@article{EinarssonBahrkeSigurdssonetal.2013, author = {Einarsson, Jon M. and Bahrke, Sven and Sigurdsson, Bjarni Thor and Ng, Chuen-How and Petersen, Petur Henry and Sigurjonsson, Olafur E. and Jonsson, Halldor and Gislason, Johannes and Thormodsson, Finnbogi R. and Peter, Martin G.}, title = {Partially acetylated chitooligosaccharides bind to YKL-40 and stimulate growth of human osteoarthritic chondrocytes}, series = {Biochemical and biophysical research communications}, volume = {434}, journal = {Biochemical and biophysical research communications}, number = {2}, publisher = {Elsevier}, address = {San Diego}, issn = {0006-291X}, doi = {10.1016/j.bbrc.2013.02.122}, pages = {298 -- 304}, year = {2013}, abstract = {Recent evidences indicating that cellular kinase signaling cascades are triggered by oligomers of N-acetylglucosamine (ChOS) and that condrocytes of human osteoarthritic cartilage secrete the inflammation associated chitolectin YKL-40, prompted us to study the binding affinity of partially acetylated ChOS to YKL-40 and their effect on primary chondrocytes in culture. Extensive chitinase digestion and filtration of partially deacetylated chitin yielded a mixture of ChOS (Oligomin(TM)) and further ultrafiltration produced T-ChOS(TM), with substantially smaller fraction of the smallest sugars. YKL-40 binding affinity was determined for the different sized homologues, revealing micromolar affinities of the larger homologues to YKL-40. The response of osteoarthritic chondrocytes to Oligomin(TM) and T-ChOS(TM) was determined, revealing 2- to 3-fold increases in cell number. About 500 mu g/ml was needed for Oligomin(TM) and around five times lower concentration for T-ChOS(TM), higher concentrations abolished this effect for both products. Addition of chitotriose inhibited cellular responses mediated by larger oligosaccharides. These results, and the fact that the partially acetylated T-ChOS(TM) homologues should resist hydrolysis, point towards a new therapeutic concept for treating inflammatory joint diseases.}, language = {en} } @article{BahrkeEinarssonGislasonetal.2003, author = {Bahrke, Sven and Einarsson, Jon M. and Gislason, Johannes and Haebel, Sophie and Peter-Katalinic, Jasna}, title = {Characterization of chitooligosaccharides by mass spectrometry}, isbn = {82-471-5901-5}, year = {2003}, abstract = {Heterochitooligosaccharides of DP 6, DP 9, and DP 12 were evaluated using established methods of derivatization and matrix-assisted laser desorption ionization post source decay mass spectrometry.}, language = {en} } @phdthesis{BahrkeEinarssonGislasonetal.2003, author = {Bahrke, Sven and Einarsson, Jon M. and Gislason, Johannes and Haebel, Sophie and Peter-Katalinic, Jasna and Peter, Martin G.}, title = {Characterization of chitooligosaccharides by mass spectrometry}, isbn = {82-47-15901-5}, year = {2003}, language = {en} } @article{BahrkeEinarssonGislasonetal.2002, author = {Bahrke, Sven and Einarsson, Jon M. and Gislason, Johannes and Haebel, Sophie and Letzel, Matthias C. and Peter-Katalinic, Jasna and Peter, Martin G.}, title = {Sequence analysis of chitooligosaccharides by matrix-assisted laser desorption ionization postsource decay mass spectrometry}, year = {2002}, abstract = {Oligosaccharides composed of 2-acetamido-2-deoxy-D-glucopyranose (GlcNAc) and/or 2-amino-2-deoxy-D- glucopyranose (GlcN) were prepd. by chem. degrdn. of chitin or chitosan and sepd. by gel permeation chromatog. Oligosaccharides obtained after enzymic hydrolysis of chitosan [FA 0.19] with a fungal chitinase were derivatized by reductive amination with 2-aminoacridone and sequenced by matrix-assisted laser desorption ionization time-of-flight postsource decay (PSD) mass spectrometry (MS). The sequence of a trimer, D1A2, was established as D-A-A. The compn. of a hexamer D3A3 was .apprx.65\% D-A-D-D-A-A and 35\% D-D-A-D-A-A. The PSD MS of a nonamer D5A4-amac revealed four isobaric species D-X-Y-D-X-Y-D-A-A, where A is GlcNAc, D is GlcN, and X and Y (X ยน Y) are mutually either D or A. This structure motif was also obsd. in a dodecamer D7A5 which was composed of eight isobaric sequences of the general formula (D-X-Y)3- D-A-A.}, language = {en} }