@article{JacquesBornhorstSoaresetal.2019, author = {Jacques, Mauricio Tavares and Bornhorst, Julia and Soares, Marcell Valandro and Schwerdtle, Tanja and Garcia, Solange and Avila, Daiana Silva}, title = {Reprotoxicity of glyphosate-based formulation in Caenorhabditis elegans is not due to the active ingredient only}, series = {Environmental pollution}, volume = {252}, journal = {Environmental pollution}, publisher = {Elsevier}, address = {Oxford}, issn = {0269-7491}, doi = {10.1016/j.envpol.2019.06.099}, pages = {1854 -- 1862}, year = {2019}, abstract = {Pesticides guarantee us high productivity in agriculture, but the long-term costs have proved too high. Acute and chronic intoxication of humans and animals, contamination of soil, water and food are the consequences of the current demand and sales of these products. In addition, pesticides such as glyphosate are sold in commercial formulations which have inert ingredients, substances with unknown composition and proportion. Facing this scenario, toxicological studies that investigate the interaction between the active principle and the inert ingredients are necessary. The following work proposed comparative toxicology studies between glyphosate and its commercial formulation using the alternative model Caenorhabditis elegans. Worms were exposed to different concentrations of the active ingredient (glyphosate in monoisopropylamine salt) and its commercial formulation. Reproductive capacity was evaluated through brood size, morphological analysis of oocytes and through the MD701 strain (bcIs39), which allows the visualization of germ cells in apoptosis. In addition, the metal composition in the commercial formulation was analyzed by ICP-MS. Only the commercial formulation of glyphosate showed significant negative effects on brood size, body length, oocyte size, and the number of apoptotic cells. Metal analysis showed the presence of Hg, Fe, Mn, Cu, Zn, As, Cd and Pb in the commercial formulation, which did not cause reprotoxicity at the concentrations found. However, metals can bio-accumulate in soil and water and cause environmental impacts. Finally, we demonstrated that the addition of inert ingredients increased the toxic profile of the active ingredient glyphosate in C. elegans, which reinforces the need of components description in the product labels. (C) 2019 Elsevier Ltd. All rights reserved.}, language = {en} } @misc{ChenBornhorstNeelyetal.2018, author = {Chen, Pan and Bornhorst, Julia and Neely, M. Diana and Avila, Daiana Silva}, title = {Mechanisms and disease pathogenesis underlying metal-induced oxidative stress}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1045}, issn = {1866-8372}, doi = {10.25932/publishup-46786}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-467869}, pages = {5}, year = {2018}, language = {en} } @misc{ChenBornhorstNeelyetal.2018, author = {Chen, Pan and Bornhorst, Julia and Neely, M. Diana and Avila, Daiana Silva}, title = {Mechanisms and Disease Pathogenesis Underlying Metal-Induced Oxidative Stress}, series = {Oxidative Medicine and Cellular Longevity}, journal = {Oxidative Medicine and Cellular Longevity}, publisher = {Hindawi}, address = {London}, issn = {1942-0900}, doi = {10.1155/2018/7612172}, pages = {3}, year = {2018}, language = {en} } @misc{AvilaBenedettoAuetal.2016, author = {Avila, Daiana Silva and Benedetto, Alexandre and Au, Catherine and Bornhorst, Julia and Aschner, Michael A.}, title = {Involvement of heat shock proteins on Mn-induced toxicity in Caenorhabditis elegans}, series = {BMC pharmacology and toxicology}, journal = {BMC pharmacology and toxicology}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407286}, pages = {9}, year = {2016}, abstract = {Background: All living cells display a rapid molecular response to adverse environmental conditions, and the heat shock protein family reflects one such example. Hence, failing to activate heat shock proteins can impair the cellular response. In the present study, we evaluated whether the loss of different isoforms of heat shock protein ( hsp ) genes in Caenorhabditis elegans would affect their vulnerability to Manganese (Mn) toxicity. Methods: We exposed wild type and selected hsp mutant worms to Mn (30 min) and next evaluated further the most susceptible strains. We analyzed survi val, protein carbonylation (as a marker of oxidative stress) and Parkinson ' s disease related gene expression immediately after Mn exposure. Lastly, we observed dopaminergic neurons in wild type worms and in hsp-70 mutants following Mn treatment. Analysis of the data was performed