will help to forecast Earth system dynamics. Based on a new well-dated pollen data set from Kanas Lake and a review on the published pollen records in and around the Altai Mountains, the regional vegetation dynamics and forcing mechanisms are discussed. In the Altai Mountains, the forest optimum occurred during 10-7ka for the upper forest zone and the tree line decline and/or ecological shifts were caused by climatic cooling from around 7ka. In the lower forest zone, the forest reached an optimum in the middle Holocene, and then increased openness of the forest, possibly caused by both climate cooling and human activities, took place in the late Holocene. In the lower basins or plains around the Altai Mountains, the development of protograssland or forest benefited from increasing humidity in the middle to late Holocene. Plain Language Summary In the Altai Mountains and surrounding area of central Asia, the previous studies of the Holocene paleovegetation and paleoclimate studies did not discuss the different ecological limiting factors for the vegetation in high mountains and low-elevation areas due to limited data. With accumulating fossil pollen data and surface pollen data, it is possible to understand better the geomorphological effect on the vegetation and discrepancies of vegetation/forest responses to large-scale climate forcing, and it is also possible to get reliable quantitative reconstructions of climate. Here our new pollen data and review on the published fossil pollen data will help us to look into the past climate change and vertical evolution of vegetation in this important area of the Northern Hemisphere. Based on our study, it can be concluded that the growth of taiga forest in the wetter areas may be promoted under a future warmer climate, while the forest in the relatively dry areas is liable to decline, and the different vegetation dynamics will contribute to future high-resolution coupled vegetation-climate model for Earth system modelling.}, language = {en} }