by one-way or two way ANOVA, depending on the case, followed by post-hoc Bonferroni test if the overall p value was less than 0.05. Results: We verified that the loss of hsp-70, hsp-3 and chn-1 increased the vulnerability to Mn, as exposed mutant worms showed lower survival rate and increased protein oxidation. The importance of hsp-70 against Mn toxicity was then corroborated in dopaminergic neurons, where Mn neurotoxicity was aggravated. The lack of hsp-70 also blocked the transcriptional upregulation of pink1 , a gene that has been linked to Parkinson ' sdisease. Conclusions: Taken together, our data suggest that Mn exposu re modulates heat shock protein expression, particularly HSP-70, in C. elegans .Furthermore,lossof hsp-70 increases protein oxidation and dopaminergic neuronal degeneration following manganese exposure, which is associated with the inhibition of pink1 increased expression, thus pot entially exacerbating the v ulnerability to this metal.}, language = {en} } @article{GubertPuntelLehmenetal.2016, author = {Gubert, Priscila and Puntel, Bruna and Lehmen, Tassia and Bornhorst, Julia and Avila, Daiana Silva and Aschner, Michael A. and Soares, Felix A. A.}, title = {Reversible reprotoxic effects of manganese through DAF-16 transcription factor activation and vitellogenin downregulation in Caenorhabditis elegans}, series = {Life sciences : molecular, cellular and functional basis of therapy}, volume = {151}, journal = {Life sciences : molecular, cellular and functional basis of therapy}, publisher = {Elsevier}, address = {Oxford}, issn = {0024-3205}, doi = {10.1016/j.lfs.2016.03.016}, pages = {218 -- 223}, year = {2016}, abstract = {Aims Vitellogenesis is the yolk production process which provides the essential nutrients for the developing embryos. Yolk is a lipoprotein particle that presents lipids and lipid-binding proteins, referred to as vitellogenins (VIT). The Caenorhabditis elegans nematode has six genes encoding VIT lipoproteins. Several pathways are known to regulate vitellogenesis, including the DAF-16 transcription factor. Some reports have shown that heavy metals, such as manganese (Mn), impair brood size in C. elegans; however the mechanisms associated with this effect have yet to be identified. Our aim was to evaluate Mn\&\#8242;s effects on C. elegans reproduction and better understand the pathways related to these effects. Main methods. Young adult larval stage worms were treated for 4 h with Mn in 85 mM NaCl and Escherichia coli OP50 medium. Key findings. Mn reduced egg-production and egg-laying during the first 24 h after the treatment, although the total number of progenies were indistinguishable from the control group levels. This delay may have occurred due to DAF-16 activation, which was noted only after the treatment and was not apparent 24 h later. Moreover, the expression, protein levels and green fluorescent protein (GFP) fluorescence associated with VIT were decreased soon after Mn treatment and recovered after 24 h. Significance Combined, these data suggest that the delay in egg-production is likely regulated by DAF-16 and followed by the inhibition of VIT transport activity. Further studies are needed to clarify the mechanisms associated with Mn-induced DAF-16 activation.}, language = {en} } @article{AvilaBenedettoAuetal.2016, author = {Avila, Daiana Silva and Benedetto, Alexandre and Au, Catherine and Bornhorst, Julia and Aschner, Michael A.}, title = {Involvement of heat shock proteins on Mn-induced toxicity in Caenorhabditis elegans}, series = {Plant Methods}, volume = {17}, journal = {Plant Methods}, publisher = {BioMed Central}, address = {London}, issn = {2050-6511}, doi = {10.1186/s40360-016-0097-2}, pages = {9}, year = {2016}, abstract = {Background: All living cells display a rapid molecular response to adverse environmental conditions, and the heat shock protein family reflects one such example. Hence, failing to activate heat shock proteins can impair the cellular response. In the present study, we evaluated whether the loss of different isoforms of heat shock protein (hsp) genes in Caenorhabditis elegans would affect their vulnerability to Manganese (Mn) toxicity. Conclusions: Taken together, our data suggest that Mn exposure modulates heat shock protein expression, particularly HSP-70, in C. elegans. Furthermore, loss of hsp-70 increases protein oxidation and dopaminergic neuronal degeneration following manganese exposure, which is associated with the inhibition of pink1 increased expression, thus potentially exacerbating the vulnerability to this metal.}, language = {en} }